=

Dozer: Ultra-Low Power Data Gathering in Sensor Networks

Nicolas Burri
Computer Engineering and
Networks Laboratory
ETH Zurich
8092 Zurich, Switzerland
nburri@tik.ee.ethz.ch

ABSTRACT

Environmental monitoring is one of the driving applications
in the domain of sensor networks. The lifetime of such
systems is envisioned to exceed several years. To achieve
this longevity in unattended operation it is crucial to min-
imize energy consumption of the battery-powered sensor
nodes. This paper proposes Dozer, a data gathering pro-
tocol meeting the requirements of periodic data collection
and ultra-low power consumption. The protocol comprises
MAC-layer, topology control, and routing all coordinated
to reduce energy wastage of the communication subsystem.
Using a tree-based network structure, packets are reliably
routed towards the data sink. Parents thereby schedule
precise rendezvous times for all communication with their
children. In a deployed network consisting of 40 TinyOS-
enabled sensor nodes, Dozer achieves radio duty cycles in
the magnitude of 0.2%.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network

Architecture and Design; C.2.2 [Computer-Communication

Networks]: Network Protocols

General Terms

Algortithms, Measurement

Keywords

Sensor network, data gathering, energy efficiency

1. INTRODUCTION

Observation and interpretation of natural phenomena has
always been of fundamental importance to numerous re-
search areas. Sensor networks represent a tool which pro-
vides the possibility to sample and gather data at scales
and resolutions which were difficult to obtain before. By
spreading large numbers of cheap untethered sensor nodes

Permission to make digital or hard copies of all or part of this work for

Pascal von Rickenbach
Computer Engineering and
Networks Laboratory
ETH Zurich
8092 Zurich, Switzerland
pascalv@tik.ee.ethz.ch

Roger Wattenhofer
Computer Engineering and
Networks Laboratory
ETH Zurich
8092 Zurich, Switzerland
wattenhofer@tik.ee.ethz.ch

in an area of interest scientists are enabled to monitor dense
temporal and spatial data over an extended period of time.
With this data the analysis of complex interactions becomes
possible; this task is also known as environmental monitor-
ing. Thus, sensor networks have the potential to support
the advancement of various fields of research.

Wireless sensing devices exhibit a large variety of favor-
able attributes. They facilitate the deployment and are far
less intrusive than tethered solutions. Furthermore, they
permit temporary measurements or surveillance of secluded
areas. In addition sensor networks should not need any hu-
man interaction while fulfilling their intended tasks. Due to
the limited capacity of common power supplies for sensor
networks, such as batteries or solar cells, energy efficiency
is a fundamental requisite for prolonged network lifetime.
All sensor nodes are equipped with a short-ranged radio al-
lowing them to convey their data to an information sink for
further processing. This communication subsystem is one of
the primary power consumers of a sensor node. The energy
wastage of the radio, even in idle listening, is three orders of
magnitude higher than a node’s power drain in sleep mode.
As a consequence, the radio should only be turned on if a
data transfer is pending. This requirement is hard to fulfill
since multi-hop routing techniques must be applied to trans-
mit data from all nodes in a possibly large area to the data
sink. Energy-efficient data exchange is a nontrivial task in
single-hop networks but becomes even more challenging if
routing over multiple hops is required. Sensor nodes are no
longer able to schedule their transmissions strictly according
to their individual demands but they also have to activate
their radio in order to receive and relay messages from other
nodes in the network. This raises the well-known problems
of idle listening and overhearing which waste precious en-
ergy.

In this paper we consider applications in the field of envi-
ronmental monitoring—also known as data gathering—for
wireless sensor networks. We thereby focus on applications
producing continuous data. Examples thereof include preci-
sion agriculture [1], glacier displacement measurements [12],
natural habitat monitoring [11], or microclimatic observa-
tions [17]. All of these applications generate periodic data
samples at low rates resulting in light traffic load and thus
low bandwidth requirements. We propose Dozer, an ultra-

personal or classroom use is granted without fee provided that copies ale " Kk stack tailored for dat theri li-
not made or distributed for profit or commercial advantage and that copies” ", POWer network stack tarored lor data gathering appl
bear this notice and the full citation on the first page. To copy otherwise, tg°ations. It incorporates a MAC layer, topology control, and
republish, to post on servers or to redistribute to lists, requires prior specifie. routing protocol. We refrained from integrating existing
permission and/or a fee. low-power solutions for any of these subsystems since it is

IPSN'07,April 25-27, 2007, Cambridge, Massachusetts, USA. our strong belief that only a perfectly orchestrated network
Copyright 2007 ACM 978-1-59593-638-7/07/00045..00.

Roger Wattenhofer
Sticky Note
We made a terrible mistake and used the LaTex command \permil in this document. This is like percent but with two circles at the bottom. Permil means "parts per thousand" (in contrast to "parts per hundred" as in percent). Unfortunately, we only learned later that permil is not known in most parts of the world. So please mentally replace text like "average duty cycle is 1.67 permil" with "average duty cycle is 0.167%".

stack is able to achieve minimum power consumption and
therefore maximize network lifetime. The primary goal of
Dozer is to reduce idle listening and overhearing. In theory,
a TDMA-based MAC protocol constructing a global sched-
ule to determine exact send and receive times for each node
would solve the problem of overhearing and idle listening.
In a real-world setting clock drifts and frequently changing
external conditions render plain TDMA costly since main-
taining an accurate schedule is a complex and energy con-
suming task. Dozer takes these actualities into account. It
builds a data gathering tree on top of the underlying network
topology and provides nodes with precise wakeup schedules
for all communication only relying on local synchronization.
Furthermore, it addresses the problem of temporary net-
work partition and energy efficient tree adaptation in case
of local link failures. Despite these additional considera-
tions Dozer attains low radio duty cycles in both single-hop
and multi-hop networks and thus achieves high energy ef-
ficiency. The protocol was implemented using TinyOS. Its
performance was evaluated using an indoor deployment con-
sisting of 40 TinyNode [4] sensor nodes. Using a sampling
period of two minutes Dozer achieved an average duty cycle
of less than 0.2% on all nodes. Given two off-the-shelf AA-
sized lithium batteries with a capacity of 2000 mAh each
and ignoring power consumption of application specific sen-
sor equipment, as well as battery self discharge, Dozer is
able to operate the network for a lifetime of approximately
5 years. As a consequence, system lifetime is determined by
the self-discharge rate of modern batteries. To the best of
our knowledge this also makes Dozer one of the most energy
efficient multi-hop data gathering systems which have been
designed and implemented to date.

The remainder of the paper is organized as follows: Af-
ter discussing related work in the next section, we give an
overview of Dozer in Section 3. Section 4 describes the im-
plementation details of our system. In the subsequent sec-
tion we present an experimental evaluation of Dozer. Sec-
tion 6 concludes the paper.

2. RELATED WORK

Corresponding to the importance of the problem, there
have been a plethora of research efforts addressing data
gathering in the last few years. The energy efficiency of
most existing work [8, 11, 17, 15, 2] stems from the applica-
tion of generic energy-efficient MAC protocols [13, 18, 20].
These protocols turn off the wireless transceiver whenever
possible to save power. T'wo types of protocols are thereby
distinguished: TDMA and contention-based protocols. Pro-
tocols falling in the latter category incorporate duty cycling
to achieve low power operation. [20] and [10] coordinate
the nodes’ sleep schedules such that neighboring nodes are
awake at the same time. In the active phases CSMA/CA is
used to control channel access. To achieve high energy effi-
ciency the active periods must be very small compared to the
time nodes are in sleep mode. Since the whole network wakes
up at roughly the same time nodes suffer from high channel
contention which reduces network throughput. T-MAC [18]
is an improvement of S-MAC [20] handling varying traffic
load with adaptive duty cycling. The protocol does however
not overcome the inherent limitations of this approach. Low-
power listening is another strategy to condition contention
based MAC protocols to low-power requirements. To avoid

idle listening nodes turn off the radio most of time, only
periodically probing the channel for the presence of activ-
ity. Once network activity is detected the node switches on
its radio to listen for the incoming packet. To ensure the
receiver is listening a sender has to prefix its packet with a
long preamble acting as an in-band busy-tone. A key ad-
vantage of asynchronous low-power listening protocols [13,
3] is that the sender and receiver can be completely decou-
pled in their own duty cycles. However, these protocols suf-
fer from the overhearing problem, since the long preamble
also wakes up nodes who are not the intended receiver of a
packet. To overcome this drawback [21] proposes to synchro-
nize the channel polling times of all neighboring nodes, thus
preventing the protocol from sending long preambles. This
move incurs contention during the scheduled channel prob-
ing which is resolved by using CSMA. A drawback of this
protocol is that all nodes require to be tightly synchronized
to meet energy efficiency which creates additional costs.

In contrast to the aforementioned protocols, TDMA-based
solutions establish a schedule where each node is assigned
one or possibly multiple time-slots. In each slot nodes are
then able to communicate without provoking packet colli-
sions or suffering from overhearing. Pure TDMA proto-
cols are however hardly feasible in reality since they require
global time synchronization and are susceptible to topologi-
cal changes of the network. Hence, most proposed protocols
use a combination of pure TDMA and the above mentioned
contention-based approach.

In [14] a two phase protocol is proposed. In the first phase
a node collects information about its two-hop neighborhood
and participates in a distributed slot allocation procedure.
In addition, a protocol for network-wide time synchroniza-
tion is executed during this phase. Once the TDMA sched-
ule is computed in the first phase the protocol switches
over to the second phase where the schedule is executed.
DMAC [9] proposes an adaptation of S-MAC optimized for
data gathering. The protocol assumes that a routing tree
towards the data sink exists. The active periods of the nodes
are staggered according to their level in the tree. CSMA is
used to arbitrate between children in order to prevent col-
lisions. DMAC achieves low data delivery latency at the
sink. However, there is a substantial overhead in case of
network instabilities and due to the local synchronization
at the nodes. FPS [6] and its descendant Twinkle [5] are
closest related to the protocol described in this paper. The
coarse grained scheduling of FPS represents a distributed
TDMA approach where each node schedules its own chil-
dren. Although this schedule ensures that parents and their
children are contention free, collisions may still occur due
to other nodes in the network or poor time synchroniza-
tion. This contention is handled using CSMA. The pro-
tocol does not incorporate a tree construction and is thus
dependent on other protocols establishing such a network
topology. In contrast to our solution FPS—and thus also
Twinkle—requires global time synchronization.

Another branch of research in the field of data gathering
explores in-network data processing also known as data ag-
gregation or data fusion [7, 16, 19, 22, 23]. However saving
energy by reducing the amount of data actually sent to the
base station is orthogonal to our work and goes beyond the
scope of this paper.

3. DOZER OVERVIEW

The Dozer system is indented to meet common demands
of environmental monitoring applications. It enables reliable
data transfer, has self-stabilizing properties—and is thus ro-
bust to changes in the environment—, and it is optimized
for long system lifetime. Network latency and flexibility to-
wards dynamic bandwidth demands are considered to be of
less importance.

In order to forward data to the base station Dozer estab-
lishes a tree structure on top of the physical network. This
guarantees that information from any node is conveyed on
a loop-free path to the data sink which constitutes the root
of the tree. Each node fills two independent roles in tree
maintenance. On the one hand, it acts as a parent for di-
rectly connected nodes one level deeper down the tree. On
the other hand, it is a child of exactly one node one level
higher in the tree. Data is transfered to the sink using a
TDMA protocol. However Dozer does not construct one
global schedule for the whole network but splits it up at each
node. Consequently, each node has two independent sched-
ules; one in its role as a parent and one for its child role. As
a parent a node decides when each of its children is allowed
to upload data. Vice versa, in its role as a child it receives
an update slot from its own parent. Thus, Dozer only con-
structs single-hop schedules and does not rely on any global
synchronization. Each round of a parent’s TDMA schedule
is initiated by the transmission of a beacon message. Sim-
plified, beacons are the heart beat of the Dozer system. In
its child role, a node synchronizes on the received parent
beacon. However, it does not adjust its internal clock but
calculates the outset of its upload slot in relation to the last
beacon reception time.

Dozer does not make use of a traditional MAC protocol.
In fact, the system does not try to prevent nodes from send-
ing at the same time; collisions are explicitly accepted (c.f. in
Section 4.2). However, using randomization Dozer ensures
that two schedules drift apart quickly in case of a collision.
This scheme is advantageous as a message receiver always
exactly knows when the corresponding sender is going to
start its transmission. This greatly prolongs network life-
time since nodes are able to maximize their time in energy-
efficient sleep mode. Facing collisions data transmissions in
Dozer are always explicitly acknowledged.

As network conditions change over time so does the net-
work topology. Consequently, the data gathering tree can-
not be stable in the long run. To reduce increased message
delay in case of link failures, each node maintains a list of ad-
ditional potential parents. Choosing a candidate from this
list a new connection can be established with little overhead.

4. DOZER IMPLEMENTATION

The high-level overview in Section 3 outlines that Dozer
handles several interwoven tasks in parallel. More precisely,
the system can be subdivided into four logical components.
Figure 1 depicts the individual components and shows how
they interact with each other. In the following the function
of each component is discussed in detail.

4.1 Tree Maintenance

The Tree Maintenance module coordinates a node’s inte-
gration in the data gathering tree of Dozer and guarantees

Scheduler |

Data Manager

Figure 1: Architecture of the Dozer system repre-
sented by the light gray boxes. Arrows indicate the
command flow between the different modules.

constant connectivity. Furthermore, in case of a network
failure it sets the node in an energy efficient suspend mode
until a reintegration in the tree becomes possible.

4.1.1 Connection Setup

It is essential for every node to be part of Dozer’s data
gathering tree. Nodes without connectivity are unable to
provide data to the base station and are thus of no use.
Upon wakeup, in the bootstrap phase, a node tries to join
the tree as quickly as possible. Since it does not yet have
any conception of its neighborhood, it starts listening for
beacon messages of nearby nodes. Beacon messages are pe-
riodically sent by already connected nodes at the beginning
of their TDMA schedule to enable the integration of discon-
nected nodes. After scanning for the full length of a TDMA
round each received beacon message is analyzed and the cor-
responding node is ranked according to a rating function.
The function’s current implementation considers a node’s
distance to the sink as well as its load—the number of di-
rect children—in this computation. Both of these values are
part of the beacon message and are thus readily available.
To minimize tree depth, distance has a higher weight than
load in the computation. The node now tries to connect
to the highest rated neighbor and the gathered information
about all other overheard potential parents is stored.

The actual connection setup is initiated after the trans-
mission of the next beacon of the selected neighbor (see Fig-
ure 2). After sending its beacon the potential parent stays
in receive mode for a short amount of time. Within this
contention window it accepts incoming connection requests.
The child uses a simple back-off mechanism to determine
when to send its connection request message. This con-
tention phase is needed since multiple nodes may want to
establish a connection with this parent at the same time.
On receiving a connection request message the parent as-
signs the new child a slot in its TDMA schedule and returns
this informations by means of a handshake message. Cur-
rently a node only accepts one new child per beacon interval.
This restriction serves as a simple form of load balancing. A
node failing to connect to a specific neighbor may first try

parent B H
child . C
time
Figure 2: Connection setup — The parent node

sends a beacon (B). Upon beacon reception the child
sends a busy tone to activate the contention win-
dow. The child then transmits its connection re-
quest (C). A handshake (H) serves as an acknowl-
edgment. Shaded areas denote the times a node is
actually listening.

to join the tree at another node with similar rating before
retrying on the same parent.

Since listening for the whole length of the contention win-
dow after each beacon transmission is expensive, in Dozer an
activation mechanism precedes the actual connection setup.
As depicted in Figure 2 the child transmits an activation
frame immediately after receiving the potential parent’s bea-
con message. On the other hand, the parent switches to
receive mode and polls the channel right after sending its
beacon. Only if the received radio signal strength (RSSI)
indicates channel activity the contention phase is activated.
If multiple nodes want to connect to the parent in the same
round their activation frames collide.This imposes no prob-
lem since the parent does not try to detect a specific pattern
and the sensed RSSI still clearly indicates activity on the
medium.

4.1.2 Connection Recovery

Wireless links are fragile to changes in the environment
and must be expected to break at any time. Unstable weather
conditions or temporary obstacles in the area of interest can
have a negative impact on the network stability. Dozer in-
corporates a mechanism to confront this problem.

A connection to the current parent breaks if multiple con-
secutive data transfers fail: The parent is declared unreach-
able. To replace it with little overhead, the orphaned node
queries its stored list of potential parent for a well suited
substitute and tries to establish a new connection. In case
of success this procedure costs a reasonably small amount
of energy. However, if no replacement can be found in this
list the node falls back to bootstrap mode (see Section 4.1.1)
and has to conduct a costly scan in order to detect new po-
tential parents. To guarantee the availability of reasonably
up-to-date information about its stored potential parents,
a node periodically listens for their beacons. This refresh
is cheap since future beacon transmission times of a node
can be predetermined accurately based on the point in time
of its last overheard beacon. This calculation is performed
by the Scheduler component described in Section 4.2. Ad-
ditionally, to learn about the existence of new, potentially
well suited parents, a random listen mechanism is applied.
Unrelated to their two schedules nodes periodically overhear

the channel for beacons of yet unknown nodes. To keep the
incurred overhead low, these scans must only be executed
infrequently.

4.1.3 Suspend Mode

If a node is not connected to a parent and also cannot
hear any beacons—even when listening for a full beacon
interval—it assumes the network to be down or out of reach.
Constant channel surveillance in this situation would result
in high power consumption; a node’s lifetime would decrease
to a couple of days. To circumvent such energy wastage
Dozer features a special suspend mode. Along the line of
low power listening [13] the node periodically samples the
channel for activity and remains in sleep mode for the re-
mainder of the time. However, unlike low power listening
this mode does not ensure reception of all messages. Energy
efficiency and quick reactivation in case of channel usage can
be balanced depending on the demands of the application
running on top of Dozer. Frequent channel polling results in
higher power drain but rapid connection establishment on
network availability. On the other hand, longer intervals be-
tween scans lead to improved energy efficiency but possibly
delayed reintegration of suspended nodes.

4.2 Scheduler

The energy efficiency of the Dozer system mostly stems
from the Scheduler module. By providing the Tree Main-
tenance and Data Manager modules with precise timings it
allows efficient radio usage.

Communication between a parent and its children is co-
ordinated by a TDMA protocol. That is, all transmissions
happen at exactly predetermined moments in time. For the
exchange of a message neither sender nor receiver have to
spend energy beyond what is required to transmit or re-
ceive the actual data. In particular nodes do not have to
waste energy on overhearing the channel for pending trans-
missions. A global TDMA scheme however is expensive since
it demands the existence of a network-wide time synchro-
nization mechanism. To circumvent this burden Dozer only
aligns one hop neighbors in the data gathering tree. As all
nodes are simultaneously parent and child they all have to
maintain two schedules; one provided by their parent and
one self-determined as a reference for their children. In this
setting it is complex to synchronize the internal clocks of a
parent and its children. Only by means of global time syn-
chronization it would be possible for each node to service
both schedules with only one clock.

While in theory wakeup times can be calculated perfectly
at both parent and children, clock drift has to be consid-
ered in real-world applications. The current generation of
sensor nodes is usually equipped with an electronic oscilla-
tor exhibiting a skew of 30-50 parts per million (ppm) at
room temperature. Thermal differences between sender and
receiver lead to significant, additional skew. In Dozer, the
receiver of a transmission is responsible for clock drift com-
pensation and worst-case guard times are used to guarantee
a prior wake up of the receiver before the sender starts its
transmission.

The self-determined TDMA schedule of a node, in the
following also denoted as parent schedule, is of fixed length
and divided into equal time slots. Upon connection of a new
child the Tree Maintenance module requests a free slot from

the Scheduler. This slot is henceforth marked as occupied
and reserved for the new child. The assignment outlasts the
end of the schedule and is only released if the corresponding
child disconnects. That is, each child owns the same time
slot in every iteration of the schedule. As a consequence,
the total number of slots of the TDMA schedule confines
the maximum number of children a node is able to manage.

After connection establishment between parent and child,
the personal slot number of the child in its parent’s schedule
is known at both nodes. They can thus compute the start of
this slot relative to the beginning of the schedule. For each
slot of its schedule the parent checks if it is occupied and
listens for incoming data if necessary. Analogously, at the
child the Scheduler triggers the Data Manager component
at the start of its upload slot to permit a timely transfer of
potentially queued data messages.

As mentioned above the protocol does not provide for any
direct clock synchronization. Instead, at the outset of a new
round of the schedule the Tree Maintenance module is trig-
gered to send a beacon message. This beacon is received by
all children and timestamped according to their local clocks.
Since both parent and children share the knowledge about
the time of the beacon transmission this moment in time
serves as an anchor point for implicit clock synchronization.
No adjustments of system clocks are required but only this
timestamp needs to be stored for further timing calculations.
For the remainder of this round of the TDMA schedule all
events are computed in relation to this timestamp. The
transmission time of the next beacon is also determined ac-
cording to this value. As a positive side effect, clock drift
accumulation over multiple rounds of the schedule is pre-
vented. Furthermore, the complexity of handling both inde-
pendent schedules diminishes since only two values, used as
offsets for the internal clock need to be stored.

Without a global schedule, collisions between the trans-
missions of neighboring nodes that are not part of the same
schedule can no longer be excluded. Other systems facing
the same problem (e.g. [5]) apply secondary MAC protocols
such as CSMA/CA to resolve it. However, since bandwidth
demands in the considered scenario are low, collisions hap-
pen infrequently. Dozer thus refrains from handling them
actively. In the long run the costs for retransmissions are
cheaper than the costs it would take to prevent them. But
regarding collisions there exists an additional problem which
needs to be tackled. Collisions may indicate the undesired
alignment of two independent schedules. If this is the case,
without intervention, collisions would recur in subsequent
rounds of the schedule. To counter this threat, Dozer ex-
tends the length of a TDMA round by a randomly chosen
time span—also referred to as jitter. The parent draws a
new random number for each round of the schedule which
is then added to the round’s length. There is a linear rela-
tion between the maximum transmission time per slot and a
reasonable upper bound for this random offset. Dozer uses
a bound of seven times the time needed to flush the local
message buffer (c.f. in Section 4.3). With this value, in case
of a collision between two unsynchronized transmissions, the
chance for a second consecutive collision is less than 50% in
expectation. For any realistic scenario this implies that a
maximum jitter of less than one second suffices.

This random prolongation of the TDMA rounds intro-
duces the problem of how to predict the exact time of the

1 1
parent B I A A I A B
J) 1, J) 1y)L »
' (! [[»>
' ! ! '
' ! ! '
' ! ! '
M : R
1 1
child1 |s D||D : :
)L J))L »
] L4 i [L4] gl
' ! '
| ! |
1 ! 1
— —
1 1
child2 |t D !
L)L)L J. 1 >
" [[gl

time

Figure 3: Message reception of a parent with two
children. Upload slots are determined by parent
beacon (B). All data messages (D) are explicitly ac-
knowledged (A).

next parent beacon. Thus, the seed value of the random
number generator used for calculating the next random off-
set is included in each beacon. With this value each child
is able to execute the same computation as the parent and
to predict when the next beacon message is due. At the
parent, the current random number is used as seed value to
generate the next random number. Consequently, even if a
child misses one or more consecutive beacon messages of its
parent it is still able to determine the next beacon arrival
time. Based on the information of the last beacon it has
received, it recursively draws random numbers until it has
compensated for the number of missed beacons.

4.3 Data Administration

At the end of the day, Dozer’s main task is to transport
sensor readings from all nodes to the data sink. While a
node’s data upload times are strictly defined by the Sched-
uler module, data injection by the application is always pos-
sible. Hence, the Data Manager module features a mes-
sage queue buffering injected data pending for transmission.
Since data upload to the parent and data reception from
the children is unsynchronized, incoming messages from the
children are also appended to this queue.

As soon as the Scheduler module signals the beginning of
the parent upload slot the Data Manager tries to transmit all
queued messages. Each message is explicitly acknowledged
and only removed from the queue of the sender if the receiver
confirms its correct reception (see Figure 3). With the ac-
knowledgment the parent not only takes over responsibility
for the packet but also notifies the child about how many
more messages it is willing to accept. As a consequence, at
most one unnecessary message transmission is possible if the
parent is unable or unwilling to handle more messages. The
link acknowledgments guarantee that no messages are lost
on their path towards the sink despite possible collisions on
the wireless links. If a message transfer fails to be acknowl-
edged the child immediately stops its data upload for this
round of the schedule since a temporal interruption on the
medium may be encountered. In case of consecutive trans-
mission failures over multiple upload slots the Data Manager
instructs the Tree Maintenance module to switch to another
parent. Due to the limited amount of memory available on

current sensor node platforms the queue size is limited. Dif-
ferent buffering strategies may be employed depending on
the application requirements. Dozer’s default strategy only
allows buffering of one data message from each distinct node;
if more than one message from the same origin meet on a
node the newer one is buffered and forwarded wheras the
older one is discarded.

4.4 Command Management

While data flow in Dozer is strictly unidirectional towards
the sink it is often desirable to be able to send information
to one or several nodes in the network. Dozer establishes
such a lightweight backward channel by making use of the
beacon messages. Commands injected at the data sink are
included in the sink’s next beacon message. Every node re-
ceiving a beacon containing a command temporarily stores
the command and includes it in its next beacon. By repeat-
ing this procedure at each level of the tree the command is
disseminated through the whole network. Besides address-
ing a command to all nodes in the network the injection
of commands for individual nodes is also supported. Nodes
not directly addressed by a command still relay it to enable
propagation to nodes deeper down the tree.

Upon reception of a beacon message from the parent the
Tree Management component hands the command to the
Command Manager module for further processing. The
module checks if this node belongs to the set of intended
recipients of the command. If this is the case the command
is dispatched to the application running on top of the Dozer
system. Thus, applications are able to define their own cus-
tom commands and corresponding command handlers.

5. EVALUATION

In this section we evaluate Dozer’s performance under dif-
ferent conditions in real-world testbeds. First, a set of pre-
liminary measurements on a small-scale network are con-
ducted to estimate the scalability of the system. In a sec-
ond step we present results of a deployed indoor network
consisting of 40 sensor nodes.

5.1 Hardware and Operation System

For all experiments we used the TinyNode 584 sensor plat-
form [4] produced by Shockfish SA. It features a MSP430
mirocontroller with 10 kB of RAM and 48 kB of program
memory. Furthermore 512 kB of external flash are avail-
able. However, due to the high energy costs for access to
the flash Dozer does not make use of it. The platform in-
cludes a Semtech XE1205 radio transceiver. This radio is
known for its good transmission ranges and high data rates

Current Draw | Power Consume
uC sleep with timer 6.0 uA 0.015 mW
on , radio off
uC active, radio idle 12.17 mA 30.43 mW
listening
uC active, radio RX 12.63 mA 31.58 mW
uC active, radio TX 16.10 mA 40.25 mW

Table 1: Measured current consumptions of the
TinyNode platform in different states at 2.5 volt.

o
N
IS
=

Radio duty cycle

o
5
2

0.00%

#Children

Figure 4: Radio duty cycle of a node depending on
its number of children. Measurements were per-
formed with beacon intervals of 15 s (square), 30 s
(circle), 1 min (triangle), and 2 min (star), respec-
tively.

of up to 153 kbit/s. For our measurements the nodes were
operated at 868 MHz using 0 dBm transmission power and a
bandwidth of 75 kbit/ s'. As a power source two customary
1.2 volt rechargeable batteries were installed with a capacity
of 1900 mAh each. The measured current draws for sleep
mode, idle listening, receiving, and sending under these con-
ditions are shown in Table 1. As can be extracted from the
table, on the TinyNode platform idle listening is nearly as
expensive as the actual reception of a message. Thus it ben-
efits greatly from Dozer’s scarce use of unscheduled random
channel overhearing. Furthermore, the cost for transmis-
sion and reception of a message are in the same order of
magnitude.

Dozer is implemented on top of the TinyOS-1.x operat-
ing system. No changes were made to the operating sys-
tem excepts the replacement of a timer module whose gen-
uine version contains a bug. Under certain conditions timer
events are triggered too late. In normal operation common
TinyOS-applications do not encounter this undesired behav-
ior frequently. However, due to the heavy load on the timer
module, this malfunction regularly occurs in the Dozer sys-
tem with disastrous consequences. A once deferred schedule
becomes useless since all relative timings are out of sync.
Consequently, a node affected by this problem inevitably
looses connectivity and falls back to bootstrap mode. Thus
the replacement of the timer module was mission critical.

The memory footprint of Dozer is 20 kB in program mem-
ory and 1.7 kB RAM. The message queue of size 20 in the
Data Manager module used as a temporary buffer for mes-
sages which need to be relayed thereby contributes 39% of
the RAM usage.

5.2 Small Scale Experiments

Measuring the energy drain of a node is a non-trivial task.
On the one hand, the measuring interval is too long for high-
resolution measurements with an oscilloscope. On the other

L As described in [4], at the same transmission power, the
XE1205 radio attains higher communication ranges than
other state-of-the-art platforms. Hence, we are able to trans-
mit at lower power while still achieving good ranges.

hand, a voltmeter is too inaccurate to capture short changes
in current draw. Hence, we decided to measure energy con-
sumption indirectly. For this purpose, all nodes log their
radio duty cycles. This is achieved by summing up the dif-
ferences between ratio startup and shutdown times. Since
spotting the exact switching times from send to receive mode
and vice versa is difficult, only the total uptime is recorded
ignoring the specific state of the radio. This information
is propagated to the base station using Dozer’s own data
gathering mechanism. The collected information can be con-
verted to power consumption values using Table 1. As nodes
only provide the overall radio uptime, a worst-case approxi-
mation is made. That is, it is assumed that they are always
in transmit mode if their radio is active. As a consequence,
all results related to energy consumption throughout the re-
mainder of this paper can be considered as an upper bound
for the actual power consumption.

To investigate the relation between a node’s power drain,
its number of children, and the beacon interval time we con-
ducted a series of experiments on a small network with pre-
defined topology. In each run the node of interest was di-
rectly connected to the sink. Over time, up to three children
were included in the network and forced to connect to the
monitored node. This sequence was repeated with beacon
intervals in the range of 15 seconds to two minutes. The data
sample interval was set to four times the length of a beacon
interval. The results of these experiments are depicted in
Figure 4.

Originally, the goal of this experiment was to come up
with lower bounds for the achievable duty cycles at differ-
ent positions in the data gathering tree. However, initial
test results exhibited unexpected fluctuations when run with
different sensor nodes. After closer examination, it became
clear that the inherent clock drift within a single beacon
interval is a significant factor influencing the total duty cy-
cle. Thus the following results do not represent precise lower
bounds. Nevertheless, they provide an accurate approxima-
tion of the radio uptimes in real networks.

Figure 4 shows that the duty cycle decreases as the beacon
interval grows larger. This elementary observation is based
on the fact that the number of messages to be transmitted
within one beacon interval is constant independent of its
length. Hence, longer intervals lead to prolonged sleeping
periods without significantly increasing the radio uptime.
Using a similar line of argument, the variable additional
costs for a newly connected child at different beacon inter-
vals can be understood. The reduction of the incurred over-
head for the fourth child in the 15 second beacon interval ex-
periment illustrates another phenomenon worth mentioning.

Beacon interval 30 s
Max. jitter 650 ms
Data sampling interval 120 s
Potential parents update interval | 15 min
Overhearing 1s/4h
Compensated clock drift 100 ppm
Max. stored potential parents 5
Message queue size 20

Table 2: Configuration of the Dozer system for the
office floor testbed.

| e g 11 kY
3 R w SN
131 A o
| \ - S \‘\.
g | L p - W 135
! o | i 2 J J

.
132

Figure 5: Indoor deployment of 40 sensor nodes in-
cluding a snapshot of Dozer’s data gathering tree.
Node 0 (upper-right corner) acts as data sink.

Costs for additional children do not necessarily have to grow
linearly. Simplified, a parent’s costs for a child are twofold.
On the one hand, it has to receive the child’s data messages.
These costs cannot be prevented. On the other hand, the
parent has to forward the received messages. Thus, in its
next upload slot it has to power up the radio and send the
pending messages. Since the radio start-up and shutdown
consumes a similar amount of time (~ 2 ms), and thus en-
ergy, as the transmission of an actual data message (~ 5 ms)
its overhead is not negligible. Consequently, if the parent is
able to upload data from two or more children in one up-
load slot it saves the additional overhead of turning on the
radio for each of these children individually—costs per child
decrease.

5.3 Office Floor Experiment

To put Dozer’s fitness for real-world deployments to the
test, a generic indoor network was run for several weeks.
The topology was no longer predefined for this setting but
automatically constructed by the Dozer system.

5.3.1 Setting and Protocol Parameters

The considered testbed consisted of 40 TinyNode sensor
nodes which were deployed on one floor of our office building
(see Figure 5). The dimensions of the building are approxi-
mately 70 x 37 meters resulting in an testbed area of more
than 2500 square meters. During the whole operation of the
network, the floor was populated by more than 80 people
during office hours. Thus the nodes where exposed to fre-
quently changing environmental conditions. Furthermore,
during the deployment phase special attention was payed
to construct a network with heterogeneous density. While
nodes were concentrated in the upper-right part of the build-
ing to achieve a dense region, the southern part was only
sparsely populated. This allowed the performance evalua-
tion of Dozer in networks featuring different characteristics.
In addition to 38 sensing nodes, a base station (Node 0) was
placed in the upper-right corner of the map. This location

300 r3.5%
250 r 3.0%

r2.5%

r2.0%
o

o
o r 1.5%
° N+ 1.0%
I r0.5%
I 0.0%
Qo non
(R kRt

150 4

- i‘ III o
oot AR A L AR, I I'
SaGmELSs

e

Connection attempts
o
Packet loss

Node id

Figure 6: Number of successful (black) and failed
(grey) connection attempts per node. Per node
packet loss on the second y-axis.

was chosen to get a deep data gathering tree and to enforce
multi-hop communication. One further extra node was po-
sitioned in the vicinity of the sink for debugging purposes.
This node acted as a network sniffer which overheard and
logged all network traffic at the base station.

In total Dozer was tested for more than one month on this
network. Detailed logging information forming the basis of
the evaluation in this section were gathered during one week
of operation. Each node thereby sent approximately 5000
data messages to the sink. As described in Section 4 the
Dozer system can be tweaked to suite the requirements of
a specific application. Table 2 shows the important param-
eters and their assigned values for the office floor testbed.
Though the anticipated clock drift in our scenario is less
than 50 ppm, Dozer was configured to allow for 100 ppm.
Consequently, more energy than strictly necessary was con-
sumed. In return, with these settings, the system is also
expected to operate properly in outdoor environments fac-
ing moderate temperature changes. All other values were
chosen to represent a possible demand of a real application
in the domain of environmental monitoring.

5.3.2 Tree Topology

Figure 5 shows a snapshot of the data gathering tree as
it was witnessed during the experiment. Each node fea-
tures one outgoing arrow pointing to its parent. It can be
seen that the base station (Node 0) has numerous children.
This has two different reasons. On the one hand, the parent
rating function described in Section 4.1 promotes connec-
tions to the sink since the latter has zero tree depth. As
a consequence, each node receiving a sink beacon first tries
to connect to the base station before inquiring any other
nodes. On the other hand, the base station was flashed with
a slightly modified version of Dozer. Since the sink usually
runs on external power—as it is the case in our setting—it is
less compelled to economize on its energy resources. Thus,
the contention window was extended and the sink was con-
figured to accept more than one child per connection phase.

Another observed phenomenon is the fact that hardly any
connections passed the central core of the building. We as-
sume that multiple sources of interference led to this barrier.
For one, the corridors are lined with solid metal lockers per-
turbing most radio communication. On the other hand, this

7.0% +

6.0% T

5.0% T

4.0% T

3.0% T

Radio duty cycle

20% T

1.0% T

0.0%

Figure 7: Average radio duty cycle of each node
including RMS errors.

zone also comprises the ventilation system, sanitary facil-
ities, and multiple elevators producing additional interfer-
ence.

We examine the stability of the data gathering tree by
investigating topology changes and message loss. Topology
changes are indicated by a node exchanging its parent. Both
of these values are depicted in Figure 6. As hoped for, mes-
sage loss was low, in average 1.2% and at maximum 3.15%.
However, Node 128 is excluded from this analysis. Due to
its peripheral position in the network it was only able to
connect to one single other node (Node 112). In case of a
temporary interruption in the connection to its parent the
node went to suspend mode. In addition, the low network
density in its vicinity resulted in a low probability for a
quick recovery. Thus, the node suffered from message loss
of approximately 30%.

The measured high message yield at the base station is ev-
idence of the correct operation of Dozer’s Tree Maintenance
module. As emerges from Figure 6, a significant number of
topology changes were necessary to cope with momentary,
local channel irregularities.

5.3.3 Energy Consumption

As in the small testbed described in Section 5.2, the en-
ergy consumption of the deployed nodes were measured in-
directly via their duty cycles. Figure 7 depicts the average
radio activity of each node in the network. The upward error
bar shows the root mean square (RMS) error of all measure-
ments exceeding the average duty cycle; the downward error
bar is defined accordingly. The overall average duty cycle
of all sensing nodes is 1.67%o with a standard deviation of
0.0004. Applying the values from Table 1 results in a mean
energy consumption of 0.082 mW.

Looking at individual nodes, the sink had by far the high-
est radio uptime of almost 1%. This is not surprising since it
had to process the data of the whole network. Additionally,
the extended contention window directly affects its duty cy-
cle and explains the considerable difference in comparison
to the sensing nodes. For further investigation of the energy
consumption, we take an in-depth look at the two sensing
nodes with highest duty cycles—Node 114 and Node 124.
Node 124 exhibits a radio uptime of 2.8%o. Figure 8 shows
a snapshot of 2000 consecutive data messages of this node.
As can be seen for most of the time the node ran at a duty

100.0%

10.0% o

1.0% o

Radio duty cycle

il \’u i MJ bl

01% | .ml.m bl ’n l

100
200
300
0
0
0!
(U]
Il
0
000
100
200
300
400
500
600
700
800
900

Figure 8: Radio duty cycle of Node 124 over a period
of three days.

cycle of 0.7%o. Comparing this value to the results from
Section 5.2 leads to the conclusion that the node is a leaf
in the data gathering tree. However, three different energy
intensive effects can be observed. First, the most dominant
peaks exceeding 20% are scans for a full beacon interval.
This means that the node was forced to establish a new
connection but did not find an appropriate potential par-
ent in its cache. Second, the overhearing phase once every
four hours results in a temporary duty cycle of around 1%.
Finally, the potential parents updates lead to the fringes of
up to 1%o. These insights and the fact that Node 124 was
located in a small storage room allows the conclusion that
it had but a small neighborhood. Consequently, in times of
normal operation it was able to run at nearly optimal duty
cycle. However, in case of connection interruptions the in-
terference affected all its possible connections resulting in a
fallback to bootstrap mode. Unlike Node 128, it only suf-
fered from brief network disconnections. Thus, it quickly
managed to reintegrate in the data gathering tree.

Node 114 features a similar average duty cycle as Node 124,
namely 3.2%o. But its power consumption is caused by other
reasons as the different RMS error values indicate. Figure 9
depicts the radio duty cycle of Node 114 over a period of
2000 successive data messages. Parents updates and over-
hearing which are always part of a node’s normal operation
can also be spotted in this chart. However, there is no ev-
idence for a bootstrap phase. In fact, Node 114 acts as
a relay for several children and thus cannot reach minimal
duty cycles as low as Node 124.

6. CONCLUSION

Environmental monitoring applications make great de-
mands on wireless sensor networks. Two of the main re-
quirements are long network lifetime and a high delivery rate
of sampled sensor readings to a central authority. This pa-
per introduces Dozer, a new data gathering system designed
to meet these requirements. Using small scale experiments
we have analyzed Dozer’s characteristics in a controlled en-
vironment. Thereby the power consumption of individual
sensor nodes dependent on their position in the established
data gathering tree was measured. To verify the promising
results, the system was also evaluated on an indoor testbed
consisting of 40 sensor nodes. Even in this real-world deploy-

100.0% -

10.0% -

Radio duty cycle

e
=

Messages

Figure 9: Radio duty cycle of Node 114 over a period
of three days.

ment Dozer achieved an average radio duty cycle of 1.6%o
while guaranteeing reliable data transfer to the sink.

So far, Dozer does not try to optimize the delivery la-
tency of sampled sensor data. We are aware that for some
applications latency bounds are critical. Hence, it would
be interesting to analyze how Dozer can be adapted to op-
timize delay. Another aspect of the protocol with poten-
tial for improvement is the compensation of clock drift. We
assume that the use of an accurate clock drift prediction
model would result in a further reduction of the total en-
ergy consumption. Also a precise analysis and optimization
of load balancing, scalability, and fairness within the system
would be of interest. Furthermore, our system currently only
operates at one communication frequency. However, most
modern sensor node platforms support transmissions on var-
ious channels within a frequency band. Dozer could trivially
be adapted to make use of these additional communication
channels and thus further reduce the collision probability
between unsynchronized connections. Besides these techni-
cal improvements, it is our goal to see Dozer running on
a genuine large scale sensor network collecting meaningful
data.

Acknowledgements

The authors would like to thank Roger Meier and Maxime
Mueller for their support in TinyNode and implementation
related questions. We would also like to thank Jan Beu-
tel for many fruitful discussions concerning the wonders of
hardware and electrical engineering. Finally, we thank the
anonymous reviewers for their valuable input.

7. REFERENCES

[1] T. Brooke and J. Burrell. From Ethnography to
Design in a Vineyard. In DUX ’03: Proceedings of the
2003 conference on Designing for user experiences,
pages 1-4, New York, NY, USA, 2003. ACM Press.

[2] R. Cardell-Oliver, K. Smettem, M. Kranz, and
K. Mayer. A Reactive Soil Moisture Sensor Network:
Design and Field Evaluation. Int. Journal of
Distributed Sensor Networks, 1(2):149-162, 2005.

3]

7]

[12]

[13]

A. El-Hoiydi and J.-D. Decotignie. WiseMAC: An
Ultra Low Power MAC Protocol for Multi-hop
Wireless Sensor Networks. In Int. Workshop on
Algorithmic Aspects of Wireless Sensor Networks
(ALGOSENSORS), 2004.

H. Dubois-Ferrier and R. Meier and L. Fabre and P.
Metrailler. TinyNode: a comprehensive platform for
wireless sensor network applications. In Int.
Conference on Information Processing in Sensor
Networks (IPSN), 2006.

B. Hohlt and E. Brewer. Network Power Scheduling
for TinyOS Applications. In EEE Int. Conference on
Distributed Computing in Sensor Systems (DCOSS),
2006.

B. Hohlt, L. Doherty, and E. Brewer. Flexible Power
Scheduling for Sensor Networks. In Int. Conference on
Information Processing in Sensor Networks (IPSN),
2004.

B. Krishnamachari, D. Estrin, and S. Wicker. The
Impact of Data Aggregation in Wireless Sensor
Networks. In Int. Conference on Distributed
Computing Systems Workshops (ICDCSW), 2002.

K. Langendoen, A. Baggio, and O. Visser. Murphy
Loves Potatoes: Experiences from a Pilot Sensor
Network Deployment in Precision Agriculture. In Int.
Workshop on Parallel and Distributed Real-Time
Systems (WPDRTS), 2006.

G. Lu, B. Krishnamachari, and C. Raghavendra. An
Adaptive Energy-Efficient and Low-Latency MAC for
Data Gathering in Sensor Networks. In Int. Workshop
on Algorithms for Wireless, Mobile, Ad Hoc and
Sensor Networks (WMAN), 2004.

S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TinyDB: An Acquisitional Query
Processing System for Sensor Networks. ACM Trans.
Database Systems, 30(1):122-173, 2005.

A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk,
and J. Anderson. Wireless Sensor Networks for
Habitat Monitoring. In ACM Int. Workshop on
Wireless Sensor Networks and Applications (WSNA),
2002.

K. Martinez, P. Padhy, A. Elsaify, G. Zou,

A. Riddoch, J. Hart, and H. Ong. Deploying a Sensor
Network in an Extreme Environment. In IEEE Int.
Conference on Sensor Networks, Ubiquitous, and
Trustworthy Computing(SUTC), 2006.

J. Polastre, J. Hill, and D. Culler. Versatile Low
Power Media Access for Wireless Sensor Networks. In
Int. Conference on Embedded Networked Sensor
Systems (SenSys), 2004.

(14]

(15]

(18]

(19]

20]

V. Rajendran, J. Garcia-Luna-Aceves, and

K. Obraczka. Energy-Efficient, Application-Aware
Medium Access for Sensor Networks . In IEEE
Conference on Mobile Ad-hoc and Sensor Systems
(MASS), 2005.

T. Schmid, H. Dubois-Ferriere, and M. Vetterli.
SensorScope: Experiences with a Wireless Building
Monitoring Sensor Network. In Workshop on
Real-World Wireless Sensor Networks (REALWSN),
2005.

I. Solis and K. Obraczka. The Impact of Timing in
Data Aggregation for Sensor Networks. In IEEE Int.
Conference on Communications (ICC), 2004.

G. Tolle, J. Polastre, R. Szewczyk, D. Culler,

N. Turner, K. Tu, S. Burgess, T. Dawson,

P. Buonadonna, D. Gay, and W. Hong. A macroscope
in the redwoods. In Int. Conference on Embedded
Networked Sensor Systems (SenSys), 2005.

T. van Dam and K. Langendoen. An Adaptive
Energy-Efficient MAC Protocol for Wireless Sensor
Networks. In Int. Conference on Embedded Networked
Sensor Systems (SenSys), 2003.

P. von Rickenbach and R. Wattenhofer. Gathering
Correlated Data in Sensor Networks. In ACM Joint
Workshop on Foundations of Mobile Computing
(DIALM-POMC), October 2004.

W. Ye, J. S. Heidemann, and D. Estrin. An
Energy-Efficient MAC Protocol for Wireless Sensor
Networks. In Annual Joint Conference of the IEEE
Computer and Communications Societies
(INFOCOM), 2002.

W. Ye, F. Silva, and J. S. Heidemann. Ultra-Low
Duty Cycle MAC with Scheduled Channel Polling. In
Int. Conference on Embedded Networked Sensor
Systems (SenSys), 2006.

O. Younis and S. Fahmy. An Experimental Study of
Routing and Data Aggregation in Sensor Networks. In
IEEE Int. Conference on Mobile Ad Hoc and Sensor
Systems (MASS, 2005.

Y. Yu, B. Krishnamachari, and V. K. Prasanna.
Energy-Latency Tradeoffs for Data Gathering in
Wireless Sensor Networks. In Annual Joint Conference
of the IEEE Computer and Communications Societies
(INFOCOM), 2004.

