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ABSTRACT
The size of personal music collections has constantly in-
creased over the past years. As a result, the traditional
metadata based lists to browse these collections have reached
their limits. Interfaces that are based on music similarity
offer an alternative and thus are increasingly gaining atten-
tion. Music similarity is typically either derived from audio-
features (objective approach) or from user driven informa-
tion sources, such as collaborative filtering or social tags
(subjective approach). Studies show that the latter tech-
niques outperform audio-based approaches when it comes
to describe the perceived music similarity. However, sub-
jective approaches typically only define pairwise relations as
opposed to the global notion of similarity given by audio-
feature spaces. Many of the proposed interfaces for simi-
larity based music access inherently depend on this global
notion and are thus not applicable to user driven music sim-
ilarity measures. The first contribution of this paper is a
high dimensional music space that is based on user driven
similarity measures. It combines the advantages of audio-
feature spaces (global view) with the advantages of subjec-
tive sources that better reflect the users’ perception. The
proposed space compactly represents similarity and there-
fore is well suited for offline use, such as in mobile applica-
tions. To demonstrate the practical applicability, the second
contribution is a comprehensive mobile music player that in-
corporates several smart interfaces to access the user’s music
collection. Based on this application, we finally present a
large-scale user study that underlines the benefits of the in-
troduced interfaces and shows their great user acceptance.

Categories and Subject Descriptors
H.5.1 [Information Systems]: Multimedia Information
Systems

General Terms
Algorithms, Experimentation, Human Factors
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1. INTRODUCTION
The way we interact with music has drastically changed

over the past years. Reasons are the online availability of
music, compact media formats, and ever increasing storage
capacities. These technical advances also facilitated a shift
towards the mobile domain.

Unfortunately, the interfaces offered by (mobile) media
players lag behind this trend of ever growing collections.
Today, the organization of digital music libraries is mostly
handled with metadata included in the audio files. Tradi-
tional list based search and browsing options render it hard
to keep an overview over a large amount of tracks. As a
result, users experience problems selecting the appropriate
music for a given mood or situation. Research about the
users’ needs has shown that people are searching for mu-
sic not only by means of bibliographic data (i.e. artist and
title), but also in more descriptive ways, such as by speci-
fying genre or mood information, or by naming artists that
are similar to the desired music [5, 12, 23]. However, cur-
rent music players do typically not support unspecific search
queries like: “I want to listen to music similar to the current
track, but not of the same artist”, or “I would like to listen
to something happy”.

Search methods based on music similarity offer an alter-
native that allows users to abstract from manually assigned
metadata. The similarity based organization has the advan-
tage of providing easy navigation and retrieval of new items,
even without knowing the songs by name. Online services
like last.fm and iLike that enjoy great popularity show the
potential of similarity based music retrieval. A considerable
amount of research has been devoted to the development of
interfaces to make similarity information intuitively avail-
able to the end user. Even though a variety of advanced
interfaces for collection visualization and playlist genera-
tion have been proposed, they have thus far not reached
the masses. A possible reason for the limited success is that
many approaches are designed for the use with audio fea-
ture spaces. However, research indicates that the capability
of audio analysis to represent perceived music similarity is
limited. Methods based on implicit and explicit user feed-
back have been shown to better reflect the users’ perception,
which is confirmed by the success of the aforementioned on-
line services.

There are two main reasons for the popularity of audio-
features for interface design. First, their compact represen-
tation facilitates the use in mobile devices, without the need
for permanent Internet connectivity. Usage data based sim-
ilarity measures, on the other hand, typically require large



databases to answer queries. Second, many of the currently
available interfaces rely on a global perspective on music sim-
ilarity. Such a global view is, for example, extremely advan-
tageous in the context of collection visualization. However,
socially derived music similarity typically only provides a
local view, i.e. pairwise similarities in a close neighborhood
of a given query song. The lack of a global view greatly
complicates the design of interfaces.

In this paper we propose the notion of social audio fea-
tures to overcome these issues. Our social audio features
combine the advantages of audio feature spaces and sub-
jective music similarity measures. In particular, we con-
struct a high-dimensional music space that well reflects the
pairwise similarities gained from subjective measures. This
space can be used by interfaces in the same way as tra-
ditional audio-features spaces. Our approach exploits two
sources of information to derive music similarity: The users’
listening behavior and social tagging. In particular, we de-
scribe a method that combines the two signals before they
are fed into a statistical framework called Probabilistic La-
tent Semantic Analysis (PLSA). PLSA basically performs
dimensionality reduction on co-occurrence data by identify-
ing a (small) set of hidden variables that well explain the
observed co-occurrence values.

The resulting social audio features cover more than 1M
songs. On the artist level, we managed to even map roughly
1.4M artists. These numbers clearly exceed approaches that
head into similar directions, and facilitate the use in end
user applications. To demonstrate the practical usefulness,
we have implemented a comprehensive mobile music appli-
cation (museek) for the Android platform. museek applies
our social audio features in different similarity based inter-
faces. Enhanced with album art, for example, the underly-
ing space facilitates the visual browsing of a collection, and
by considering skipping behavior, it allows to quickly iden-
tify undesired regions. Moreover, the application is aware of
the social tags used to derive music similarity. In combina-
tion with the map, these tags enable a fine-grained selection
of music matching a certain mood or style.

In an analysis of more than 100 usage data logs we show
the necessity of such advanced music retrieval interfaces. In
line with studies on music web forums, we find that, while
traditional search options remain important, less specific
and more explorative ways to access music are frequently
used and highly accepted by the users.

2. RELATED WORK
When designing music retrieval systems, it is essential to

know about the needs of the end users: How do people search
for music? What tools could assist them to find what they
are looking for? To get a better understanding of the users’
needs, Bainbridge et al. [5] have analyzed music queries in
the Google Answers service. Not surprisingly, artist and
song title are most often used to search or ask for music.
However, the study also shows that roughly a third of the
queries included a description of the genre or style, and that
sometimes references to known similar musicians were given.
Similar results were reported by Downie and Cunningham
[12] in an study on newsgroup messages. These results are
in line with the findings of Bentley et al. [6], that suggest
that music retrieval systems could profit from support for
serendipitous browsing capabilities. Lee et al. [23] used
questionnaires to investigate how people are searching for

music. Their study even more clearly emphasizes the impor-
tance of non-specific search options, such as genre, mood, or
gender. While genre information is doubtlessly important,
there is only little agreement on genre assignments and tax-
onomies [3, 21], which limits its usefulness. An alternative
to genres is given by social tags that provide several advan-
tages [21]: They overcome synonymy issues (e.g. E-Jazz vs.
Electronic Jazz), allow for a fuzzy assignment (a song might,
e.g., be tagged with Nu-Jazz and E-Jazz), and can also grasp
mood and other non-genre related information.

To facilitate non-specific search and browsing it is helpful
to have an understanding of music similarity. The various
research approaches that address this issue are roughly clas-
sified in acoustic and subjective approaches by Berenzweig
et al. [7]. Subjective measures encompass any kind of tech-
niques that involve human interaction such as the analysis
of expert assigned metadata, collaborative filtering based
techniques, questionnaires, and so on. Acoustic approaches,
on the other hand, solely rely on audio-signal analysis and
do not involve any human judgment, and are thus an ob-
jective measure. Examples are the works of Logan and Sa-
lomon [28], Aucouturier and Pachet [1], Foote [14], Pampalk
et al. [32], Tzanetakis [43], and Tsunoo et al. [41]. A good
overview and discussion of audio based techniques is given
in [9].

Audio based measures have the advantage that they are
not influenced by any subjective bias. Moreover, the ex-
tracted features typically define some sort of a space that
provides a powerful basis to construct novel interfaces to
access music. Audio-analysis, however, also exhibits some
major disadvantages. Although objectivity might be advan-
tageous in some scenarios, the lack of subjective information
proves to be a problem in most real-world settings. After all,
music is typically targeted at people, and the perception of
music is inherently subjective. Thus, many approaches try
to find a mapping between audio features and some widely
used genre taxonomies (see e.g. [43] and [41]). However,
Aucouturier and Pachet [4] conjecture that the currently
used techniques and their variants have reached a plateau
with respect to accuracy that can not easily be overcome.
Moreover, they show that errors produced by state-of-the-
art methods are often severe, i.e. misclassified songs can be
completely different from their neighbors in terms of per-
ceived similarity. The conclusions of Casey et al. [9] go into
a similar direction.

Subjective methods encompass a wide variety of tech-
niques. Sources of information include (expert assigned)
metadata (e.g. [35]), (web-)text documents describing mu-
sic (e.g. [45]), questionnaires (e.g. [7]), games (e.g. [13]),
and usage data (e.g. [16]). Questionnaires are mainly used
as a ground truth to compare other methods, such as
in [7]. Sometimes, different techniques can also be com-
bined. There are, for example, games that aim at collecting
metadata (e.g. [22] and [29]) that can in turn be used to de-
fine music similarity. Social tags are used as metadata in the
approach presented by Levy and Sandler [25]. The authors
stress the advantages of social tags over web-mined infor-
mation with respect to noise and scalability. The results of
Turnbull [42], however, show that social tags suffer from a so
called popularity bias, i.e. they offer good quality for famous
songs, but are of limited use to describe less known items.

In an attempt to define a notion of ground truth, Beren-
zweig et al. [7] compare different methods to derive music



similarity. The results indicate that co-occurrence informa-
tion in conjunction with item-to-item collaborative filter-
ing [26] provides the best results among the subjective tech-
niques. In the experiments of Slaney and White [39], col-
laborative filtering also clearly outperforms an audio-based
alternative.

These studies indicate that collaborative filtering is su-
perior to other approaches when it comes to define (per-
ceived) music similarity. However, the resulting information
is not as versatile as the feature-spaces produced by audio-
analysis. In particular, item-to-item collaborative filtering
only produces a weighted list of neighbors that co-occur at
least once with the item in question. Hence, the method
does not define a global space. Such a space, however, is
required by many advanced interfaces. This is, presumably,
one of the reasons, why most interfaces that have recently
been proposed are based on audio-feature spaces.

With the work we present in this paper, we bridge this
gap. In particular, we propose a method to create a music
similarity space based on social tags and ideas from collab-
orative filtering. The single information sources have been
used in comparable contexts before, such as in [25] (social
tags) and [10, 16] (collaborative filtering). The existing col-
laborative filtering based approaches, however, miss the ad-
vantages of tags that have an intuitive meaning and can thus
efficiently guide the user through the space. Moreover, the
approach of Gleich et al. [10] is targeted merely at visual-
ization and limited to artist similarities.

The approach of Levy and Sandler [25] solely relies on so-
cial tags. Our approach adds to this work by including ideas
from [16] to overcome the popularity bias problem reported
by Turnbull et al. [42]. Our experiments show that the com-
bination of the two information sources does not only allow
to cover enough songs and artists to make our space prac-
tically applicable, but that it also significantly improves the
accuracy of the music similarity information. Moreover, the
resulting space keeps the advantages of the tags and their
intuitively understandable meanings. The result is a music
similarity space that can be used in a similar way as audio-
feature spaces.

Most of the existing work in the context of user interfaces
tries to visualize collections based on previously extracted
audio features. Often, self-organizing maps (SOMs) are used
for this purpose, such as in [30, 20, 24, 15]. These approaches
typically map the audio space into some low (2 or 3) di-
mensional representation, which can then be explored using
traditional navigation methods. Other approaches that go
into a similar direction include the work of Donaldson and
Knopke [11], and Sony Ericsson’s commercial SensMe inter-
face that displays songs along two axes (mood and tempo).
How this information is extracted remains the company’s
secret. Moreover, several more abstract visual interfaces
have been proposed, such as the artist map of van Gulik et
al. [44], and the circular layouts introduced by MusicRain-
bow [33] and AudioRadar [18]. These interfaces all rely on
audio features as an underlying similarity measure, some-
times augmented with metadata. The interface proposed
by Torrens et al. [40] does not rely on any music similar-
ity measure. Rather, it directly visualizes metadata, such
as genre or year of release. Apple’s Cover Flow interface,
finally, merely replaces the traditional textual album list by
nicely presented album covers. The enormous popularity in-

dicates that album covers are a useful visual hint to retrieve
music.

Often, visual interfaces are combined with intelligent
playlist generation. Examples are the commercial SensMe
interface, the approach of van Gulik et al. [38], and the Pock-
etSOMPlayer [15] that allows to create playlists by drawing
trajectories through a SOM-based map.

Non-visual playlist generation methods have been pro-
posed by Pampalk et al. [34] and Bossard et al. [8]. These
approaches try to find music that matches the user’s taste
by considering feedback such as skipping behavior.

A purely textual interface to generate intelligent playlists
is Apple’s iTunes Genius feature. It basically selects songs
similar to the preceding songs and thus follows a similar
principle as approaches presented in [27], [36], [2], and [37].
In museek we have implemented various play modes and
a visual browsing interface that incorporate several of the
outlined ideas.

3. CREATING A SOCIAL AUDIO SPACE
Probabilistic Latent Semantic Analysis (PLSA) is a statis-

tical framework to analyze co-occurrence data. The method
was proposed by Hofmann [19], and originally designed for
automated document indexing. Similarly as in the widely
known Latent Semantic Indexing (LSI) approach, the idea
is to discover relationships between words and documents
in a document collection. While LSI relies on techniques
from linear algebra for this purpose, PLSA makes use of a
probabilistic model. In particular, it introduces latent vari-
ables (also called latent classes) that interrelate words and
documents. In a comparative study, Levy and Sandler [25]
have found that PLSA provides better results than LSI in a
context very similar to ours.

The goal of PLSA is to find probabilistic assignments be-
tween documents and latent classes, and between latent
classes and words such that the observed occurrences of
words in documents is best possible approximated by the
probabilistic model. Hofmann shows that the correspond-
ing assignments of documents to latent classes can be in-
terpreted as a vector space. Thus, every document can be
seen as a point in this space, and, as a result of the analysis,
similar documents reside at similar locations in this space
(we use the L2-norm to measure distance).

Analogously, a latent semantic music space can be con-
structed by considering songs as documents, and the social
tags assigned to these songs as the words within the “docu-
ments”. The result is a space of music in which similar songs
are supposed to cluster.

3.1 PLSA
To describe the PLSA method we will make use of the

notation used for document indexing, i.e. we will talk about
documents d, words w, and latent classes z. We will thereby
assume that there are N documents, M words, and K latent
classes.

In PLSA, documents are related to words via latent
classes. Thereby, a generative model is assumed, in which a
document is created by producing its words as follows: Each
word is generated by first choosing a latent class, and then,
dependent on the latent class, choosing a word. In particu-
lar, for each word, first, a latent class is chosen with a certain
probability P (zk|di). Dependent on this latent class, then,
a word is chosen according to the probability P (wj |zk). In



this model, the probability that a document di creates a
certain word wj is given by:

P (wj |di) =

K∑
k=1

P (wj |zk) · P (zk|di)

PLSA tries to find the assignment of the corresponding
probabilities that best approximates the effectively observed
document-word co-occurrences. The optimization of the
model parameters (i.e. the probabilities) is done using the
well known Expectation Maximization (EM) technique that
works by alternately applying an expectation (E) and a max-
imization (M) step. The iterations are aborted as soon as
some convergence criterion is met (between 20 and 50 itera-
tions have shown to be sufficient in practice). In the context
of PLSA, the goal is to maximize the log-likelihood L of the
observed data, which is given by

L =
∑
i

∑
j

n(di, wj) · logP (di, wj),

where n(d,w) denotes the number of times word w occurred
in document d. The corresponding expectation and maxi-
mization steps are given below:

• Expectation step:

P (zk|di, wj) =
P (wj |zk) · P (zk|di)
K∑
l=1

P (wj |zl) · P (zl|di)

• Maximization step:

P (wj |zk) =

N∑
i=1

n(di, wj) · P (zk|di, wj)

M∑
m=1

N∑
i=1

n(di, wj) · P (zk|di, wm)

P (zk|di) =

N∑
j=1

n(di, wj) · P (zk|di, wj)

n(di)
,

where n(di) denotes the total number of words in document
di.

3.2 Applying PLSA to Music
To create our social audio features, we have applied the

PLSA method to data gathered from last.fm. Thereby, we
consider two sources of information: (1) Social tags, such as
they were assigned by users to songs and (2) the listening be-
havior of the users. The listening behavior is extracted from
lists that, for each user, contain the 50 most listened songs
(short top-50 lists). The following work is based on crawled
data from about 2.4M users, containing approximately 10M
songs, 1.4M artists, and 1M tags.

Observe that there are different ways how this information
could be used in conjunction with PLSA, which basically
only requires some sort of co-occurrence data:

• Using user-song co-occurrences, similarly as this was
done in the graph embedding based map proposed by
Goussevskaia et al. [16].

• Using the co-occurrence of songs and social tags (as
described in [25]).

Using the song-tag co-occurrences is an intuitive approach
and has proven to work well. We improve upon this basic ap-
proach by smartly re-assigning tags prior to applying PLSA.
Thereby, we implicitly take advantage of the user-song co-
occurrences, and thus effectively combine the two informa-
tion sources. In the evaluation part, we will show that this
combination leads to a significant performance gain as com-
pared to approaches that only consider a single information
source.

In the following, songs are considered as documents and
(re-assigned) tags are considered as words in the context
of PLSA. Thus, for the remainder of this section, we will
change our notation as follows:

• document → song: d→ s

• word → tag: w → t

The tags assigned by last.fm users exhibit some peculiari-
ties. In particular, there are lots of personal tags that relate
to the user who assigned them rather than to the music. Ex-
amples are “heard on pandora”, “favorite artist”, and “awe-
some”. Moreover, several spellings are used to denote the
same thing, such as “hip hop”, “hip-hop”, and “hiphop”. To
reduce noise, we only considered the approximately 1K most
occurring tags and manually cleaned them by removing per-
sonal tags and by normalizing synonyms. The reduction
to the most occurring tags on the one hand allows for man-
ual cleaning, and on the other hand considerably reduces the
computational complexity without significantly affecting the
accuracy.

A bigger issue with social tags is that they suffer from a
popularity bias as shown by Turnbull et al. [42]. That is,
typically only the most famous songs are accurately tagged,
whereas unpopular songs often contain no, or inappropriate
tags. In fact only about 20% of the songs in our last.fm
subset were tagged by the users. Directly applying PLSA to
the song-tag co-occurrence data, such as done in [25], would
thus exclude the remaining 80% of the songs, which is not
acceptable for the use in real-world applications.

To overcome this problem, we make use of the information
contained in the users’ top-50 lists. Similarly as in item-to-
item collaborative filtering [26] we assume that songs that
often occur together in such top-lists are related to each
other to a certain degree. This assumption facilitates the
extrapolation of the tagging information to previously un-
tagged songs. In Section 3.3 we will show that this does not
only solve the data sparsity problem, but also improves the
accuracy of the resulting space.

In particular, we automatically assign tags to a given
song s using the following procedure: Loop through the
top-50 lists of all users. For each top-list song s appears
in, iterate through all the neighbors (i.e. through all the
other songs in the corresponding top-list). For each neigh-
bor, iterate through all its tags (i.e. all the tags that last.fm
users have assigned to this particular song). For each of
these tags, increase the song-tag co-occurrences of song s.
Finally, assign the T tags with highest occurrence to song
s for the use in the PLSA optimization (for some threshold
T , 50 in our case). Moreover, these tags are weighted pro-
portionally to their occurrence numbers (and such that the
weights sum up to 1). This automated tag assignment pro-
cess is illustrated in Figure 1 for a simplified example with
only two top-lists (and T = 3).



Song 1: rock, hard rock, guitar, metal
Song 2: guitar
Song 3: soft rock
Song 4: singer-songwriter, male vocals
Song 5: guitar, singer-songwriter

User 1 Top-List

Song 6: rock, female vocalist

Song 2: guitar
Song 7: rock, metal, heavy metal

Song 8: singer-songwriter, british
Song 9: guitar, reggae

User 2 Top-List

5 guitar
3 rock
3 singer-songwriter
2 metal
1 hard rock
1 male vocals
1 female vocalist
1 soft rock
1 heavy metal
1 reggae
1 british

0.45 guitar
0.27 rock
0.27 singer-songwriter

Song 2: Assigned Tags
count tags
for song 2

select top
T tags

Figure 1: Assigning weighted tags to a song (simpli-
fied example with only 2 top-lists).

We have tagged the (approximately) 1.1M most occurring
songs using the described technique. The obtained song-
tag co-occurrence data has then been fed into the PLSA
framework. After applying PLSA, the conditional probabil-
ities P (zk|si) are well defined for all classes zk and all songs
si. These probabilities can be seen as coordinates, assigning
each document a point in the so called probabilistic latent se-
mantic space [19]. Since the probabilities corresponding to
a song si sum up to 1 (i.e.

∑
k P (zk|si) = 1), the songs in

fact lie on a K−1 dimensional hyperplane. The coordinates
of the songs in this space form our social audio features.

The resulting space covers roughly 1.1M songs corre-
sponding to more than 120K artists. However, our last.fm
database contains information to more than 1.4M artists. To
make this information available we have calculated artist co-
ordinates for these artists as follows: (1) For all the artists
that are available in the latent space, we define the artist
coordinate as the center of mass of their songs with known
coordinates. (2) For the remaining artists we have queried
their closest neighbors from last.fm. We then place the artist
at the center of mass of all the neighbors with known coor-
dinates (as calculated before). As a result we could define
social audio features for more than 1.4M artists, which is
enough to facilitate the use in end-user applications.

An important property of our space is the direct relation-
ship to the tags that were used in its construction process.
In particular, the PLSA-model inherently defines the prob-
ability of a song generating a given tag as:

P (tj |si) =

K∑
k=1

P (zk|si) · P (tj |zk)

We will make use of this relationship in the mobile appli-
cation presented in Section 5.

3.3 Evaluation
In this section we describe different tests that allow to

compare the qualities of different music similarity spaces.
In particular, we will compare the spaces resulting from the
following approaches:

• Song-tag approach: PLSA is applied to plain song-tag
co-occurrences (as given from last.fm).

• Song-user approach: PLSA is applied to song-user co-
occurrences.

• Combined approach: PLSA is applied to the co-
occurrences of songs and re-assigned tags, as described
before.

Since the song-tag approach suffers from the mentioned
popularity bias problem, the comparison is done on a re-
duced data set. Similarly as in [25] we only consider songs
that contain at least 30 tags. To ensure fairness with respect
to the song-user approach, we have also eliminated songs
that appear in less than 30 top-50 lists. The resulting re-
duced dataset contains roughly 80K songs. To construct the
space with the combined approach we have applied PLSA
to both, the reduced as well as the full dataset. To keep
the numbers comparable, the same 80K songs were used for
both datasets during evaluation.

Our tests are based on three different criteria to assess the
quality of a given music space:

• Consistency of social tags: In a space that well reflects
perceived music similarity, the social tags of songs in
a close neighborhood should be similar.

• Comparison to collaborative filtering : Collecting a suf-
ficient amount of human judgments to get a ground
truth with respect to perceived similarity is an ex-
tremely expensive task. Moreover, there do not seem
to be any publicly available datasets that can be used
for this purpose. Thus, we rely on item-to-item collab-
orative filtering as a “ground truth” to which we can
compare our results. Berenzweig et. al [7] have com-
pared a variety of music similarity measures and found
that item-to-item collaborative filtering performs best
among the investigated approaches.

• Artist clustering : Songs of the same artist are often
similar. Thus, songs of the same artists are supposed
to (somewhat) cluster in a space that well reflects mu-
sic similarity.

3.3.1 Tag Consistency
To evaluate tag consistency, we try to estimate the (un-

cleaned) tags of a given song by considering the (uncleaned)
tags of songs residing in its neighborhood. For this purpose,
we closely follow the concept of a k-nearest-neighbor (KNN)
classifier. To estimate the tags of a song s, we consider the
tags assigned to the k closest songs in the music space (for
k = 20). For each tag we count the total number of occur-
rences. The 10 most occurring tags are then compared to
the 10 tags that were most often assigned to s by last.fm
users. The percentage of correctly estimated tags is a good
measure to compare different music spaces to each other.
We have not only used it to compare the combined approach
to the other two PLSA variants, but also to decide on an ap-
propriate number of latent classes (i.e. the dimensionality
of the resulting latent semantic space). Figure 2 plots the
number of latent classes versus the percentage of correctly
estimated tags. As expected, the number of latent classes
significantly influences the accuracy of the resulting music
space. An important observation is that the curve levels off.
That is, increasing the number of dimensions beyond about
30 does not lead so a significant increase in the precision
of the estimated tags. Thus, we have fixed the number of
dimensions to 32.

We have measured the tag consistency on the three PLSA
variants (song-tag, song-user, and combined) on the reduced
dataset, and, in addition, on the combined variant on the full
dataset. The results are summarized in Figure 3. On the
one hand, we can see that the combined variant significantly



Figure 2: The number of latent classes versus the
percentage of correct tag estimations. The plot
shows that increasing the number of latent classes
to more than about 30 does not lead to a relevant
quality improvement.2
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Figure 3: Tag consistency: Combining the two infor-
mation sources (social tags and listening behavior)
improves the KNN tag estimation.

improves the tag estimations as compared to the simple ap-
proaches. On the other hand, the figure shows that on the
full dataset the performance even increases. Over half of
the most relevant user-assigned tags could be correctly esti-
mated by looking at the neighborhood of a song – a remark-
able number when considering the synonym issues and the
many personal tags present in the last.fm dataset.

3.3.2 Comparison to Collaborative Filtering
The top-50 lists available from our last.fm dataset can

be used to calculate a ranked neighborhood of a song us-
ing item-to-item collaborative filtering (our “ground truth”).
Collaborative filtering is designed to identify the most simi-
lar items and is known to perform well in this respect (recall
Section 2). However, for most distant items, it does not
provide any information due to the lack of co-occurrence
information. In our experiments, we thus compare the k
closest neighbors in our map with the k most similar items
identified by item-to-item collaborative filtering, applied to
our top-50 lists.

The results of applying this measure to the different space
construction variants are shown in Figure 4. Again, we can
see how the combination of the two signals significantly im-
proves the quality. The approximately 25% matches in the
10 closest neighbors should be contrasted to the 80K songs
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Figure 4: Comparision to collaborative filtering:
The combined approach clearly outperforms the al-
ternative approaches. More than 25% agreement is
a remarkable number, considering that only 10 songs
were compared from a universe of 80K songs.

these neighbors could be chosen from. The task is compa-
rable to the search for a needle in a haystack – thus, more
than 25% identical output are a remarkable result.

3.3.3 Artist Clustering
We measure the level of artist clustering using the mean

average precision (mAP) on artist labels. Average preci-
sion (AP) is a standard performance metric known from
information retrieval. It is used to measure the quality of
a ranked sequence of items, such as given when ordering
songs according to their distance from a given query song
s. Thereby, relevant items (songs featuring the same artist
as the query song, in our case) that appear early in the list
are rewarded more than those that appear towards the end.
More formally, AP is defined as

AP =

∑N
r=1 P (r) · rel(r)

R
,

where P (r) denotes the precision at rank r, rel(r) is 1 if
the item at rank r is relevant (and 0 otherwise), R is the
total number of relevant items, and N is the total number
of retrieved items (i.e. all the songs, in our case).

Higher AP (and thus also mAP) values refer to better
artist clustering. However, a better artist clustering does not
necessarily imply a better quality of the underlying space,
as there is no reason, why songs of other artists cannot be
similar to the query song. John Lennon and Beatles might
serve as an example. In the same way, a single artist can
have songs of extremely different style (e.g. Nothing else
Matters and Master of Puppets from Metallica). Thus the
mAP performance metric is questionable in our context, in
particular when comparing relatively high mAP values. As
it has been used before to quantify the accuracy of music
similarity (see, e.g. [25]), we will apply it as well, despite its
questionable nature.

The corresponding results are summarized in Figure 5. In
line with the previous results, the figure shows that the two
information sources (listening behavior and tags) can profit
from each other. And again, the result of the combined

2The absolute numbers cannot directly be compared to the
other experiments, as this plot is based on a different dataset
and different parameter settings.
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Figure 5: Artist clustering: Combining the two in-
formation sources significantly improves the mean
average artist precision. Observe that this test is
based on a total of 11K artist labels, which inher-
ently leads to relatively low numbers.

approach even improves for the full dataset. When compar-
ing these numbers to other approaches, it is important to
consider the number of artists in the dataset. In [25], for
example, the dataset contained 212 artists, as opposed to
roughly 11K in our experiments (which inherently leads to
lower mAP values).

4. THE SOCIAL AUDIO FEATURES
In the previous section we have embedded social music

similarity information into a Euclidean space. Each direc-
tion in this space reflects a concept as defined by the corre-
sponding latent semantic classes. As a result, each point in
the space well characterizes a style of music. The basic na-
ture of our latent music space is thus identical to the nature
of an audio feature space. However, whereas in an audio
feature space, the directions reflect some acoustic proper-
ties (such as timbre, pitch, beat, etc.)3, they reflect socially
derived music concepts in our PLSA space. Thus, we refer
to the corresponding features as social audio features, as op-
posed to the (normal) audio features that define a traditional
audio feature space.

Working on a Euclidean space rather than on pairwise
similarities exhibits several advantages. In particular, ap-
plications can benefit from the geometric properties and the
resource friendly compact representation using coordinates.

Geometry.
Embedding music into a Euclidean space is not only an

effective way to represent music similarity, but also allows
to make use of the geometric properties for music players
and retrieval interfaces. Interesting geometric elements are
trajectories, volumes, and a sense of direction. The pre-
ferred music style of a user, for example, can often be com-
pactly represented as a volume. Trajectories can be used
to graphically generate playlists from one region to another
(see e.g. [31, 17]). The sense of direction, finally, can be used
to smartly extend existing playlists.

3These are just simple illustrative examples. Clearly, state-
of-the-art audio-signal analysis methods are able to extract
more complex acoustic properties.

Memory and Computation Time.
Calculating the similarity between two arbitrary pairs of

items is typically a resource intensive task when working
with social similarity information. In the case of item-to-
item collaborative filtering, for example, the entire item-item
co-occurrence matrix has to be stored. When considering
any non-zero similarities as edges of a graph, the pairwise
similarity of an arbitrary pair of nodes can be defined as
the shortest path between them [16, 37]. However, this re-
quired shortest path calculation is expensive with respect
to both, memory usage (the entire graph needs to be avail-
able) and computation time.4 Using social audio features,
on the other hand, provides basically the same similarity in-
formation at low cost: For each song, only a low-dimensional
coordinate (32 in our case) needs to be stored (which is neg-
ligible when compared to the song’s file-size). Moreover,
many applications do not need to know about the similar-
ity relationships among all the songs in the music universe.
Rather, applications often operate on a small subset only,
such as on a particular user’s music collection. Using our
social audio space, we only need to store the coordinates of
the relevant songs on the target device, in order to make the
corresponding similarity information available. Using pair-
wise similarities, by contrast, also requires to store all the
intermediate songs such that distances can be defined tran-
sitively (i.e. by means of shortest paths in graphs). The
obtained savings in terms of memory consumption are often
immense, considering that collection sizes are typically in
the order of thousands of songs, as opposed to hundreds of
thousands of songs contained in our music space. The social
audio features are thus a perfect match for use on personal
collections in the mobile domain.

4.1 Key Facts
To conclude this section, we want to quickly review some

major properties of the music similarity space that underlie
our social audio features:

• Similarity measure: The underlying similarity measure
is based on an analysis of last.fm data, combining the
information from social tags and the user’s listening
behavior.

• Orientation: The axes in the described music simi-
larity space are defined by latent classes which are di-
rectly related to the underlying tags. This information
can be helpful to guide the user through the space.

• Coverage: The PLSA based space contains more that
1M tracks corresponding to more than 120K artists.
To further increase the coverage, we have calculated
the coordinates of an additional 1.3M artists, which
leads to a significantly bigger coverage than any com-
parable approach. As a result, the coverage gets high
enough to be usable in productive applications, such
as the one shown in the following section.

5. A COMPREHENSIVE MUSIC PLAYER
In an attempt to address the users’ needs (as outlined in

Section 2) and to demonstrate the usefulness of the social

4The concept of approximate distance oracles has been pro-
posed to overcome these issues, however, in practice, the
resource demands are still high.



(a) The map in an overview
zoom level.

(b) A close look at the sim-
ilarity map.

Figure 6: The 2D music similarity map

audio features, we have developed museek, a music player
for Android smart phones, that provides similarity based
functionality. Our player incorporates the following features
to access and discover music: (1) Traditional alphabetic lists
(song, album, artist, and genre) to browse for music, (2) a
full text search option to search in the title and artist fields,
(3) a tag-cloud to select music by social tags, (4) a music map
to visualize a collection, (5) a play mode that plays songs
similar to the previous one, and (6) a play mode that avoids
inappropriate regions by considering skipping behavior.

Features (3) to (6) rely on the described social audio fea-
tures. For visualization, our high dimensional space is trans-
formed into a collection dependent 2D map on the user’s
device using Principal Component Analysis (PCA).

The traditional search options, i.e. features (1) and (2),
do not need any further explanations. Rather, we quickly
want to sketch the most important properties of the other in-
terfaces. Our music map combines the strengths of Apple’s
Cover Flow and Sony Ericsson’s SensMe interfaces. The
popularity of Cover Flow shows that album art is a good
visual hint to recognize music and also stresses the user’s
desire for visually attractive ways to browse a music library.
SensMe, on the other hand, provides a neat way to explore
a collection and to quickly create appealing playlists by se-
lecting regions from a map. We have thus implemented an
intuitively navigable map that uses album covers as visual
aids.

At low zoom levels (see Figure 6(a)) the map resembles
the point cloud of SensMe. Tags help the user to keep an
overview. When zooming in, the points become recognizable
as album images (see Figure 6(b)). From this view the user
can either select an album to be played or discover other,
similar albums by browsing through the covers. The navi-
gation in the map occurs by moving the finger on the touch-
screen. Zooming in and out can be done using traditional
multi touch gestures (pinching and unpinching). Moreover,
a touch gesture allows to select a region from the map to
create a playlist similarly as in SensMe.

Besides the described 2D mode, the map also comes in
a 3D flavor that focuses on offering an appealing browsing
experience. The 3D view uses the same underlying 2D space
but arranges the album covers in 3D (see Figure 7(a)).

We have also used the social audio features to offer two

(a) The music similarity
map in 3D.

(b) An auto-generated tag-
cloud for a user’s collection.

Figure 7: The 3D map and the tag-cloud.

novel play modes, a similar song mode and a smart shuf-
fling mode. The idea of the similar song mode is to extend
an existing playlist with similar songs. This means a user
can select a start song s/he likes and the application will au-
tomatically add songs to the playlist that are similar. This
allows the generation of smooth playlists by choosing a single
seed song. To avoid that the similar song mode plays songs
from just one artist, the user can specify that an artist may
not re-occur for a certain number of subsequent songs.

The smart shuffle mode selects songs from the entire col-
lection and thereby intelligently avoids music styles of songs
the user has previously skipped. Similar as in [8], the idea is
to subdivide the map into good and bad regions. A region
is marked good if the corresponding songs were listened to
the end, and bad, if the songs were skipped.

Finally, we have seen that users often describe their needs
in terms of genres or other descriptive information, such
as mood. Thus we offer the possibility to choose songs by
selecting a tag in a tag cloud (see Figure 7(b)). This tag
cloud is individually generated for a user, displaying only
tags that are relevant to the music collection on the device.
As the tags in this cloud are freely generated by last.fm
users, they do not only specify genres and sub genres but also
moods and feelings. This facilitates a fine grained selection
of the desired music.

The outlined functionality is integrated into our player in
5 tabs. The Player Tab contains the player controls, the
playlist, as well as buttons to control the play mode (re-
peat, shuffling over playlist, shuffling over collection, similar
songs, and smart shuffling). The Lists Tab allows to access
traditional alphabetic lists (namely song, album, artist, and
genre list), as well as a tag-cloud (recall Figure 7(b)) to se-
lect music. A full text search mode is provided by the Search
Tab, and, finally, there are two screens for the 2D and the
3D map, respectively (recall Figures 6 and 7(a)).

6. USER STUDY
We have published our application on the Android Market

(the App Store for Android). At the first startup, we ask
the user for permission to log (anonymous) usage data. We
removed overly short log files, as we were interested in the
usage of regular users (as opposed to those that only had



Explicit plays Implicit plays

Meta data lists 16% -
Similarity map 8% -
Tag cloud 10% -
Shuffle - 2%
Smart shuffle - 51%
Similar mode - 13%

Sum 34% 66%

Table 1: A comparison between the origins of the
played songs. The new player features are used often
to generate playlists and select music.

a quick look at the application). The following statistics
are based on the remaining 128 data logs, each of which
documents the usage for a period of 5 days.

To get a rough impression about how the application is
used, we measured the times the users spent in the different
tabs. Not surprisingly, the Player Tab, mainly used to lis-
ten to music, is the most popular view – users spend about
two thirds of the time in it. The remaining time can be
seen as the time spent to search or browse for music and is
distributed as follows: Lists Tab (including tag-cloud) 53%,
Map Tabs 40%, and Search Tab 7%. The fact that when
searching for music the users spent 40% of the time in the
Map Tabs confirms the need for serendipitous browsing op-
tions and shows that this interface is well accepted.

Studies about user needs suggest that people would often
select music based on descriptive information, such as genre
or mood. We have found that 51% of our users have at
least once selected music from our tag-cloud, and that 19%
used this feature regularly. Interestingly, only about 40% of
the selected tags correspond to some genre, the remaining
60% reflect some mood (e.g. “happy”, “catchy”) or subjec-
tive opinion (e.g. “beautiful”, “amazing”). These numbers
underline that genres alone are not descriptive enough to
satisfy the users’ needs.

The music player offers five different play modes: Repeat
all songs of a playlist, shuffle over a playlist, shuffle over the
whole collection, smart shuffling, and the similar song mode.
The first two play modes define only the order in which a
given set of songs is played. In contrast, the three other
modes generate playlists by themselves, i.e. upon comple-
tion of a song they automatically select a new song to be
played. Thus, we can distinguish between explicit selection
of tracks (from the traditional lists, the tag-cloud, the search
module, or the maps) and implicitly generated suggestions
(from either collection shuffling, smart shuffling, or similar
song mode). Table 1 shows how the listened songs are dis-
tributed among these different song selection methods.

Interestingly, only about a third of the music was explic-
itly selected by the user. The other two thirds were selected
implicitly by the player, using one of the mentioned play
modes. Moreover, we can see that the traditional search op-
tions account for less than half of the explicit selections, the
remaining selections either occurred from the tag-cloud or
the map. Considering the implicitly selected songs, we see
that the similarity aware modes enjoy a great user accep-
tance. Surprisingly, the collection shuffling mode, which is
prevalent in state-of-the-art players, is barely used.

Comparing these results to the studies of Bainbridge et
al. [5], discussed in Section 2, it is no surprise that the tra-
ditional lists are the most popular means to explicitly select

music. The usage numbers of the descriptive and visual
browsing methods, however, are even higher than predicted.
This might reflect the fact that people only become aware
of certain retrieval techniques once they are provided with
them, but then understand the advantages.

The plain numbers might let room for speculations. How-
ever, most of the results are clear enough to conclude that
the novel features were well accepted by the users. Moreover,
public feedback in the Android Market underlines the use-
fulness of similarity aware play modes. Considering smart
shuffling, for example, people wrote: “[...] Does a good job
learning my tastes. [...]” and “Great app, learns what I
like.”. Other comments confirm the acceptance of the simi-
lar song mode: “[...] easy browse and make playlists. Auto
play related music is very good.” and “[...] Love the ability
to automatically play similar music. [...]”.

7. CONCLUSION
We have proposed a new method that combines usage

data and social tags to create a high dimensional Euclidean
music similarity space using Probabilistic Latent Semantic
Analysis. Our experiments show that the combination of us-
age data and social tags provides a better similarity measure
than embeddings based on only one of them. Using the infor-
mation provided by the underlying tags, an intuitive mean-
ing can be associated with each point in space. To emphasize
the analogies with audio feature spaces, we have introduced
the notion of social audio features. By defining such features
for more than 1.4M artists, our work clearly exceeds the vol-
ume of existing approaches. museek, a smart music player
for Android devices, demonstrates that the resulting cover-
age is high enough to be useable in end user applications.
The application uses the proposed similarity space to facili-
tate novel ways to browse and find music. In the conducted
user study we have found that, while traditional methods
remain relevant, the advanced retrieval interfaces have been
well accepted. In particular, all the incorporated function-
ality, namely the similarity aware play modes, the music
map, and the personalized tag cloud have been appreciated
by the end users. This shows that explorative browsing and
descriptive music selection methods are indeed important to
satisfy the users’ needs. The wide acceptance of the im-
plemented interfaces shows that (1) music players should
offer similarity based music retrieval functionality, and (2)
that the proposed social audio features are well suited to
implement this functionality. In fact, we believe that the
versatile nature of our social audio features, together with
their ability to reflect the users’ perception, offers interesting
opportunities for future music applications.
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