
Voting in Two-Crossing Elections

Andrei Constantinescu and Roger Wattenhofer
ETH Zürich

{aconstantine, wattenhofer}@ethz.ch

Abstract
We introduce two-crossing elections as a gener-
alization of single-crossing elections, showing a
number of new results. First, we show that two-
crossing elections can be recognized in polynomial
time, by reduction to the well-studied consecutive
ones problem. We also conjecture that recogniz-
ing k-crossing elections is NP-complete in general,
providing evidence by relating to a problem similar
to consecutive ones proven to be hard in the liter-
ature. Single-crossing elections exhibit a transitive
majority relation, from which many important re-
sults follow. On the other hand, we show that the
classical Debord-McGarvey theorem can still be
proven two-crossing, implying that any weighted
majority tournament is inducible by a two-crossing
election. This shows that many voting rules are NP-
hard under two-crossing elections, including Ke-
meny and Slater. This is in contrast to the single-
crossing case and outlines an important complexity
boundary between single- and two-crossing. Sub-
sequently, we show that for two-crossing elections
the Young scores of all candidates can be computed
in polynomial time, by formulating a totally uni-
modular linear program. Finally, we consider the
Chamberlin–Courant rule with arbitrary disutilities
and show that a winning committee can be com-
puted in polynomial time, using an approach based
on dynamic programming.

1 Introduction
Many impossibility results in social choice theory disappear
if we assume restrictions on the voting preferences. The
single-crossing domain is among the most studied restrictions
in the literature. Not only does it make many social choice
problems tractable, but it is also justifiable practically when
placing both voters and candidates on a one-dimensional
“left-right” spectrum. However, this one-dimensional model
is often too restrictive, with real voting preferences hardly
ever adhering to the single-crossing model. In this paper
we wonder to what degree we can assume a more general
model whilst preserving some of the theoretical and algorith-
mic properties of single-crossingness.

v1 v2 v3 v4 v5 v6 v7

1 2 3 3 3 3 1

2 1 2 4 4 1 3

3 3 1 2 1 4 4

4 4 4 1 2 2 2

Figure 1: Two-crossing profile with 7 voters and 4 candidates. Each
column, corresponding to a voter, lists alternatives in decreasing or-
der of preference. Voters are given in a two-crossing order; i.e. any
two of the four colored candidate trajectories cross at most twice.

In multi-party democracies, one can often witness situa-
tions in which both the far left and the far right oppose against
a change brought up by centrist parties. This was promi-
nently happening during the Weimar Republic, but is com-
mon also today and known as “unholy alliance” or “The en-
emy of my enemy is my friend.” This generalized political
model is known as the horseshoe theory; if the far left and the
far right are actually closer to each other than to the center,
the political line bends into a horseshoe, or even a circle.

An election is single-crossing if voters can be ordered into
a list such that, as we sweep from left to right, the relative
order between every pair of distinct candidates changes at
most once. In this paper, we generalize the single-crossing
property to a two-crossing property, such that the relative
order of every pair of candidates is allowed to change at
most twice (Figure 1). As we shall see, this can directly
model a horseshoe political system. In contrast to single-
crossing preferences, there is evidence that two-crossing pref-
erences can accurately capture real voting behavior, par-
ticularly in economic preferences [Chen et al., 2021]. It
is worth noting that single-crossing preferences were also
first introduced in similar economic settings [Mirrlees, 1971;
Roberts, 1977]. Beyond these practical considerations, we
believe that it is worth studying more general domain restric-
tions, and two-crossing seems like a natural candidate.

Determining the winners of an election is perhaps the old-
est and most fundamental problem in the field. In most
single-winner voting systems, finding the winners is straight-
forward, with a few notable exceptions, for which the prob-
lem is at least NP-hard: Young [Rothe et al., 2003; Brandt
et al., 2015; Fitzsimmons and Hemaspaandra, 2020], Dodg-

son [Bartholdi et al., 1989; Hemaspaandra et al., 1997] and
Kemeny [Bartholdi et al., 1989; Hemaspaandra et al., 2005].
For single-crossing preferences, all the aforementioned admit
polynomial time algorithms, hinging essentially on the exis-
tence of (weak) Condorcet winners, which are easy to com-
pute and, at least for an odd number of voters, actually give
the winner straight away. For two-crossing elections, the sit-
uation is more interesting, as we shall see.

When it comes to multi-winner rules, there are many
prominent examples which are NP-hard, including one of
the most studied, the Chamberlin–Courant rule for propor-
tional representation, which is hard even when voters’ dissat-
isfaction values follow very simple patterns [Procaccia et al.,
2008; Lu and Boutilier, 2011]. On the other hand, computing
a winning committee is easy for single-crossing preferences
[Skowron et al., 2015; Constantinescu and Elkind, 2021], but
NP-hard for three-crossing preferences [Misra et al., 2017].
Studying the two-crossing case is required to close this gap.
Our Contribution. We study two-crossing elections from
an axiomatic and algorithmic point of view. Axiomatically,
we show that they are equally expressive to unrestricted elec-
tions in terms of the (weighted) majority tournament: all
weighted majority tournaments with same-parity weights are
inducible by a two-crossing profile. Consequently, Slater,
Banks, Minimal Extending Set, Tournament Equilibrium Set,
Kemeny and Ranked Pairs are all NP-hard under two-crossing
elections. Algorithmically, we show how recognition can be
achieved in polynomial time and study the winner determina-
tion problem for Young’s and the Chamberlin–Courant rule,
in both cases providing polynomial time algorithms. We also
ask the question whether recognizing k-crossingness is NP-
complete in general. We conjecture that the answer is yes for
k ≥ 4 and give evidence by relating to the work of [Goldberg
et al., 1995].

2 Preliminaries
Given integer n, we write [n] for the set {1, . . . , n}; given two
integers ` ≤ r, we write [` : r] to denote the set {`, . . . , r}.
For a fixed n and 1 ≤ ` < r ≤ n we write [r : `] for the set
[1 : `] ∪ [r : n]. A subset I ⊆ [n] is an interval if I = [` : r]
for some 1 ≤ ` ≤ r ≤ n and a circular interval if we also
allow for ` > r in the preceding condition. For a statement
S, we write [S] for the Iverson bracket: [S] = 1 if S holds,
and 0 otherwise.

We consider a setting where voters V = [n] express their
preferences over a set of candidates (or alternatives)C = [m].
Voters rank candidates from best to worst, so that the pref-
erences of a voter v are given by a linear order �v: given
two distinct candidates c, c′ ∈ C we write c �v c′ when v
prefers c to c′. The list of all voters’ preferences is denoted
by P = (�v)v∈V , and is referred to as a preference profile.
We use L(C) to denote the set of all linear orders over C,
such that P ∈ L(C)n.
Pairwise Majority and Young’s Rule. Given a profile P
over candidate set C and two candidates c, c′ ∈ C we write
nc,c′ = |{i ∈ V : c �i c′}| for the number of voters
who prefer c to c′; the so-called majority margin is then
mc,c′ = nc,c′ − nc′,c. Consider orienting the edges of the

complete graph on C such that c → c′ iff mc,c′ > 0; leav-
ing out edges with mc,c′ = 0. This construction is known as
the majority tournament of election P . If each edge c → c′

is also given weight mc,c′ , then the resulting construction is
known as the weighted majority tournament of P . If there is
a candidate c ∈ C such that mc,c′ > 0 for all c′ 6= c, then c is
called the strong Condorcet winner. If the previous condition
is weakened to mc,c′ ≥ 0, then c is only a weak Condorcet
winner, which there can be multiple of. For profile P , the
strong (weak) Young score of a candidate c ∈ C is the mini-
mum number of voters that need to be removed from P such
that c becomes a strong (weak) Condorcet winner; in some
cases this score will be infinite. In the strong (weak) Young’s
rule candidates with the smallest strong (weak) Young score
are declared the winners. Traditionally, “Condorcet winner”
means the strong variant, while “Young’s rule” means the
weak variant [Caragiannis et al., 2016].

Tournament Solutions. Under some voting rules, knowl-
edge of the (weighted) majority tournament is enough to
compute the winners; we call such rules (weighted) tourna-
ment solutions. Some tournament solutions allow for poly-
nomial time winner determination, the most natural exam-
ple being Copeland. However, for a significant number of
tournament solutions it is NP-hard to determine the win-
ners — unweighted examples: Slater, Banks, Minimal Ex-
tending Set, Tournament Equilibrium Set; weighted exam-
ples: Kemeny, Ranked Pairs. See [Brandt et al., 2016;
Fischer et al., 2016] for a survey on the topic.

In what follows, we assume that we are also given a mis-
representation function ρ : V × C → Q; ρ is consistent with
P if c �v c′ implies ρ(v, c) ≤ ρ(v, c′) for all v ∈ V and
c, c′ ∈ C. Intuitively, the value ρ(v, c) indicates to what ex-
tent candidate cmisrepresents voter v. A common example of
a misrepresentation function is the Borda function ρB given
by ρB(v, c) = |{c′ ∈ C : c′ �v c}|; this function assigns
value 0 to a voter’s top choice, value 1 to his second choice,
and valuem−1 to his last choice. We assume that operations
on the values of ρ(v, c) (e.g. addition) can be performed in
unit time; this assumption is realistic as the values of ρ are
usually small integers; e.g. ρ = ρB .

The Chamberlin–Courant Rule. A multiwinner voting
rule maps a profile P over a candidate set C, and a pos-
itive integer k ≤ |C|, to a non-empty collection of sub-
sets of C of size at most k;1 the elements of this collection
are called the winning committees. An assignment function
is a mapping w : V → C; for each V ′ ⊆ V we write
w(V ′) = {w(v) : v ∈ V ′} for the image of V ′ under w.
If |w(V)| ≤ k, then w is called a k-assignment. Given a
misrepresentation function ρ and a profile P = (�v)v∈V ,
the total dissatisfaction of voters in V under a k-assignment
w is given by Φρ(P, w) =

∑
v∈V ρ(v, w(v)). Intuitively,

w(v) is the representative of voter v in the committee w(V),
and Φρ(P, w) measures to what extent the voters are dissat-
isfied with their representatives. An optimal k-assignment
for ρ and P is a k-assignment that minimizes Φρ(P, w)
among all k-assignments for P . The Chamberlin–Courant

1Usually exactly k, but in our case the difference is immaterial.

multiwinner voting rule [Chamberlin and Courant, 1983;
Faliszewski et al., 2017] maps each triple (P, ρ, k) consist-
ing of a preference profile P = (�v)v∈V over a candidate
set C, a misrepresentation function ρ : V × C → Q that is
consistent with P , and a positive integer k ≤ |C|, to all sets
W such that W = w(V) for some k-assignment w that is op-
timal for ρ and P , constituting the winning committees.2 It is
NP-hard to determine whether a k-assignment of dissatisfac-
tion Φρ(P, w) ≤ B exists for some input parameter B, even
in the special cases where ρ(v, c) ∈ {0, 1} [Procaccia et al.,
2008], or if ρ is the Borda function [Lu and Boutilier, 2011].

k-Crossing Preferences. A profile P = (�v)v∈V over C
is k-crossing if there is a permutation (σi)i∈V of V such that
for every pair of distinct candidates (c, c′) ∈ C2 the number
of indices i ∈ [n − 1] such that [c �σi c

′] 6=
[
c �σi+1 c

′] is
at most k. That is, if we order the voters in V according to σ
and traverse the list of voters from left to right, each pair of
candidates ‘crosses’ at most k times. In this case we write that
P is k-C, with respect to σ. A profile P is single-interval on
a circle if there is a permutation (σi)i∈V such that for all pairs
of distinct candidates (c, c′) ∈ C2 the set {i ∈ V : c �σi

c′}
is a circular interval over [n]. If so, we write that P is SI� on
the circle induced by σ. For Φ ∈ {k-C, SI�} the recognition
problem ΦREC asks: given a preference profile P , is there a
permutation σ such that P is L with respect to σ? If yes, one
is also interested in finding such a witnessing σ.

Lemma 1. For any permutation (σi)i∈V , profile P is two-
crossing with respect to σ iff P is single-interval on the circle
induced by σ. Consequently, P is two-crossing iff P is SI�.

Proof. Consider two candidates c 6= c′. If {i ∈ V : c �σi c
′}

is a circular interval, then there are at most two crosses, one at
each interval end. Conversely, assume there are two crosses
(the cases with one/zero crosses are similar) at positions 1 ≤
i1 < i2 < n and that, without loss of generality, σ1 prefers c
to c′. Then, voters in [i1 + 1 : i2] prefer c′ to c and voters in
[i2 + 1 : i1] prefer c to c′, both being circular intervals.

Lemma 2. Consider a horseshoe political system: voters and
candidates are assigned points on the unit circle, voters rank
candidates in increasing order of circle arc-length distance
from their assigned point, assume no ties. Then, voters’ pref-
erences are two-crossing.

Proof. Without loss of generality, assume the voters V = [n]
are ordered in increasing order of positive arc-length distance
from some fixed point on the circle. Consider any pair of dis-
tinct candidates (c, c′) ∈ C2 and let Ac and Ac′ be their as-
signed points on the circle. Then, voters with assigned points
on one side of the perpendicular bisector of AcA′c will prefer
c to c′ (and vice-versa for the other side). By the assumption
on the ordering of V , these voters preferring c to c′ will form
a circular interval over [n]. Consequently, the voters’ prefer-
ences are SI�, so they are two-crossing by Lemma 1.

2Most literature does not make ρ an input argument, each choice
for ρmaking for a different rule. The implications of this distinction
are minor for our work. In practice, ρ can, for instance, take the
form of an n×m matrix.

The Consecutive Ones Problem. An n × m binary ma-
trix M has the consecutive ones property if its rows can be
permuted such that in each column ones form a single contin-
uous run. In this case, we say that M is C1P. Generalizing,
M is k-C1P if its rows can be permuted such that in each
column ones form at most k continuous runs. Similarly, M
has the circular consecutive ones property if its rows can be
permuted such that in each column ones form a single contin-
uous run if we allow loop-around; we use C1P� to denote this
property. For Φ ∈ {C1P, k-C1P,C1P�} we use ΦREC to de-
note the corresponding recognition problems. It is instructive
to note the following facts tying C1P and C1P�.
Lemma 3 ([Tucker, 1971, Theorem 1]). From a binary ma-
trix M construct M c by flipping ones and zeros on those
columns with a one in the first row of M . Then, any per-
mutation of rows σ fixing the first row witnesses that M is
C1P� iff σ witnesses that M c is C1P.

Proof. Flipping a column of M does not change whether it is
C1P�, so M is C1P� iff M c is C1P�. Moreover, this trans-
formation does not affect the set of witnessing permutations.
By construction, M c has only zeroes on its first row, and we
lose no generality by forcing a given row to be first for C1P�,
hence reducing to the non-circular variant C1P.

Corollary 4. C1PREC
� and C1PREC are equivalent (interre-

ducible with respect to complexity-preserving reductions).
This also extends to finding witnessing permutations.

Proof. Whenever a permutation witnessing that some matrix
M is C1P� is cyclically permuted, the result also witnesses
the property. Therefore, restricting to permutations fixing the
first row loses no generality, so checking whether M is C1P�
reduces to checking whether M c is C1P, by Lemma 3. The
converse also holds: to check whetherM is C1P, add an extra
row of zeroes and check for C1P�.

Recognizing C1P/C1P� matrices and finding witnessing per-
mutations can both be achieved in time linear in the size of the
matrix [Booth and Lueker, 1976]. A simpler O(nm2) algo-
rithm was given by [Fulkerson and Gross, 1965]. For k ≥ 2,
k-C1PREC is NP-complete [Goldberg et al., 1995].

3 Recognizing k-Crossing Profiles
The problem of recognizing single-crossing elections admits
a number of polynomial time algorithms [Elkind et al., 2012;
Bredereck et al., 2013], but, to the best of our knowledge,
recognizing k-crossing profiles for k > 1 has not been stud-
ied. We prove that recognizing two-crossing profiles reduces
to recognizing C1P matrices, which is tractable in poly-time.
We leave the problem open for k > 2. However, for k ≥ 4
we conjecture that recognition is NP-complete.
Conjecture 5. k-CREC is NP-complete for k ≥ 4.

3.1 Polynomial Time Recognition for k = 2

Given a profile P over candidate set C, let MP be a binary
matrix with n rows and m(m−1) columns: one row for each
voter v ∈ V and one column for each pair of distinct candi-
dates (c, c′) ∈ C2; such that MP [v, (c, c′)] = [c �v c′].

Lemma 6. For any permutation (σi)i∈V , P is single-interval
on the circle induced by σ iff MP is C1P� with respect to σ.
Consequently,P is single-interval on a circle iffMP is C1P�.

Proof. Consider two candidates c 6= c′. The requirement on
(c, c′) for SI� on the circle induced by σ to hold is that the
set {i ∈ V : c �σi c

′} is a circular interval over [n]. This
is equivalent to saying that its indicator function [c �σi c

′]
has all ones grouped into a single circular run, which is, by
definition of MP , the same as saying that column (c, c′) of
MP reordered by σ has all ones in a single circular interval.
Quantifying over all c 6= c′ gives the conclusion.

Theorem 7. Given a preference profile P , deciding whether
it is two-crossing and, if affirmative, finding a witnessing per-
mutation can be done in time O(nm2).

We note that the construction for MP was first suggested
by [Bredereck et al., 2013], but their result is somewhat dif-
ferent: they show that P is single-crossing iff MP is C1P,
while we show that P is two-crossing iff MP is C1P�
(i.e. M c

P is C1P). The relationship between consecutive ones
and k-crossingness seems to go deeper than this. Say P is
k-interval on a circle if voters can be rearranged into a circle
such that for all pairs of distinct candidates (c, c′) ∈ C2 the
set {i ∈ V : c �i c′} is a union of at most k circular in-
tervals. Similarly, say a matrix is k-C1P� if its rows can be
rearranged such that each column has at most k circular runs
of ones. With these conventions, one can follow the proof of
Lemma 1 to also show thatP is 2k-crossing iffP is k-interval
on a circle. Moreover, one can follow the proof of Lemma 6
to show that P is k-interval on a circle iff MP is k-C1P�.

3.2 Is Recognition NP-Complete for k > 2 ?
In this section we make progress towards showing that rec-
ognizing k-crossing elections is NP-complete starting with
some value of k. Recall that for k ≤ 2 the problem is
tractable, while for k > 2 it is open. Our work is inspired
by the following result.

Theorem 8 ([Goldberg et al., 1995, Theorem 5.2]).
k-C1PREC is NP-complete for k ≥ 2.

We say a binary matrix (Mij)i∈[n],j∈[m] has property k-
C1PSW if there is a permutation σ of the rows of M such
that for all columns j ∈ [m] there are at most k positions
i ∈ [n − 1] such that Mσij 6= Mσi+1j . In other words,
on each column of the permuted matrix there are at most
k “switches” from zero to one or vice-versa. We write k-
C1PREC

SW for the associated recognition problem. For building
intuition, note that any k-C1P matrix is also 2k-C1PSW, but
not the other way around. Similarly, any k-C1PSW matrix is
also (1 + bk/2c)-C1P, but not the other way around. Given
these, one can see an informal “almost equality” relation be-
tween k-C1P and 2k-C1PSW, modulo ±1 variations in k,
so it is natural to also expect that k-C1PREC

SW is NP-complete
for k above a certain threshold, by reduction from some k′-
C1PREC. Despite this similarity and our best efforts, we leave
finding such a reduction open for now.

Conjecture 9. k-C1PREC
SW is NP-complete for k ≥ 4.

However, we give the other piece of the puzzle: a reduction
from k-C1PREC

SW to k-CREC, so that only a proof of Conjecture
9 would suffice to show NP-completeness for k-CREC. For the
reduction, consider a binary matrix M = (Mij)i∈[n],j∈[m].
From M one can construct a preference profile PM , as fol-
lows: voters V = [n] are in one-to-one correspondence with
the rows; for each column j ∈ [m] introduce two candidates
c1j , c2j such that C = {c`j : ` ∈ [2], j ∈ [m]}. Voters rank
candidates corresponding to different columns consistently,
and in a way which does not depend on M itself; in par-
ticular, we set c`1j1 �v c`2j2 for all v ∈ V , `1, `2 ∈ [2] and
1 ≤ j1 < j2 ≤ m. The only freedom we are now left with in
profile PM = (�v)v∈V is in specifying for each i ∈ [n] and
j ∈ [m] whether c1j �i c2j or vice-versa. To settle this, we
arrange so that

[
c1j �i c2j

]
= Mij .

Lemma 10. For any permutation of rows σ, M is k-C1PSW
with respect to σ iff PM is k-C with respect to σ. Conse-
quently, M is k-C1PSW iff PM is k-C.

Proof. Note that, irrespective of σ, by construction no pair
of candidates (c`1j1 , c`2j2) with j1 6= j2 can generate any
crosses, so we can, without loss of generality, restrict the
definition of k-C to consider only pairs of the form (c1j , c

2
j)

for j ∈ [m]. Consider some fixed j ∈ [m], then the
number of crosses induced by (c1j , c2j) for σ is given by
|{i ∈ [n− 1] :

[
c1j �σi

c2j
]
6=
[
c1j �σi+1

c2j
]
}|, which is, by

construction, the same as |{i ∈ [n− 1] : Mσij 6= Mσi+1j}|,
the latter being the number of switches on column j of M
when reordered by σ. Since the number of crosses induced
by (c1j , c

2
j) and the number of switches on column j match,

we get the conclusion by quantifying over all j ∈ [m] whilst
recalling that j ∈ [m] are in bijection both with columns of
M and with pairs of candidates (c1j , c2j) in PM .

Theorem 11. Assuming Conjecture 9, k-CREC is NP-
complete for k ≥ 4.

Proof. k-CREC is clearly in NP. To show NP-hardness we re-
duce from k-C1PREC

SW . Given an instance M of k-C1PREC
SW ,

the reduction constructs PM in polynomial time. By Lemma
10, M is k-C1PSW iff PM is k-C, giving the conclusion.

For even values of k, one can also consider a second proof
strategy, based on the following conjecture.

Conjecture 12. k-C1PREC
� is NP-complete for k ≥ 2.

Observe that this is weaker than Conjecture 9, because of the
following fact.

Lemma 13. For k ≥ 1 it holds that k-C1P� = 2k-C1PSW.

Proof. Double-inclusion following the definitions.

Note that we choose not to make any claims about the hard-
ness of 3-C1PREC

SW , which unfortunately means no conjecture
about the hardness of recognizing three-crossing elections.
For all we know, this might be polynomial, or it might just
as well be NP-hard.

4 Weighted Majority Tournaments
Single-crossing elections are attractive from an axiomatic
standpoint: the majority relation is transitive and a Condorcet
winner exists, for odd n. The Condorcet Paradox profile con-
sists of 3 voters, so it can be easily seen as two-crossing.
Therefore, Condorcet winners might not exist under two-
crossing. This begs the question, can we guarantee anything
about the weighted majority tournament of a two-crossing
election? The following result, similar to [Peters and Lack-
ner, 2020] for elections single peaked on a circle, answers
negatively.

Theorem 14 (Debord-McGarvey for Two-Crossing Elec-
tions). Any weighted majority tournament with weights of the
same parity3 is inducible by a two-crossing election. IfW de-
notes the maximum weight of an edge, then O(m2W) voters
suffice.

Proof. For some number of candidates m, consider the fol-
lowing “Double-BubbleSort” construction of a two-crossing
profile. There will be m(m − 1) + 1 voters; voter 1 ranks
1 � 2 � . . . � m, which we more succinctly represent as the
permutation 123 . . .m. Voter 2 ranks 213 . . .m, voter 3 ranks
231 . . .m, and so on, voter m ranks 23 . . .m1. In essence,
one swap at a time, candidate 1 went from best to worst. For
the following m − 1 voters, candidate 2 will go from best to
second worst, one position at a time: 324 . . .m1, 342 . . .m1,
. . . , 34 . . .m21. In the following rounds, we similarly bring
from front to back candidates 3, 4, . . .m−1, each taking mul-
tiple swaps to reach their final position. Note that the swaps
we do are precisely those done by a BubbleSort algorithm
sorting in descending order. This construction is illustrated
for m = 4 by the first 7 voters in Figure 2. To complete the
profile, we need m(m − 1)/2 additional voters; consecutive
voters will, once again, differ by a single adjacent swap. In
particular, we go fromm. . . 21 back to 12 . . .m by following
the swaps of a BubbleSort algorithm sorting in ascending or-
der, but iterating over the permutation in reverse order. Figure
2, voters v7 to v13, demonstrates this process. Note that the
majority margins satisfy mc,c′ = 1 for c < c′.

Why is this profile interesting? For any two candidates
c 6= c′ there are voters vi, vj with preference permutations
τi = Acc′B and τj = Bcc′A; where X denotes the reverse
of permutation X . This means that, if we add one additional
copy of voters vi, vj to our profile, then all majority mar-
gins stay unchanged, except for mc,c′ and mc′,c, which in-
crease/decrease by 2. Since c, c′ were arbitrary, this means
that we can increase/decrease any majority margin by 2 with-
out affecting the others,4 by adding two additional voters. If
weights are odd, this can be done repeatedly until our profile
has margins agreeing to the weights in the tournament. Fixing
the margin for a weight w ≤ W requires O(w) additions of
voters, so overall we need at most O(m2W) voters. The case
of even weights is similar: add an additional m. . . 21 voter to
our original profile, and then proceed analogously.

3Nonexistent edges are considered to have weight 0.
4Subject to the implicit constraint that mc,c′ +mc′,c = 0.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13

1 2 2 2 3 3 4 4 4 1 1 1 1

2 1 3 3 2 4 3 3 1 4 4 2 2

3 3 1 4 4 2 2 1 3 3 2 4 3

4 4 4 1 1 1 1 2 2 2 3 3 4

Figure 2: Construction in the proof of Theorem 14 for m = 4 can-
didates. Voters are arranged in a two-crossing order.

The previous result shows that, essentially, the computa-
tional complexity of all known (weighted) tournament solu-
tions is unchanged from the general case by restricting to two-
crossing elections. Thus, we have the following.

Corollary 15. Determining the winners for Slater, Banks,
Minimal Extending Set, Tournament Equilibrium Set, Kemeny
and Ranked Pairs is NP-hard under two-crossing elections.

5 Young’s Rule

In this section we show how Young scores can be computed
in polynomial time by setting up integer programs whose LP
relaxations have totally unimodular matrices. This means that
vertices of the feasible regions have integer coordinates, so it
is enough to solve the LPs.

Theorem 16. Given a two-crossing profile P with voter set
V and candidate set C, and a candidate c ∈ C, the weak and
strong Young scores of c can be computed in polynomial time.

Proof. We present the algorithm for the weak Young score,
the strong case being analogous. We are hence interested in
removing a minimal number of voters such that the majority
margins satisfy mc,c′ ≥ 0 for all c′ ∈ C \ {c}. To do so, set
up an integer program P with variables (xv)v∈V ∈ {0, 1},
where xv is 1 iff voter v is kept; i.e. it is not removed. Then,
mc.c′ ≥ 0 can be rewritten as

∑
v∈V xv Jc �v c′K ≥ 0; where

by JSK = 2[S] − 1 we mean 1 when S holds and −1 other-
wise. The goal is to maximize

∑
v∈V xv . If we ignore the

xv ∈ {0, 1} constraints and henceforth assume that voters are
ordered in a two-crossing fashion, then the constraints matrix
of P satisfies a property similar to the row-wise version (im-
plicit from now on) of C1P�: it consists of values ±1 and
on each row ones form a circular interval. Unfortunately, not
all such matrices are totally unimodular; e.g the 2× 2 matrix
with 1 on the main diagonal and −1 otherwise. This means
that theorems regarding total unimodularity do not immedi-
ately apply.

To mitigate this difficulty, we need a slightly different
approach: we will successively check for each value s =
n, n − 1, . . . , 0 whether a solution keeping exactly s of the
n voters exists. For a fixed s, we add the additional constraint
that

∑
v∈V xv = s. With the sum of the x’s fixed we can

rewrite our main inequalities as follows:∑
v∈V

xv Jc �v c′K ≥ 0 iff
∑
v∈V

xv (2 [c �v c′]− 1) ≥ 0 iff

2
∑
v∈V

xv [c �v c′] ≥
∑
v∈V

xv iff
∑
v∈V

xv [c �v c′] ≥
⌊s

2

⌋
Therefore, for a fixed s, our integer program Ps consists of
checking the feasibility of the following constraints:∑

v∈V
xv = s (1)

∑
v∈V

xv [c �v c′] ≥
⌊s

2

⌋
, c′ ∈ C \ {c} (2)

xv ∈ {0, 1}, v ∈ V (3)

At this point, if we relax constraints (3) to 0 ≤ xv ≤ 1, then
the matrix of the resulting linear program Ls satisfies C1P�.
Unfortunately, this still does not guarantee total unimodular-
ity; e.g. the 3 × 3 matrix with 0 on the main diagonal and 1
otherwise has determinant 2 /∈ {−1, 0, 1}.

In one last step, we slightly adjust our constraints to get
a matrix which is C1P, and hence provably totally unimod-
ular [Fulkerson and Gross, 1965]. Note that constraints
(1) and (3) do not make use of circularity, so only con-
straints (2) might need adjustments. Consider some con-
straint

∑
v∈V xv [c �v c′] ≥

⌊
s
2

⌋
needing adjustment; this

is because [c �v c′] is of the form 11 . . . 1100 . . . 0011 . . . 11
as v ranges over the voters. We can write∑
v∈V

xv [c �v c′] ≥
⌊s

2

⌋
iff
∑
v∈V

xv (1− [c′ �v c]) ≥
⌊s

2

⌋
iff

s−
∑
v∈V

xv [c′ �v c] ≥
⌊s

2

⌋
iff
∑
v∈V

xv [c′ �v c] ≤
⌈s

2

⌉
For this equivalent condition, the coefficients [c′ �v c] are
of the form 00 . . . 0011 . . . 1100 . . . 00 as v ranges over V .
Therefore, if we replace each constraint which uses circular-
ity as such, the matrix of the resulting LP will be C1P, and
so totally unimodular. This means that the feasible region has
integer vertices [Hoffman and Kruskal, 2016], so the IP and
the LP are equifeasible. Note that the replacements we made
in (2) proved total unimodularity, but need not be executed
in practice; i.e. it is enough to check the feasibility of Ls.
If we now use any polynomial time algorithm for checking
feasibility, like [Karmarkar, 1984], or any more sophisticated
interior-point methods, the poly-time bound follows.

In the following, we further refine our technique to get an
algorithm of a more practical worst-case time complexity.

Theorem 17. Given a two-crossing profile P and c ∈ C,
the strong/weak Young score of c can be computed in time
O((n+m2)n3/2 log n).

Proof. We start at the end of the proof of Theorem 16, from
the LP whose matrix has the consecutive ones property. Our

goal is to check the feasibility of the following constraintsCs:

0 ≤ xv ≤ 1, v ∈ V (4)∑
x∈V

xv = s (5)

∑
v∈V

xv [c �v c′] ≥
⌊s

2

⌋
, (c, c′) ∈ A (6)

∑
v∈V

xv [c′ �v c] ≤
⌈s

2

⌉
, (c, c′) ∈ B (7)

whereA,B are sets such thatA∩B = ∅,A∪B = {(c, c′) ∈
C2 : c 6= c′}.
Recall that V = [n]. We will now give an alternative formu-
lation of Cs using n + 1 variables: S0, . . . , Sn, constructed
such that Si − Si−1 = xi for i ∈ [n]; i.e. the prefix sums of
(xi)i∈[n]. For these purposes, for each pair of distinct can-
didates (c, c′) ∈ C2 look at the corresponding row in (6)-(7)
of the matrix of Cs and let `(c,c′) and r(c,c′) be the indices
of the leftmost/rightmost one on that row. Then, Cs can be
reformulated as follows, which we call Ds:

0 ≤ Si − Si−1 ≤ 1, i ∈ [n] (8)
Sn − S0 = s (9)

Srx − S`x−1 ≥
⌊s

2

⌋
, x ∈ A (10)

Srx − S`x−1 ≤
⌈s

2

⌉
, x ∈ B (11)

Constraint set Cs is feasible iff constraint set Ds is feasible,
so it is enough to check whether Ds is feasible. Now, ob-
serve that constraints in (8)-(11) can all be rewritten to be
of the form Si − Sj ≤ C, where C can be any constant and
i, j ∈ [0 : n]. This shows that Ds is a so-called “difference
constraints system”. In [Cormen et al., 2009], the standard
approach for solving such systems is explained, which we
now apply to our situation. Let G be a weighted directed
graph with n + 2 vertices VG = [0 : n] ∪ {∗} and edges
EG as follows: for all i ∈ [0 : n] add an edge ∗ 0−→ i, and
for all constraints Si − Sj ≤ C in Ds add an edge j C−→ i.
As argued in [Cormen et al., 2009], Ds is satisfiable iff G
does not have a negative-weight cycle. Moreover, if G has no
negative-weight cycles, then S = (δ∗(0), δ∗(1), . . . , δ∗(n))
is a solution to Ds, where δ∗(i) is the distance between ∗
and i in G. Checking for negative cycles and computing dis-
tances from ∗ can both be achieved in time O (|VG||EG|) =
O(n(n + m2)) using the Bellman-Ford algorithm, or faster
alternatives, like SPFA, which will, on most practical in-
stances, have far superior runtime. If we are interested in
an algorithm with better worst-case theoretical guarantees,
then the algorithm of [Goldberg, 1995] solves the problem
in O

(
|EG|

√
|VG| log s

)
= O((n + m2)

√
n log n). Since

this has to be run for every s = n, . . . , 0, the overall com-
plexity becomes O((n + m2)n3/2 log n). Note that, unlike
Theorem 16, this result uses that recognition is tractable in
O(nm2).

6 The Chamberlin–Courant Rule
In this section we show that computing the least possi-
ble dissatisfaction and also a winning committee for the
Chamberlin–Courant rule (CC in this section) can both be
achieved in polynomial time under two-crossing elections.
Since the recognition problem can be solved in polynomial
time by Theorem 7, assume voters V = [n] are ordered
such that our profile is two-crossing with respect to the iden-
tity permutation. For the following key lemma, we call a
k-assignment function w illegal if there are two candidates
a 6= b and four voters i1 < i2 < i3 < i4 such that
w(i1) = w(i3) = a and w(i2) = w(i4) = b. We call w
legal if it is not illegal.
Lemma 18. For any instance (P, ρ, k) of CC there exists a
legal k-assignment wopt that is optimal for ρ and P .

Proof. Start with any optimal k-assignment w. If w is legal,
then we are done, otherwise let a 6= b and i1 < i2 < i3 < i4
witnesses the illegality of w. Since P is two-crossing we
know it can not be the case that [a �i1 b] = [a �i3 b] 6=
[b �i2 a] = [b �i4 a], as that would result in 3 crosses for
the pair (a, b). Therefore, for at least one of i1, i2, i3, i4 as-
signment w assigns a candidate from {a, b} which is less pre-
ferred than the other, so just exchanging a for b, or vice-
versa, for that voter results in an assignment w′ such that
Φρ(P, w′) ≤ Φρ(P, w). Since w was optimal, it follows
that w′ is also optimal. We can now replace w by w′ and
repeat the reasoning iteratively, until we eventually reach a
legal optimal k-assignment wopt. It remains to show that this
process terminates, but this is easy to see since at each step we
replace a voter’s assigned candidate with one that is strictly
more preferred by them.

To find a winning committee for CC it is enough to find an
optimal k-assignment for ρ and P . Given Lemma 18, we can
limit our search to legal k-assignments. It turns out that legal
k-assignments admit a second characterisation, as follows.
The proof is straightforward, so we leave it to the reader.
Proposition 19. A k-assignment w = w(1), w(2), . . . , w(n)
is legal iff for any candidates a 6= b there are no a’s between
the first and the last b or no b’s between the first and last a.
Given this, any legal assignment w induces a strict partial or-
der relation →∗ over C, where a →∗ b for a 6= b iff there
are b’s between the first and the last a in w. Note that this
implicitly requires no a’s between the first and the last b, by
Proposition 19. Observe that two candidates a 6= b are in-
comparable with respect to→∗ iff all a’s precede all b’s in w,
or vice-versa. Relation→∗ satisfies an additional property: if
a 6= b are incomparable, then there can be no c /∈ {a, b}
such that a →∗ c and b →∗ c, since a structure of the form
a . . . c . . . a . . . b . . . c . . . b occurring in w would be illegal for
pairs (a, c) and (b, c). These being said, one can now observe
that the covering relation → of →∗; i.e. the inclusion min-
imal relation with the same transitive closure; is a forest of
directed trees.5 Since our partial order→∗ is finite, there ex-
ists at least one maximal element crt ∈ C, which we call a

5We do not use this fact explicitly, but it helps gain intuition for
the DP which follows.

“root” element; i.e. such that there is no c ∈ C with c→∗ crt .
Let us now analyze w with respect to crt . Since crt is maxi-
mal, for all c ∈ C \{crt}, no crt ’s occur between the first and
the last c inw. In other words, if we consider the setw−1(crt)
of positions where crt occurs in w, then all c’s occur between
two consecutive crt ’s, or before/after the first/last crt . Put dif-
ferently, candidate crt “splits” the range 1 . . . n into buckets
delimited by consecutive entries in w−1(crt) ∪ {0, n + 1},
such that any candidate c ∈ C \ {crt} appears in at most one
bucket. This reasoning can then be carried out recursively in
each bucket as well.

The idea of our approach can now be stated intuitively: we
will proceed by dynamic programming, solving the main
problem by trying out all possible values of w−1(crt), and
then invoking recursively on each resulting bucket. There are
a number of burning issues at this point: (i) there are expo-
nentially many values of w−1(crt) to try, (ii) there are expo-
nentially many ways to distribute the number k of represen-
tatives into the buckets (iii) how do we ensure that no can-
didate is used in two distinct buckets, maybe further down
the recursion, fact which might render the assignment ille-
gal? Before addressing (i)-(ii) specifically, let us first give a
preliminary version of the dynamic program, which will run
in exponential time, and argue for its correctness in address-
ing (iii). Introduce dp[`, r, t] for 1 ≤ ` ≤ r ≤ n, 1 ≤ t ≤ k
to mean the least total dissatisfaction attainable for voters in
[` : r] using a legal t-assignment restricted to those voters.
For ease of presentation, we use the degenerate base-cases
dp[`, ` − 1,−] = 0 for ` ∈ [n + 1] and dp[`, r, 0] = ∞ for
1 ≤ ` ≤ r ≤ n. Then, the recurrence relation is:

dp[`, r, t] = min

{
x∑
i=1

ρ(wi, crt) +
x∑
i=0

dp[wi + 1, wi+1 − 1, ti] :

crt ∈ C, 1 ≤ x ≤ r − `+ 1, ` ≤ w1 < . . . < wx ≤ r,

t0, . . . , tx ≥ 0 and t0 + . . .+ tx = t− 1

}
(12)

where we wrotew1, . . . , wx for the elements ofw−1(crt) and
used the convention that w0 = ` − 1 and wx+1 = r + 1.
In other words: we choose the root candidate crt , we choose
w−1(crt), and we choose a way to distribute the remaining
t−1 candidates among the buckets; each bucket is then solved
“recursively” with the respective allowed committee size. For
completeness, subproblems can be computed in increasing
order of t, breaking ties arbitrarily. The cost of an optimal
k-assignment wopt will be in dp[1, n, k] at the end. To re-
trieve one such wopt, additional bookkeeping is required: for
each subproblem (`, r, x) keep track of which values of crt ,
x, w1, . . . , wx and t0, . . . , tx were used to achieve the mini-
mum, and then at the end trace those back to build wopt.

As argued previously, not only does this DP require expo-
nential time to compute, it is not even clearly correct, reason
being that it can produce illegal k-assignments by reusing
candidates, especially along different branches of the recur-
sion. However, note that this comes at a price: whenever a
candidate is reused it is counted as a new candidate out of the
maximum of k allowed. Nevertheless, none of this is harm-
ful: consider the reconstructed optimal assignment wopt re-
turned by the DP. This is a k-assignment since we only ever

over-count candidates in the assembly, but never under-count.
By construction, our recurrence clearly correctly considers all
legal k-assignments, and will thus return a cost at most that of
the least dissatisfaction legal k-assignment. Since by Lemma
18 no illegal k-assignment can be better than the best legal
one, it follows that the returned assignment wopt is optimal,
regardless of whether it is legal or not.

This proof approach can be summarized as follows, and
is also implicit in the works of [Constantinescu and Elkind,
2021]: (1) show optimal solutions with a rigid structure exist;
(2) set up a DP which looks only for solutions of this form;
(3) note that the DP occasionally produces non-conforming
solutions, but without affecting global correctness.

Having addressed concern (iii), we now need to speed
up the DP — we need a faster way to compute (12). To
achieve this, introduce an auxiliary second dynamic program,
dp2[`, r, t, crt], with the same semantics as dp, but enforcing
a certain value for the root crt . It is straightforward to see that

dp[`, r, t] = min
crt∈C

dp2[`, r, t, crt] (13)

so it remains to show how dp2 can be computed in polyno-
mial time, which we do with the following.
Lemma 20. dp2 satisfies the following recurrence relation:

dp2[`, r, t, crt] = min
{
dp[`, w1 − 1, t0] + ρ(w1, crt)+

min {dp[w1 + 1, r, t− t0 − 1], dp2[w1 + 1, r, t− t0, crt]} :

w1 ∈ [`, r], 0 ≤ t0 ≤ t− 1
}

(14)

Proof. The key stands in noting that it makes little sense to
try out all values of w−1(crt) = {w1, . . .} at once, so let us
only go through all values of w1 ∈ [` : r] and t0 ∈ [0 :
t − 1] and observe the optimal substructure: for the left part,
i.e. range [` : w1−1], we use the optimal unrestricted solution
with at most t0 candidates, i.e. dp[`, w1 − 1, t0], for position
w1 we take the fixed cost ρ(w1, crt), while for the right part,
i.e. range [w1 + 1, r], we have more choice. Namely, there
are two possibilities: w1 was the only element inw−1(crt), in
which case we need to take the best unrestricted solution with
at most t−t0−1 candidates, the−1 accounting for candidate
crt , i.e. dp[w1 + 1, r, t− t0− 1], or |w−1(crt)| > 1, in which
case there is a w2 (and potentially more occurrences of crt)
to be placed; doing so optimally is precisely the definition of
dp2[w1 + 1, r, t− t0, crt].6 Altogether, we get (14).

We now outline our main result. Essentially, one can now
compute subproblems in increasing order of r−`, the optimal
dissatisfaction being in dp[1, n, k] at the end.
Theorem 21. Given an instance (P, ρ, k) of CC where P is
two-crossing, the optimal dissatisfaction and some winning
committee can be computed in polynomial time.

Proof. Without loss of generality, assume P is two-crossing
with respect to the identity permutation (otherwise, we can
use our recognition algorithm to find a witnessing permu-
tation). We compute dp[`, r, t] and dp2[`, r, t, cr] for all
1 ≤ ` ≤ r ≤ n, 1 ≤ t ≤ k and cr ∈ C using (13) and (14)

6Note no −1 here because crt is still actively “in use” at this
point.

in increasing order of r− `, breaking ties arbitrarily, but only
computing dp[`, r, t] once dp2[`, r, t, cr] has been computed
for all cr ∈ C. For the time complexity, there are O(n2k)
subproblems of the form dp[−,−,−], each taking timeO(m)
to compute, and there are O(n2km) subproblems of the form
dp2[−,−,−,−], each taking time O(nk) to compute. Alto-
gether, this amounts to O(n3k2m). So far this is enough to
give us the optimal dissatisfaction dp[1, n, k]. To also retrieve
a winning committee, one needs additional bookkeeping for
each subproblem, similar to the one described previously; this
does not change the overall time complexity.

We note that for “egalitarian” Chamberlin–Courant, where
one is instead interested in minimizing the dissatisfaction of
the most misrepresented voter, simply replacing ‘+’ with max
in the DPs preserves correctness.

7 Conclusions and Future Work
We investigated two-crossing elections, giving an efficient
recognition algorithm. Axiomatically, we showed that two-
crossing elections are no different from general elections for
any voting rule operating on the (weighted) majority tourna-
ment, such as Kemeny and Slater. Subsequently, we consid-
ered Young and the Chamberlin–Courant rule. In both cases
we gave polynomial algorithms which are applicable in prac-
tice. We leave open whether faster solutions exist.

So far, two-crossing elections have not received the atten-
tion they deserve in the social choice literature. It would be
interesting to run larger scale experiments to determine to
what extent real election data obeys the two-crossing model,
such as by checking for the property in PrefLib [Mattei and
Walsh, 2013]. Algorithmically, we leave open whether Dodg-
son winners can be computed in polynomial time under two-
crossing elections. k-crossing preferences for k > 2 are
strictly more expressive than their two-crossing counterparts,
but this comes with an increase in computational complex-
ity; e.g. computing a winning committee for the Chamberlin–
Courant rule, while being in P for two-crossing elections,
becomes NP-hard under three-crossing elections. It would
be interesting to establish such tight bounds for other vot-
ing rules; e.g. Young’s; and, perhaps most importantly, to es-
tablish the hardness of recognizing k-crossing elections for
k > 2. Axiomatically, it would be interesting to determine
whether two-crossing elections admit a forbidden structure
characterization, similarly to single-crossing elections [Bred-
ereck et al., 2013].

Acknowledgements
We thank Edith Elkind for the many useful discussions about
two-crossing elections. We thank Costin Andrei Oncescu for
the main proof idea of Theorem 17.

References
[Bartholdi et al., 1989] J. Bartholdi, C. A. Tovey, and M. A. Trick.

Voting schemes for which it can be difficult to tell who won the
election. Social Choice and Welfare, 6(2):157–165, 1989.

[Booth and Lueker, 1976] Kellogg S. Booth and George S. Lueker.
Testing for the consecutive ones property, interval graphs, and

graph planarity using pq-tree algorithms. Journal of Computer
and System Sciences, 13(3):335–379, 1976.

[Brandt et al., 2015] Felix Brandt, Markus Brill, Edith Hemaspaan-
dra, and Lane A. Hemaspaandra. Bypassing combinatorial
protections: polynomial-time algorithms for single-peaked elec-
torates. J. Artif. Int. Res., 53(1):439–496, may 2015.

[Brandt et al., 2016] Felix Brandt, Markus Brill, and Paul Harren-
stein. Tournament solutions. In Felix Brandt, Vincent Conitzer,
Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia, editors,
Handbook of Computational Social Choice, chapter 3. Cam-
bridge University Press, USA, 1st edition, 2016.

[Bredereck et al., 2013] Robert Bredereck, Jiehua Chen, and Ger-
hard J. Woeginger. A characterization of the single-crossing do-
main. Social Choice and Welfare, 41(4):989–998, 2013.

[Caragiannis et al., 2016] Ioannis Caragiannis, Edith Hemaspaan-
dra, and Lane A. Hemaspaandra. Dodgson’s rule and young’s
rule. In Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme
Lang, and Ariel D. Procaccia, editors, Handbook of Compu-
tational Social Choice, chapter 5. Cambridge University Press,
USA, 1st edition, 2016.

[Chamberlin and Courant, 1983] John Chamberlin and Paul
Courant. Representative deliberations and representative deci-
sions: proportional representation and the borda rule. American
Political Science Review, 77(3):718–733, 1983.

[Chen et al., 2021] Chia-Hui Chen, Junichiro Ishida, and Wing
Suen. Signaling under Double-Crossing Preferences. ISER Dis-
cussion Paper 1103rr, Institute of Social and Economic Research,
Osaka University, Oct 2021.

[Constantinescu and Elkind, 2021] Andrei Costin Constantinescu
and Edith Elkind. Proportional representation under single-
crossing preferences revisited. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 35(6):5286–5293, May 2021.

[Cormen et al., 2009] Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein. Difference constraints
and shortest paths. In Introduction to Algorithms, Third Edition,
chapter 24, pages 664–668. The MIT Press, 3rd edition, 2009.

[Elkind et al., 2012] Edith Elkind, Piotr Faliszewski, and Arkadii
Slinko. Clone structures in voters’ preferences. Proceedings of
the ACM Conference on Electronic Commerce, pages 496–513,
2012.

[Faliszewski et al., 2017] Piotr Faliszewski, Piotr Skowron,
Arkadii Slinko, and Nimrod Talmon. Multiwinner voting: a
new challenge for social choice theory. In Ulle Endriss, editor,
Trends in Computational Social Choice, chapter 2, pages 27–47.
AI Access, 2017.

[Fischer et al., 2016] Felix Fischer, Olivier Hudry, and Rolf Nieder-
meier. Weighted tournament solutions. In Felix Brandt, Vincent
Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia, edi-
tors, Handbook of Computational Social Choice, chapter 4. Cam-
bridge University Press, USA, 1st edition, 2016.

[Fitzsimmons and Hemaspaandra, 2020] Zack Fitzsimmons and
Edith Hemaspaandra. Election score can be harder than winner.
In ECAI 2020, 2020.

[Fulkerson and Gross, 1965] Delbert Ray Fulkerson and Oliver Al-
fred Gross. Incidence matrices and interval graphs. Pacific Jour-
nal of Mathematics, 15:835–855, 1965.

[Goldberg et al., 1995] Paul Goldberg, Martin Golumbic, Haim
Kaplan, and Ron Shamir. Four strikes against physical mapping
of dna. Journal of computational biology: a journal of computa-
tional molecular cell biology, 2:139–52, 03 1995.

[Goldberg, 1995] Andrew V. Goldberg. Scaling algorithms for the
shortest paths problem. SIAM Journal on Computing, 24(3):494–
504, 1995.

[Hemaspaandra et al., 1997] Edith Hemaspaandra, Lane A.
Hemaspaandra, and Jörg Rothe. Exact analysis of dodgson
elections: lewis carroll’s 1876 voting system is complete for
parallel access to np. J. ACM, 44(6):806–825, Nov 1997.

[Hemaspaandra et al., 2005] Edith Hemaspaandra, Holger
Spakowski, and Jörg Vogel. The complexity of kemeny
elections. Theoretical Computer Science, 349:382–391, 12 2005.

[Hoffman and Kruskal, 2016] A. J. Hoffman and J. B. Kruskal. In-
tegral boundary points of convex polyhedra. In Linear Inequali-
ties and Related Systems. (AM-38), Volume 38, chapter 13, pages
223–246. Princeton University Press, 2016.

[Karmarkar, 1984] Narendra Karmarkar. A new polynomial-time
algorithm for linear programming. In Proceedings of the
Sixteenth Annual ACM Symposium on Theory of Computing,
STOC’84, pages 302–311, New York, NY, USA, 1984. Associa-
tion for Computing Machinery.

[Lu and Boutilier, 2011] Tyler Lu and Craig Boutilier. Budgeted
social choice: from consensus to personalized decision making.
In Proceedings of IJCAI’11, pages 280–286, 01 2011.

[Mattei and Walsh, 2013] Nicholas Mattei and Toby Walsh. Pre-
flib: a library for preferences http://www.preflib.org. In Patrice
Perny, Marc Pirlot, and Alexis Tsoukiàs, editors, Algorithmic
Decision Theory, pages 259–270, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

[Mirrlees, 1971] James Mirrlees. An exploration in the theory of
optimum income taxation. The Review of Economic Studies,
38(2):175–208, 1971.

[Misra et al., 2017] Neeldhara Misra, Chinmay Sonar, and P. R.
Vaidyanathan. On the complexity of chamberlin–courant on al-
most structured profiles. In Jörg Rothe, editor, Algorithmic Deci-
sion Theory, pages 124–138, Cham, 2017. Springer International
Publishing.

[Peters and Lackner, 2020] Dominik Peters and Martin Lackner.
Preferences single-peaked on a circle. Journal of Artificial In-
telligence Research, 68:463–502, 06 2020.

[Procaccia et al., 2008] Ariel Procaccia, Jeffrey Rosenschein, and
Aviv Zohar. On the complexity of achieving proportional repre-
sentation. Social Choice and Welfare, 30:353–362, 02 2008.

[Roberts, 1977] Kevin Roberts. Voting over income tax schedules.
Journal of Public Economics, 8(3):329 – 340, 1977.

[Rothe et al., 2003] Jörg Rothe, Holger Spakowski, and Jörg Vo-
gel. Exact complexity of the winner problem for young elections.
Theory of Computing Systems, 36:375–386, 2003.

[Skowron et al., 2015] Piotr Skowron, Lan Yu, Piotr Faliszewski,
and Edith Elkind. The complexity of fully proportional repre-
sentation for single-crossing electorates. Theoretical Computer
Science, 569:43–57, 2015.

[Tucker, 1971] Alan C. Tucker. Matrix characterizations of
circular-arc graphs. Pacific Journal of Mathematics, 39:535–545,
1971.

	Introduction
	Preliminaries
	Recognizing k-Crossing Profiles
	Polynomial Time Recognition for k = 2
	Is Recognition NP-Complete for k > 2?

	Weighted Majority Tournaments
	Young's Rule
	The Chamberlin–Courant Rule
	Conclusions and Future Work

