
Voting in Two-Crossing Elections

Andrei Constantinescu
Roger Wattenhofer

Distributed Computing Group

1.
Motivation
The Horseshoe Theory

Candidate c located at x(c); voter v has ideal point x(v).
Preference by Euclidean distance → vi : cj ≻ ck iff d(vi, cj) < d(vi, ck).
i.e.
v1 : c1 ≻ c2 ≻ c3

v2 : c2 ≻ c3 ≻ c1

v3 : c3 ≻ c2 ≻ c1

Left-Right Spectrum

Candidate c located at x(c); voter v has ideal point x(v).
Preference by Euclidean distance → vi : cj ≻ ck iff d(vi, cj) < d(vi, ck).
i.e.
v1 : c1 ≻ c2 ≻ c3

v2 : c2 ≻ c3 ≻ c1

v3 : c3 ≻ c2 ≻ c1

Left-Right Spectrum

RightLeft

Candidates: c1, …, cM;

Candidate c located at x(c); voter v has ideal point x(v).
Preference by Euclidean distance → vi : cj ≻ ck iff d(vi, cj) < d(vi, ck).
i.e.
v1 : c1 ≻ c2 ≻ c3

v2 : c2 ≻ c3 ≻ c1

v3 : c3 ≻ c2 ≻ c1

Left-Right Spectrum

RightLeft

Candidates: c1, …, cM; Voters: v1, …, vN.

Candidate c located at x(c); voter v has ideal point x(v).
Preference by Euclidean distance → vi : cj ≻ ck iff d(vi, cj) < d(vi, ck).
i.e.
v1 : c1 ≻ c2 ≻ c3

v2 : c2 ≻ c3 ≻ c1

v3 : c3 ≻ c2 ≻ c1

Left-Right Spectrum

RightLeft

Candidates: c1, …, cM; Voters: v1, …, vN.

Candidate c located at x(c); voter v has ideal point x(v).
Preference by Euclidean distance → vi : cj ≻ ck iff d(vi, cj) < d(vi, ck).
i.e.
v1 : c1 ≻ c2 ≻ c3

v2 : c2 ≻ c3 ≻ c1

v3 : c3 ≻ c2 ≻ c1

Left-Right Spectrum

RightLeft

Candidates: c1, …, cM; Voters: v1, …, vN.

Candidate c located at x(c); voter v has ideal point x(v).
Preference by Euclidean distance → vi : cj ≻ ck iff d(vi, cj) < d(vi, ck).
i.e.
v1 : c1 ≻ c2 ≻ c3

v2 : c2 ≻ c3 ≻ c1

v3 : c3 ≻ c2 ≻ c1

Left-Right Spectrum

c1
RightLeft

Candidates: c1, …, cM; Voters: v1, …, vN.

Candidate c located at x(c); voter v has ideal point x(v).
Preference by Euclidean distance → vi : cj ≻ ck iff d(vi, cj) < d(vi, ck).
i.e.
v1 : c1 ≻ c2 ≻ c3

v2 : c2 ≻ c3 ≻ c1

v3 : c3 ≻ c2 ≻ c1

Left-Right Spectrum

c2c1
RightLeft

Candidates: c1, …, cM; Voters: v1, …, vN.

Candidate c located at x(c); voter v has ideal point x(v).
Preference by Euclidean distance → vi : cj ≻ ck iff d(vi, cj) < d(vi, ck).
i.e.
v1 : c1 ≻ c2 ≻ c3

v2 : c2 ≻ c3 ≻ c1

v3 : c3 ≻ c2 ≻ c1

Left-Right Spectrum

c2c1
RightLeft c3

Candidates: c1, …, cM; Voters: v1, …, vN.

Candidate c located at x(c); voter v has ideal point x(v).
Preference by Euclidean distance → vi : cj ≻ ck iff d(vi, cj) < d(vi, ck).
i.e.
v1 : c1 ≻ c2 ≻ c3

v2 : c2 ≻ c3 ≻ c1

v3 : c3 ≻ c2 ≻ c1

Left-Right Spectrum

c2c1
RightLeft c3

Candidates: c1, …, cM; Voters: v1, …, vN.

Candidate c located at x(c); voter v has ideal point x(v).
Preference by Euclidean distance → vi : cj ≻ ck iff d(vi, cj) < d(vi, ck).
i.e.
v1 : c1 ≻ c2 ≻ c3

v2 : c2 ≻ c3 ≻ c1

v3 : c3 ≻ c2 ≻ c1

Left-Right Spectrum

c2v1 c1
RightLeft c3

Candidates: c1, …, cM; Voters: v1, …, vN.

Candidate c located at x(c); voter v has ideal point x(v).
Preference by Euclidean distance → vi : cj ≻ ck iff d(vi, cj) < d(vi, ck).
i.e.
v1 : c1 ≻ c2 ≻ c3

v2 : c2 ≻ c3 ≻ c1

v3 : c3 ≻ c2 ≻ c1

Left-Right Spectrum

c2v1 c1 v2
RightLeft c3

Candidates: c1, …, cM; Voters: v1, …, vN.

Candidate c located at x(c); voter v has ideal point x(v).
Preference by Euclidean distance → vi : cj ≻ ck iff d(vi, cj) < d(vi, ck).
i.e.
v1 : c1 ≻ c2 ≻ c3

v2 : c2 ≻ c3 ≻ c1

v3 : c3 ≻ c2 ≻ c1

Left-Right Spectrum

c2v1 v3c1 v2 c3
RightLeft

Candidates: c1, …, cM; Voters: v1, …, vN.

Candidate c located at x(c); voter v has ideal point x(v).
Preference by Euclidean distance → vi : cj ≻ ck iff d(vi, cj) < d(vi, ck).
i.e.
v1 : c1 ≻ c2 ≻ c3

v2 : c2 ≻ c3 ≻ c1

v3 : c3 ≻ c2 ≻ c1

Left-Right Spectrum

c2v1 v3c1 v2 c3
RightLeft

Candidates: c1, …, cM; Voters: v1, …, vN.

Candidate c located at x(c); voter v has ideal point x(v).
Preference by Euclidean distance → vi : cj ≻ ck iff d(vi, cj) < d(vi, ck).
i.e.
v1 : c1 ≻ c2 ≻ c3

v2 : c2 ≻ c3 ≻ c1

v3 : c3 ≻ c2 ≻ c1

Left-Right Spectrum

c2v1 v3c1 v2 c3
RightLeft

Candidates: c1, …, cM; Voters: v1, …, vN.

Candidate c located at x(c); voter v has ideal point x(v).
Preference by Euclidean distance → vi : cj ≻ ck iff d(vi, cj) < d(vi, ck).
i.e.
v1 : c1 ≻ c2 ≻ c3

v2 : c2 ≻ c3 ≻ c1

v3 : c3 ≻ c2 ≻ c1

Left-Right Spectrum

c2v1 v3c1 v2 c3

 d(v3, c1) = |x(v3) - x(c1)|

RightLeft

Candidates: c1, …, cM; Voters: v1, …, vN.

Candidate c located at x(c); voter v has ideal point x(v).
Preference by Euclidean distance → vi : cj ≻ ck

i.e.
v1 : c1 ≻ c2 ≻ c3

v2 : c2 ≻ c3 ≻ c1

v3 : c3 ≻ c2 ≻ c1

Left-Right Spectrum

c2v1 v3c1 v2 c3

 d(v3, c1) = |x(v3) - x(c1)|

RightLeft

Candidates: c1, …, cM; Voters: v1, …, vN.

Candidate c located at x(c); voter v has ideal point x(v).
Preference by Euclidean distance → vi : cj ≻ ck iff d(vi, cj) < d(vi, ck).
i.e.
v1 : c1 ≻ c2 ≻ c3

v2 : c2 ≻ c3 ≻ c1

v3 : c3 ≻ c2 ≻ c1

Left-Right Spectrum

c2v1 v3c1 v2 c3

 d(v3, c1) = |x(v3) - x(c1)|

RightLeft

Candidates: c1, …, cM; Voters: v1, …, vN.

Candidate c located at x(c); voter v has ideal point x(v).
Preference by Euclidean distance → vi : cj ≻ ck iff d(vi, cj) < d(vi, ck).
i.e.
v1 : c1 ≻ c2 ≻ c3

v2 : c2 ≻ c3 ≻ c1

v3 : c3 ≻ c2 ≻ c1

Left-Right Spectrum

c2v1 v3c1 v2 c3

 d(v3, c1) = |x(v3) - x(c1)|

RightLeft

Candidates: c1, …, cM; Voters: v1, …, vN.

Candidate c located at x(c); voter v has ideal point x(v).
Preference by Euclidean distance → vi : cj ≻ ck iff d(vi, cj) < d(vi, ck).
i.e. Majority Tournament
v1 : c1 ≻ c2 ≻ c3

v2 : c2 ≻ c3 ≻ c1

v3 : c3 ≻ c2 ≻ c1

Left-Right Spectrum

c2v1 v3c1 v2 c3

 d(v3, c1) = |x(v3) - x(c1)|

RightLeft

Candidates: c1, …, cM; Voters: v1, …, vN.

Candidate c located at x(c); voter v has ideal point x(v).
Preference by Euclidean distance → vi : cj ≻ ck iff d(vi, cj) < d(vi, ck).
i.e. Majority Tournament
v1 : c1 ≻ c2 ≻ c3

v2 : c2 ≻ c3 ≻ c1

v3 : c3 ≻ c2 ≻ c1

Left-Right Spectrum

c2v1 v3c1 v2 c3

 d(v3, c1) = |x(v3) - x(c1)|

RightLeft

c2 c3

c1

2-1 = 1

2-1 = 1

2-1 = 1

Candidates: c1, …, cM; Voters: v1, …, vN.

Candidate c located at x(c); voter v has ideal point x(v).
Preference by Euclidean distance → vi : cj ≻ ck iff d(vi, cj) < d(vi, ck).
i.e. Majority Tournament
v1 : c1 ≻ c2 ≻ c3

v2 : c2 ≻ c3 ≻ c1

v3 : c3 ≻ c2 ≻ c1

Left-Right Spectrum

c2v1 v3c1 v2 c3

 d(v3, c1) = |x(v3) - x(c1)|

RightLeft

c2 c3

c1

2-1 = 1

2-1 = 1

2-1 = 1

Horseshoe Spectrum

Horseshoe Spectrum
Far RightFar Left Left RightCenter

Horseshoe Spectrum
Far RightFar Left Left RightCenter

Horseshoe Spectrum
Far RightFar Left Left RightCenter

Horseshoe Spectrum

Horseshoe Spectrum

"Unholy Alliance"

Horseshoe Spectrum

"Unholy Alliance"

Horseshoe Spectrum

"Unholy Alliance"

Horseshoe Spectrum

"Unholy Alliance"

Horseshoe Spectrum

v2

v1

v3

c1

c2
c3

"Unholy Alliance"

Horseshoe Spectrum

v2

v1

v3

c1

c2
c3

v1 : c1 ≻ c2 ≻ c3
v2 : c2 ≻ c3 ≻ c1
v3 : c3 ≻ c1 ≻ c2

"Unholy Alliance"

Horseshoe Spectrum

v2

v1

v3

c1

c2
c3

v1 : c1 ≻ c2 ≻ c3
v2 : c2 ≻ c3 ≻ c1
v3 : c3 ≻ c1 ≻ c2

c2 c3

c1

2-1 = 1

2-1 = 1

2-1 = 1

"Unholy Alliance"

Horseshoe Spectrum

v2

v1

v3

c1

c2
c3

v1 : c1 ≻ c2 ≻ c3
v2 : c2 ≻ c3 ≻ c1
v3 : c3 ≻ c1 ≻ c2

c2 c3

c1

2-1 = 1

2-1 = 1

2-1 = 1

Consider candidates c and c'.
And voters sorted by angle.

Voters preferring c to c'
form a "circular" interval!

A More General Property

Consider candidates c and c'.
And voters sorted by angle.

Voters preferring c to c'
form a "circular" interval!

A More General Property

Consider candidates c and c'.
And voters sorted by angle.

Voters preferring c to c'
form a "circular" interval!

A More General Property

Consider candidates c and c'.
And voters sorted by angle.

Voters preferring c to c'
form a "circular" interval!

A More General Property
c

c'

Consider candidates c and c'.
And voters sorted by angle.

Voters preferring c to c'
form a "circular" interval!

A More General Property
c

c'

Consider candidates c and c'.
And voters sorted by angle.

Voters preferring c to c'
form a "circular" interval!

A More General Property
c

c'

v1

Consider candidates c and c'.
And voters sorted by angle.

Voters preferring c to c'
form a "circular" interval!

A More General Property
v2

c

c'

v1

Consider candidates c and c'.
And voters sorted by angle.

Voters preferring c to c'
form a "circular" interval!

A More General Property

v3

v2
c

c'

v1

Consider candidates c and c'.
And voters sorted by angle.

Voters preferring c to c'
form a "circular" interval!

A More General Property

v3

v2
c

c'

v4

v1

Consider candidates c and c'.
And voters sorted by angle.

Voters preferring c to c'
form a "circular" interval!

A More General Property

v3

v2
c

c'

v4

v5

v1

Consider candidates c and c'.
And voters sorted by angle.

Voters preferring c to c'
form a "circular" interval!

A More General Property

v3

v2
c

c'

v4

v5
v6

v1

Consider candidates c and c'.
And voters sorted by angle.

Voters preferring c to c'
form a "circular" interval!

A More General Property

v3

v2
c

c'

v4

v5
v6

v7

v1

Consider candidates c and c'.
And voters sorted by angle.

Voters preferring c to c'
form a "circular" interval!

A More General Property

v3

v2

v8

c

c'

v4

v5
v6

v7

v1

Consider candidates c and c'.
And voters sorted by angle.

Voters preferring c to c'
form a "circular" interval!

A More General Property

v3

v2

v8

c

c'

v4

v5
v6

v7

v1

Consider candidates c and c'.
And voters sorted by angle.

Voters preferring c to c'
form a "circular" interval!

A More General Property

v3

v2

v8

c

c'

v4

v5
v6

v7

v1

Consider candidates c and c'.
And voters sorted by angle.

Voters preferring c to c'
form a "circular" interval!

A More General Property

v3

v2

v8

c

c'

v4

v5
v6

v7

v1

v1 v2 v3 v4 v5 v6 v7 v8

c ≻ c' 0 1 1 1 0 0 0 0

Consider candidates c and c'.
And voters sorted by angle.

Voters preferring c to c'
form a "circular" interval!

A More General Property

v3

v2

v8

c

c'

v4

v5
v6

v7

v1

v1 v2 v3 v4 v5 v6 v7 v8

c ≻ c' 0 1 1 1 0 0 0 0

Consider candidates c and c'.
And voters sorted by angle.

Voters preferring c to c'
form a "circular" interval!

A More General Property

v3

v2

v8

c

c'

v4

v5
v6

v7

v1

v1 v2 v3 v4 v5 v6 v7 v8

c ≻ c' 0 1 1 1 0 0 0 0

c' ≻ c 1 0 0 0 1 1 1 1

Consider candidates c and c'.
And voters sorted by angle.

Voters preferring c to c'
form a "circular" interval!

A More General Property

v3

v2

v8

c

c'

v4

v5
v6

v7

v1

v1 v2 v3 v4 v5 v6 v7 v8

c ≻ c' 0 1 1 1 0 0 0 0

c' ≻ c 1 0 0 0 1 1 1 1

⇔ At most 2 switches per row.

k-Crossing Elections

k-Crossing Elections
An election is k-crossing if voters can be reordered such that
preference between any two candidates c, c' changes at most k
times as we sweep through the voters in order:

k-Crossing Elections
An election is k-crossing if voters can be reordered such that
preference between any two candidates c, c' changes at most k
times as we sweep through the voters in order:

v1 : c1 ≻ c2 ≻ c3
v2 : c3 ≻ c2 ≻ c1
v3 : c2 ≻ c3 ≻ c1
v4 : c3 ≻ c1 ≻ c2

k-Crossing Elections
An election is k-crossing if voters can be reordered such that
preference between any two candidates c, c' changes at most k
times as we sweep through the voters in order:

v1 : c1 ≻ c2 ≻ c3
v2 : c3 ≻ c2 ≻ c1
v3 : c2 ≻ c3 ≻ c1
v4 : c3 ≻ c1 ≻ c2

v1 v2 v3 v4

c1 ≻ c2 1 0 0 1

c2 ≻ c3 1 0 1 0

c1 ≻ c3 1 0 0 0

k-Crossing Elections
An election is k-crossing if voters can be reordered such that
preference between any two candidates c, c' changes at most k
times as we sweep through the voters in order:

v1 : c1 ≻ c2 ≻ c3
v2 : c3 ≻ c2 ≻ c1
v3 : c2 ≻ c3 ≻ c1
v4 : c3 ≻ c1 ≻ c2

v1 v2 v3 v4

c1 ≻ c2 1 0 0 1

c2 ≻ c3 1 0 1 0

c1 ≻ c3 1 0 0 0

v1 v3 v2 v4

c1 ≻ c2 1 0 0 1

c2 ≻ c3 1 1 0 0

c1 ≻ c3 1 0 0 0

2.
Recognition
Using the Consecutive Ones Problem

Recognition

Deciding whether an election is k-crossing.

◎ Single-Crossing: poly-time
[Elkind et al., 2012; Bredereck et al., 2013].

◎ Two-Crossing: poly-time
Reduction to consecutive ones (this paper).

Recognition

Deciding whether an election is k-crossing.

◎ Single-crossing: poly-time
[Elkind et al., 2012; Bredereck et al., 2013].

◎ Two-Crossing: poly-time
Reduction to consecutive ones (this paper).

Recognition

Deciding whether an election is k-crossing.

◎ Single-crossing: poly-time
[Elkind et al., 2012; Bredereck et al., 2013].

◎ Two-crossing: poly-time
Reduction to consecutive ones (this paper).

Recognition

Deciding whether an election is k-crossing.

◎ Single-crossing: poly-time
[Elkind et al., 2012; Bredereck et al., 2013].

◎ Two-crossing: poly-time
Reduction to consecutive ones (this paper).

◎ k-crossing: open
We conjecture NP-complete for k ≥ 4.

Recognition

Recognition for Two-Crossing

Then, check whether columns can
be permuted such 1s in each row
form a continuous circular run.
[Booth and Lueker, 1976]

Recognition for Two-Crossing
Given candidates c1, …, cM and voters v1, …, vN, build matrix
with rows indexed by pairs (ci, cj) with i < j and columns indexed
by voters vk. Put a 1 at row (ci, cj), column vk, iff vk prefers ci to cj.

Then, check whether columns can
be permuted such 1s in each row
form a continuous circular run.
[Booth and Lueker, 1976]

Recognition for Two-Crossing
Given candidates c1, …, cM and voters v1, …, vN, build matrix
with rows indexed by pairs (ci, cj) with i < j and columns indexed
by voters vk. Put a 1 at row (ci, cj), column vk, iff vk prefers ci to cj.

v1 : c1 ≻ c2 ≻ c3
v2 : c3 ≻ c2 ≻ c1
v3 : c2 ≻ c3 ≻ c1
v4 : c3 ≻ c1 ≻ c2

Then, check whether columns can
be permuted such 1s in each row
form a continuous circular run.
[Booth and Lueker, 1976]

Recognition for Two-Crossing
Given candidates c1, …, cM and voters v1, …, vN, build matrix
with rows indexed by pairs (ci, cj) with i < j and columns indexed
by voters vk. Put a 1 at row (ci, cj), column vk, iff vk prefers ci to cj.

v1 : c1 ≻ c2 ≻ c3
v2 : c3 ≻ c2 ≻ c1
v3 : c2 ≻ c3 ≻ c1
v4 : c3 ≻ c1 ≻ c2

Then, check whether columns can
be permuted such 1s in each row
form a continuous circular run.
[Booth and Lueker, 1976]

Recognition for Two-Crossing
Given candidates c1, …, cM and voters v1, …, vN, build matrix
with rows indexed by pairs (ci, cj) with i < j and columns indexed
by voters vk. Put a 1 at row (ci, cj), column vk, iff vk prefers ci to cj.

v1 : c1 ≻ c2 ≻ c3
v2 : c3 ≻ c2 ≻ c1
v3 : c2 ≻ c3 ≻ c1
v4 : c3 ≻ c1 ≻ c2

Then, check whether columns can
be permuted such 1s in each row
form a continuous circular run.
[Booth and Lueker, 1976]

Recognition for Two-Crossing
Given candidates c1, …, cM and voters v1, …, vN, build matrix
with rows indexed by pairs (ci, cj) with i < j and columns indexed
by voters vk. Put a 1 at row (ci, cj), column vk, iff vk prefers ci to cj.

c1 ≻ c2

c2 ≻ c3

c1 ≻ c3v1 : c1 ≻ c2 ≻ c3
v2 : c3 ≻ c2 ≻ c1
v3 : c2 ≻ c3 ≻ c1
v4 : c3 ≻ c1 ≻ c2

Then, check whether columns can
be permuted such 1s in each row
form a continuous circular run.
[Booth and Lueker, 1976]

Recognition for Two-Crossing
Given candidates c1, …, cM and voters v1, …, vN, build matrix
with rows indexed by pairs (ci, cj) with i < j and columns indexed
by voters vk. Put a 1 at row (ci, cj), column vk, iff vk prefers ci to cj.

c1 ≻ c2

c2 ≻ c3

c1 ≻ c3v1 : c1 ≻ c2 ≻ c3
v2 : c3 ≻ c2 ≻ c1
v3 : c2 ≻ c3 ≻ c1
v4 : c3 ≻ c1 ≻ c2

Then, check whether columns can
be permuted such 1s in each row
form a continuous circular run.
[Booth and Lueker, 1976]

Recognition for Two-Crossing
Given candidates c1, …, cM and voters v1, …, vN, build matrix
with rows indexed by pairs (ci, cj) with i < j and columns indexed
by voters vk. Put a 1 at row (ci, cj), column vk, iff vk prefers ci to cj.

v1 v2 v3 v4

c1 ≻ c2

c2 ≻ c3

c1 ≻ c3v1 : c1 ≻ c2 ≻ c3
v2 : c3 ≻ c2 ≻ c1
v3 : c2 ≻ c3 ≻ c1
v4 : c3 ≻ c1 ≻ c2

Then, check whether columns can
be permuted such 1s in each row
form a continuous circular run.
[Booth and Lueker, 1976]

Recognition for Two-Crossing
Given candidates c1, …, cM and voters v1, …, vN, build matrix
with rows indexed by pairs (ci, cj) with i < j and columns indexed
by voters vk. Put a 1 at row (ci, cj), column vk, iff vk prefers ci to cj.

v1 v2 v3 v4

c1 ≻ c2

c2 ≻ c3

c1 ≻ c3v1 : c1 ≻ c2 ≻ c3
v2 : c3 ≻ c2 ≻ c1
v3 : c2 ≻ c3 ≻ c1
v4 : c3 ≻ c1 ≻ c2

Then, check whether columns can
be permuted such 1s in each row
form a continuous circular run.
[Booth and Lueker, 1976]

Recognition for Two-Crossing
Given candidates c1, …, cM and voters v1, …, vN, build matrix
with rows indexed by pairs (ci, cj) with i < j and columns indexed
by voters vk. Put a 1 at row (ci, cj), column vk, iff vk prefers ci to cj.

v1 v2 v3 v4

c1 ≻ c2 1 0 0 1

c2 ≻ c3 1 0 1 0

c1 ≻ c3 1 0 0 0
v1 : c1 ≻ c2 ≻ c3
v2 : c3 ≻ c2 ≻ c1
v3 : c2 ≻ c3 ≻ c1
v4 : c3 ≻ c1 ≻ c2

Then, check whether columns can
be permuted such 1s in each row
form a continuous circular run.
[Booth and Lueker, 1976]

Recognition for Two-Crossing
Given candidates c1, …, cM and voters v1, …, vN, build matrix
with rows indexed by pairs (ci, cj) with i < j and columns indexed
by voters vk. Put a 1 at row (ci, cj), column vk, iff vk prefers ci to cj.

v1 v2 v3 v4

c1 ≻ c2 1 0 0 1

c2 ≻ c3 1 0 1 0

c1 ≻ c3 1 0 0 0
v1 : c1 ≻ c2 ≻ c3
v2 : c3 ≻ c2 ≻ c1
v3 : c2 ≻ c3 ≻ c1
v4 : c3 ≻ c1 ≻ c2

Then, check whether columns can
be permuted s.t. 1s in each row form
a continuous circular run.
[Booth and Lueker, 1976]

Recognition for Two-Crossing
Given candidates c1, …, cM and voters v1, …, vN, build matrix
with rows indexed by pairs (ci, cj) with i < j and columns indexed
by voters vk. Put a 1 at row (ci, cj), column vk, iff vk prefers ci to cj.

v1 v2 v3 v4

c1 ≻ c2 1 0 0 1

c2 ≻ c3 1 0 1 0

c1 ≻ c3 1 0 0 0
v1 : c1 ≻ c2 ≻ c3
v2 : c3 ≻ c2 ≻ c1
v3 : c2 ≻ c3 ≻ c1
v4 : c3 ≻ c1 ≻ c2

Then, check whether columns can
be permuted s.t. 1s in each row form
a continuous circular run.
[Booth and Lueker, 1976]

Recognition for Two-Crossing
Given candidates c1, …, cM and voters v1, …, vN, build matrix
with rows indexed by pairs (ci, cj) with i < j and columns indexed
by voters vk. Put a 1 at row (ci, cj), column vk, iff vk prefers ci to cj.

v1 v2 v3 v4

c1 ≻ c2 1 0 0 1

c2 ≻ c3 1 0 1 0

c1 ≻ c3 1 0 0 0

v1 v3 v2 v4

c1 ≻ c2 1 0 0 1

c2 ≻ c3 1 1 0 0

c1 ≻ c3 1 0 0 0

v1 : c1 ≻ c2 ≻ c3
v2 : c3 ≻ c2 ≻ c1
v3 : c2 ≻ c3 ≻ c1
v4 : c3 ≻ c1 ≻ c2

Then, check whether columns can
be permuted s.t. 1s in each row form
a continuous circular run.
[Booth and Lueker, 1976]

Recognition for Two-Crossing
Given candidates c1, …, cM and voters v1, …, vN, build matrix
with rows indexed by pairs (ci, cj) with i < j and columns indexed
by voters vk. Put a 1 at row (ci, cj), column vk, iff vk prefers ci to cj.

v1 v2 v3 v4

c1 ≻ c2 1 0 0 1

c2 ≻ c3 1 0 1 0

c1 ≻ c3 1 0 0 0

v1 v3 v2 v4

c1 ≻ c2 1 0 0 1

c2 ≻ c3 1 1 0 0

c1 ≻ c3 1 0 0 0

v1 : c1 ≻ c2 ≻ c3
v2 : c3 ≻ c2 ≻ c1
v3 : c2 ≻ c3 ≻ c1
v4 : c3 ≻ c1 ≻ c2

O(NM2)

Then, check whether columns can
be permuted s.t. 1s in each row form
a continuous circular run.
[Booth and Lueker, 1976]

3.
Majority Tournament
Universality
And NP-Hardness of Kemeny

Single-crossing: tournament is transitive.

Two-crossing: also any (weighted) tournament
can be obtained!

General elections: any (weighted) tournament
can be obtained.
[McGarvey, 1953; Debord, 1987]

Weighted Majority Tournament

Single-crossing: tournament is transitive.

Two-crossing: also any (weighted) tournament
can be obtained!

General elections: any (weighted) tournament
can be obtained.
[McGarvey, 1953; Debord, 1987]

Weighted Majority Tournament

c2 c3

c1

2-1 = 1

2-1 = 1

2-1 = 1

Single-crossing: tournament is transitive.

Two-crossing: also any (weighted) tournament
can be obtained!

General elections: any (weighted) tournament
can be obtained.
[McGarvey, 1953; Debord, 1987]

Weighted Majority Tournament

c2 c3

c1

2-1 = 1

2-1 = 1

2-1 = 1

Single-crossing: tournament is transitive.

Two-crossing: also any (weighted) tournament
can be obtained!

General elections: any (weighted) tournament
can be obtained.
[McGarvey, 1953; Debord, 1987]

Weighted Majority Tournament

c2 c3

c1

2-1 = 1

2-1 = 1

2-1 = 1

Single-crossing: tournament is transitive.

Two-crossing: also any (weighted) tournament
can be obtained!

General elections: any (weighted) tournament
can be obtained.
[McGarvey, 1953; Debord, 1987]

Weighted Majority Tournament

c2 c3

c1

2-1 = 1

2-1 = 1

2-1 = 1

Proof

Construct the “Double-BubbleSort” profile.
e.g. M = 4 candidates.

This profile is two-crossing!

Proof

Construct the “Double-BubbleSort” profile.
e.g. M = 4 candidates.

This profile is two-crossing!

Proof

Construct the “Double-BubbleSort” profile.
e.g. M = 4 candidates.

This profile is two-crossing!

Proof

Construct the “Double-BubbleSort” profile.
e.g. M = 4 candidates.

This profile is two-crossing!

Proof

Construct the “Double-BubbleSort” profile.
e.g. M = 4 candidates.

This profile is two-crossing!

Proof

Construct the “Double-BubbleSort” profile.
e.g. M = 4 candidates.

This profile is two-crossing!

Proof

Construct the “Double-BubbleSort” profile.
e.g. M = 4 candidates.

This profile is two-crossing!

Proof

Construct the “Double-BubbleSort” profile.
e.g. M = 4 candidates.

This profile is two-crossing!

Proof

Construct the “Double-BubbleSort” profile.
e.g. M = 4 candidates.

This profile is two-crossing!

Proof

Construct the “Double-BubbleSort” profile.
e.g. M = 4 candidates.

This profile is two-crossing!

Proof

Construct the “Double-BubbleSort” profile.
e.g. M = 4 candidates.

This profile is two-crossing!

Proof

Construct the “Double-BubbleSort” profile.
e.g. M = 4 candidates.

This profile is two-crossing!

Proof

Construct the “Double-BubbleSort” profile.
e.g. M = 4 candidates.

This profile is two-crossing!

Proof

Construct the “Double-BubbleSort” profile.
e.g. M = 4 candidates.

This profile is two-crossing!

Proof

Construct the “Double-BubbleSort” profile.
e.g. M = 4 candidates.

This profile is two-crossing!

Proof

Construct the “Double-BubbleSort” profile.
e.g. M = 4 candidates.

This profile is two-crossing!

Proof

Construct the “Double-BubbleSort” profile.
e.g. M = 4 candidates.

This profile is two-crossing!

Proof

1 3
 1

Construct the “Double-BubbleSort” profile.
e.g. M = 4 candidates.

This profile is two-crossing!

Proof

1 3
 1

Construct the “Double-BubbleSort” profile.
e.g. M = 4 candidates.

This profile is two-crossing!

Proof

1 3
 1

Construct the “Double-BubbleSort” profile.
e.g. M = 4 candidates.

This profile is two-crossing!

Proof

v
1 3

 1

Construct the “Double-BubbleSort” profile.
e.g. M = 4 candidates.

This profile is two-crossing!

Proof

v v'
1 3

 1

Construct the “Double-BubbleSort” profile.
e.g. M = 4 candidates.

This profile is two-crossing!

Proof

v v'
1 3

 1

Construct the “Double-BubbleSort” profile.
e.g. M = 4 candidates.

This profile is two-crossing!

Proof

v v'
1 3

 3

Consequences: NP-hardness

Thus, NP-hardness results carry over to two-crossing:

◎ Kemeny and Slater are NP-hard.

◎ Banks, Minimal Extending Set, Tournament
Equilibrium Set and Ranked Pairs also NP-hard.

Consequences: NP-hardness

Thus, NP-hardness results carry over to two-crossing:

◎ Kemeny and Slater are NP-hard.

◎ Banks, Minimal Extending Set, Tournament
Equilibrium Set and Ranked Pairs also NP-hard.

Consequences: NP-hardness

Thus, NP-hardness results carry over to two-crossing:

◎ Kemeny and Slater are NP-hard.

◎ Banks, Minimal Extending Set, Tournament
Equilibrium Set and Ranked Pairs also NP-hard.

Consequences: NP-hardness

4.
Young's Rule
Using Total Unimodularity

The Young score of candidate c is the least number
of voters that need to be removed to make c a
Condorcet winner. Winners are candidates with the
least score.

◎ NP-hard in general:
[Rothe et al., 2003; Brandt et al., 2015;
Fitzsimmons and Hemaspaandra, 2020].

◎ Two-crossing: scores in poly-time (this paper).

Young's Rule

The Young score of candidate c is the least number
of voters that need to be removed to make c a
Condorcet winner. Winners are candidates with the
least score.

◎ NP-hard in general:
[Rothe et al., 2003; Brandt et al., 2015;
Fitzsimmons and Hemaspaandra, 2020].

◎ Two-crossing: scores in poly-time (this paper).

Young's Rule

The Young score of candidate c is the least number
of voters that need to be removed to make c a
Condorcet winner. Winners are candidates with the
least score.

◎ NP-hard in general:
[Rothe et al., 2003; Brandt et al., 2015;
Fitzsimmons and Hemaspaandra, 2020].

◎ Two-crossing: scores in poly-time (this paper).

Young's Rule

The Young score of candidate c is the least number
of voters that need to be removed to make c a
Condorcet winner. Winners are candidates with the
least score.

◎ NP-hard in general:
[Rothe et al., 2003; Brandt et al., 2015;
Fitzsimmons and Hemaspaandra, 2020].

◎ Two-crossing: scores in poly-time (this paper).

Young's Rule

The Young score of candidate c is the least number
of voters that need to be removed to make c a
Condorcet winner. Winners are candidates with the
least score.

◎ NP-hard in general:
[Rothe et al., 2003; Brandt et al., 2015;
Fitzsimmons and Hemaspaandra, 2020].

◎ Two-crossing: scores in poly-time (this paper).

Young's Rule

The natural LP does not have integer vertices.

By fixing the number of voters to keep we arrive at
an LP with integer vertices, so we can solve the LP.

By reducing to negative weight cycle detection we further
improve the running time to O((n + m2)n3/2 log n).

Young's Rule

The natural LP does not have integer vertices.

By fixing the number of voters to keep we arrive at
an LP with integer vertices, so we can solve the LP.

By reducing to negative weight cycle detection we further
improve the running time to O((n + m2)n3/2 log n).

Young's Rule

The natural LP does not have integer vertices.

By fixing the number of voters to keep we arrive at
an LP with integer vertices, so we can solve the LP.

By reducing to negative weight cycle detection we further
improve the running time to O((n + m2)n3/2 log n).

Young's Rule

The natural LP does not have integer vertices.

By fixing the number of voters to keep we arrive at
an LP with integer vertices, so we can solve the LP.

By reducing to negative weight cycle detection we further
improve the running time to O((n + m2)n3/2 log n).

Young's Rule

5.
Chamberlin-Courant Rule
Using Dynamic Programming

Representation

In an election we need to select a committee of
K candidates to best represent the electorate.

e.g. K = 2
 v1 : Blue > Yellow > Red > Pink > Green

 v2 : Yellow > Green > Red > Pink > Blue
 v3 : Green > Red > Blue > Pink > Yellow

Representation

In an election we need to select a committee of
K candidates to best represent the electorate.

e.g. K = 2
 v1 : Blue > Yellow > Red > Pink > Green

 v2 : Yellow > Green > Red > Pink > Blue
 v3 : Green > Red > Blue > Pink > Yellow

Representation

In an election we need to select a committee of
K candidates to best represent the electorate.

e.g. K = 2
 v1 : Blue > Yellow > Red > Pink > Green

 v2 : Yellow > Green > Red > Pink > Blue
 v3 : Green > Red > Blue > Pink > Yellow

Representation

In an election we need to select a committee of
K candidates to best represent the electorate.

e.g. K = 2
 v1 : Blue > Yellow > Red > Pink > Green

 v2 : Yellow > Green > Red > Pink > Blue
 v3 : Green > Red > Blue > Pink > Yellow

Representation

In an election we need to select a committee of
K candidates to best represent the electorate.

e.g. K = 2
 v1 : Blue > Yellow > Red > Pink > Green

 v2 : Yellow > Green > Red > Pink > Blue
 v3 : Green > Red > Blue > Pink > Yellow

Representation

In an election we need to select a committee of
K candidates to best represent the electorate.

e.g. K = 2
 v1 : Blue > Yellow > Red > Pink > Green

 v2 : Yellow > Green > Red > Pink > Blue
 v3 : Green > Red > Blue > Pink > Yellow

In an election we need to select a committee of
K candidates to best represent the electorate.

e.g. K = 2
 v1 : Blue > Yellow > Red > Pink > Green

 v2 : Yellow > Green > Red > Pink > Blue
 v3 : Green > Red > Blue > Pink > Yellow

Q: How to compare K-committees?

Representation

Voters specify their dissatisfaction with each candidate.
Pick the K-committee that minimizes the total/maximum
dissatisfaction.

v1 : Blue > Yellow > Red > Pink > Green

v2 : Yellow > Green > Red > Pink > Blue
v3 : Green > Red > Blue > Pink > Yellow

The Chamberlin-Courant Rule

Voters specify their dissatisfaction with each candidate.
Pick the K-committee that minimizes the total/maximum
dissatisfaction.

v1 : Blue > Yellow > Red > Pink > Green

v2 : Yellow > Green > Red > Pink > Blue
v3 : Green > Red > Blue > Pink > Yellow

The Chamberlin-Courant Rule

Voters specify their dissatisfaction with each candidate.
Pick the K-committee that minimizes the total/maximum
dissatisfaction.

v1 : Blue > Yellow > Red > Pink > Green

v2 : Yellow > Green > Red > Pink > Blue
v3 : Green > Red > Blue > Pink > Yellow

The Chamberlin-Courant Rule

0 1 5 8 9

0 3 3 4 8

0 1 1 2 3

Voters specify their dissatisfaction with each candidate.
Pick the K-committee that minimizes the total/maximum
dissatisfaction.

v1 : Blue > Yellow > Red > Pink > Green

v2 : Yellow > Green > Red > Pink > Blue
v3 : Green > Red > Blue > Pink > Yellow

The Chamberlin-Courant Rule

0 1 5 8 9

0 3 3 4 8

0 1 1 2 3

Voters specify their dissatisfaction with each candidate.
Pick the K-committee that minimizes the total/maximum
dissatisfaction.

v1 : > Yellow > > Pink >

v2 : Yellow > > > Pink >
v3 : > > > Pink > Yellow

Total = 3 (Utilitarian-CC) - in this talk
Maximum = 2 (Egalitarian-CC) [Betzler, Slinko, Uhlmann'13]

The Chamberlin-Courant Rule

1 8

0 4

2 3

Voters specify their dissatisfaction with each candidate.
Pick the K-committee that minimizes the total/maximum
dissatisfaction.

v1 : > Yellow > > Pink >

v2 : Yellow > > > Pink >
v3 : > > > Pink > Yellow

Total = 3 (Utilitarian-CC) - in this talk.
Maximum = 2 (Egalitarian-CC) [Betzler, Slinko, Uhlmann'13]

The Chamberlin-Courant Rule

1 8

0 4

2 3

Voters specify their dissatisfaction with each candidate.
Pick the K-committee that minimizes the total/maximum
dissatisfaction.

v1 : > Yellow > > Pink >

v2 : Yellow > > > Pink >
v3 : > > > Pink > Yellow

Total = 3 (Utilitarian-CC) - in this talk.
Maximum = 2 (Egalitarian-CC) [Betzler et al.; 2013]

The Chamberlin-Courant Rule

1 8

0 4

2 3

Hardness of CC
Utilitarian-CC is NP-hard.
[Procaccia et al., 2008], [Lu and Boutilier, 2011]

Egalitarian-CC is NP-hard.
[Betzler et al., 2013]

Both polynomial for single-crossing.
[Skowron et al., 2015], [Constantinescu and Elkind, 2021]

Egalitarian-CC is NP-hard for three-crossing.
[Misra et al., 2017]

Both polynomial for two-crossing (this paper).

Hardness of CC
Utilitarian-CC is NP-hard.
[Procaccia et al., 2008], [Lu and Boutilier, 2011]

Egalitarian-CC is NP-hard.
[Betzler et al., 2013]

Both polynomial for single-crossing.
[Skowron et al., 2015], [Constantinescu and Elkind, 2021]

Egalitarian-CC is NP-hard for three-crossing.
[Misra et al., 2017]

Both polynomial for two-crossing (this paper).

Hardness of CC
Utilitarian-CC is NP-hard.
[Procaccia et al., 2008], [Lu and Boutilier, 2011]

Egalitarian-CC is NP-hard.
[Betzler et al., 2013]

Both polynomial for single-crossing.
[Skowron et al., 2015], [Constantinescu and Elkind, 2021]

Egalitarian-CC is NP-hard for three-crossing.
[Misra et al., 2017]

Both polynomial for two-crossing (this paper).

Hardness of CC
Utilitarian-CC is NP-hard.
[Procaccia et al., 2008], [Lu and Boutilier, 2011]

Egalitarian-CC is NP-hard.
[Betzler et al., 2013]

Egalitarian-CC is NP-hard for three-crossing.
[Misra et al., 2017]

Both polynomial for single-crossing.
[Skowron et al., 2015], [Constantinescu and Elkind, 2021]

Both polynomial for two-crossing (this paper).

Hardness of CC
Utilitarian-CC is NP-hard.
[Procaccia et al., 2008], [Lu and Boutilier, 2011]

Egalitarian-CC is NP-hard.
[Betzler et al., 2013]

Egalitarian-CC is NP-hard for three-crossing.
[Misra et al., 2017]

Both polynomial for single-crossing.
[Skowron et al., 2015], [Constantinescu and Elkind, 2021]

Both polynomial for two-crossing (this paper).

Hardness of CC
Utilitarian-CC is NP-hard.
[Procaccia et al., 2008], [Lu and Boutilier, 2011]

Egalitarian-CC is NP-hard.
[Betzler et al., 2013]

Egalitarian-CC is NP-hard for three-crossing.
[Misra et al., 2017]

Both polynomial for single-crossing.
[Skowron et al., 2015], [Constantinescu and Elkind, 2021]

Both polynomial for two-crossing (this paper).

Preliminaries

Say voters v1, …, vN are in a two-crossing order.

Let r : {v1, …, vN} → {c1, …, cM} be the function mapping
voters to representatives in an optimal CC committee.

Note how candidate R is segmented.
[Skowron et al., 2015]: there is an optimal committee
where no candidate is segmented. This results in DP.

Preliminaries

Say voters v1, …, vN are in a two-crossing order.

Let r : {v1, …, vN} → {c1, …, cM} be the function mapping
voters to representatives in an optimal CC committee.

Note how candidate R is segmented.
[Skowron et al., 2015]: there is an optimal committee
where no candidate is segmented. This results in DP.

Preliminaries

Say voters v1, …, vN are in a two-crossing order.

Let r : {v1, …, vN} → {c1, …, cM} be the function mapping
voters to representatives in an optimal CC committee.

Note how candidate R is segmented.
[Skowron et al., 2015]: there is an optimal committee
where no candidate is segmented. This results in DP.

Preliminaries

v v1 v2 v3 v4 v5 v6 v7 v8

r(v) B R R Y R P P G

Decomposition For Two-Crossing

Decomposition For Two-Crossing
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

G R B O B R P P R Y

Decomposition For Two-Crossing
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

G R B O B R P P R Y
R splits

Decomposition For Two-Crossing
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

G R B O B R P P R Y
R splits

v1

G

Decomposition For Two-Crossing
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

G R B O B R P P R Y
R splits

v1

G

v3 v4 v5

B O B

Decomposition For Two-Crossing
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

G R B O B R P P R Y
R splits

v1

G

v3 v4 v5

B O B

v7 v8

P P

Decomposition For Two-Crossing
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

G R B O B R P P R Y
R splits

v1

G

v10

Y

v3 v4 v5

B O B

v7 v8

P P

Decomposition For Two-Crossing
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

G R B O B R P P R Y
R splits

v1

G

v10

Y

v3 v4 v5

B O B

v7 v8

P P

B splits

Decomposition For Two-Crossing
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

G R B O B R P P R Y
R splits

v1

G

v10

Y

v3 v4 v5

B O B

v7 v8

P P

v4

O

B splits

Decomposition For Two-Crossing
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

G R B O B R P P R Y
R splits

v1

G

v10

Y

v3 v4 v5

B O B

v7 v8

P P

v4

O

B splits

There exists a decomposable
optimal committee!

Future Directions

1. Try two-crossing on PrefLib.

2. Hardness of recognizing k-crossigness.

3. Hardness of Dodgson's rule.

4. Hardness of Young's rule for k-crossigness.

Future Directions

1. Try two-crossing on PrefLib.

2. Hardness of recognizing k-crossigness.

3. Hardness of Dodgson's rule.

4. Hardness of Young's rule for k-crossigness.

Future Directions

1. Try two-crossing on PrefLib.

2. Hardness of recognizing k-crossigness.

3. Hardness of Dodgson's rule.

4. Hardness of Young's rule for k-crossigness.

Future Directions

1. Try two-crossing on PrefLib.

2. Hardness of recognizing k-crossigness.

3. Hardness of Dodgson's rule for two-crossing.

4. Hardness of Young's rule for three-crossing.

5. Three-crossing and above in general?

Future Directions

1. Try two-crossing on PrefLib.

2. Hardness of recognizing k-crossigness.

3. Hardness of Dodgson's rule for two-crossing.

4. Hardness of Young's rule for three-crossing.

5. Three-crossing and above in general?

Future Directions

1. Try two-crossing on PrefLib.

2. Hardness of recognizing k-crossigness.

3. Hardness of Dodgson's rule for two-crossing.

4. Hardness of Young's rule for three-crossing.

5. Three-crossing and above in general?

Hope you enjoyed!

