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a b s t r a c t

The firefighter problem with k firefighters on an infinite graph G is an iterative graph
process, defined as follows: Suppose a fire breaks out at a given vertex v ∈ V (G) on
Turn 1. On each subsequent even turn, k firefighters protect k vertices that are not on
fire, and on each subsequent odd turn, any vertex that is on fire spreads the fire to all
adjacent unprotected vertices. The firefighters’ goal is to eventually stop the spread of
the fire. If there exists a strategy for k firefighters to eventually stop the spread of the
fire, then we say G is k-containable.

We consider the firefighter problem on the hexagonal grid, which is the graph whose
vertices and edges are exactly the vertices and edges of a regular hexagonal tiling of the
plane. It is not known if the hexagonal grid is 1-containable. In Gavenčiak et al. (2014), it
was shown that if the firefighters have one firefighter per turn and one extra firefighter
on two turns, the firefighters can contain the fire. We improve on this result by showing
that even with only one extra firefighter on one turn, the firefighters can still contain
the fire.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The problem of firefighters on graphs studies the following iterative process: given a graph G, a subset of the vertices
re initially on fire on turn 1. Then in alternating turns some vertices are protected by firefighters and the fire spreads to
ll unprotected vertices adjacent to a vertex on fire. Once a vertex has been protected by a firefighter it is protected for
he remainder of the process. Similarly once a vertex is on fire it remains on fire.

More formally, let V be the set of vertices, let F (t) be the set of vertices on fire on turn t , and let P (t) be the set of
rotected vertices on turn t . Initially, on turn 1, F (1) is some non-empty subset of V , and P (1) is empty. On an even turn

2t , we let P (2t) be the union of P (2t−1) and a subset of V \F (2t−1) and let F (2t)
= F (2t−1). On an odd turn 2t +1, where t ≥ 1,

we let F (2t+1) be N[F (2t)
] \ P (2t), the closed neighborhood of F (2t) except for the vertices in P (2t), and let P (2t+1)

= P (2t). For
simplicity when we say a firefighter protects a vertex on turn t we assume this t to be even.

Let t ∈ N. On turn t , we say that a vertex is on fire or burning if it is in F (t), protected if it is in P (t), and unprotected
if it is in neither of these sets. We say a vertex is saved if it is impossible for it to ever be on fire. That is, a vertex is saved
if it is in P (t) or in a component of the subgraph induced by V \ P (t) with no burning vertices. We say a vertex is actively
burning if it is burning and has a neighbor that is unprotected.
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When firefighting on an infinite graph, we say the fire is contained if all but finitely many vertices are saved. We say
an infinite graph given with a subset of vertices initially on fire is k-containable if the fire can be contained by protecting
at most k vertices every even turn.

Problems related to k-containability also exist on finite graphs. For example, there is the NP-Complete decision problem
of whether it is possible to save all vertices in a set S by protecting at most k vertices every even turn [4].

Firefighting on graphs can be used to model network spread, and can be used to understand the spread of computer
viruses, misinformation, and infectious diseases. Indeed, similar problems arise in SIR epidemic models where a disease
seeded at an initial set of vertices spreads through a network. Effects of vaccination programs in such models where
vertices are granted immunity from infection have been extensively studied [1]. Conversely, the firefighters can also be
thought of as an adversary; for example, the fires and the firefighters could model a broadcast signal and an adversary
trying to censor it in a communication network. In this context, it would be good for the communication network to be
robust against censorship. There is a significant body of existing related work, some of which is discussed in [2].

1.1. The hexagonal grid

The problem of k-containability has been studied on various infinite graphs. The infinite triangular grid, formed by
iling the plane with equilateral triangles and letting the corners be vertices, with a single initially burning vertex is
onjectured to not be 2-containable [3]. Here, we focus on the infinite hexagonal grid, formed by tiling the plane with
quilateral hexagons with the corners as vertices. It is conjectured that the hexagonal grid is not 1-containable, [6].
It is known that all orientations of the hexagonal grid are 1-containable as in a directed graph fire can only spread to

ut-neighbors, [5]. The following theorem suggests that if the hexagonal grid is not 1-containable, then it is ‘‘barely’’ not
-containable.

heorem 1.1 ([3]). If it is possible to use an additional firefighter at two turns, 2t1 and 2t2 possibly with 2t1 = 2t2, then one
irefighter every turn is sufficient to contain the fire on the hexagonal grid with a single initially burning vertex.

Our main contribution is an improvement to this result.

heorem 1.2. If it is possible to use an additional firefighter at a single turn, 2τ , then one firefighter every turn is sufficient
o contain the fire on the hexagonal grid with a single initially burning vertex.

Our theorem shows that the hexagonal grid conjecture, if true, is in some sense sharp; it would not be true if even
single extra firefighter was available. Our firefighting strategy, like the two-extra-firefighters strategy in [3], does not
eed to know in advance which turn the extra firefighters can be used.

. One extra firefighter suffices

In this section, we prove Theorem 1.2. Our strategy is very similar to the one given in [3] to prove Theorem 1.1, however
e optimize the strategy at certain points to contain the fire without a second extra firefighter.
For the strategy description and proof, we fix some notation. Let V be the set of vertices of the hexagonal grid. Let

∗
∈ Z>0 be such that at turn 2τ ∗, two firefighters can be used. To simplify the proof, we wish to use our extra firefighter

n turn 2τ , where

τ =

{
τ ∗ if τ is odd,
τ ∗

+ 1 if τ ∗ is even.

n this way, we can enforce that τ is odd, and if τ ∗ is even, we will play our extra firefighter in the place we would if we
ere given the firefighter on turn 2(τ ∗

+ 1) = 2τ instead of turn 2τ ∗.
Parts of our strategy are essentially the same as the strategy given in [3], but for completeness we provide all the

etails here. To be able to address vertices of the hexagonal grid, we draw the hexagonal grid on the Cartesian plane with
egular hexagons, here the initial vertex on fire, f , is at the origin, and the grid is oriented such that there is a vertex
djacent to f directly above it, and that every edge of the graph has length 1. Note that throughout this section, every
eference to distance will be distance in the hexagonal grid, not Euclidean distance. To be able to address vertices without
sing square roots or fractions, we make a change of coordinates: Let i =

2
√
3
x, and let j = 2y. The vertex (i, j) corresponds

o the point (x, y) = ( i
√
3

2 ,
j
2 ) on the Cartesian plane. See Fig. 1 for this mapping of the hexagonal grid on the Cartesian

lane. Note that (i, j) is a vertex of the hexagonal grid if and only if (i mod 2, j mod 6) ∈ {(0, 0), (0, 2), (1, 3), (1, 5)}.
In the proof of our strategy, we often use the distance dist(f , v) from the initial fire to a given vertex v. Let Pd = {v ∈

V : dist(f , v) = d} be the set of vertices v at distance d from f . In Fig. 1, the sets Pd are marked by green and violet lines
for 1 ≤ d ≤ 6. Let (d mod 2) refer to the remainder of dividing d by 2. Note that since we embed the hexagonal grid in
the plane with f at the origin, we have that the distance dist(f , v) = d in the hexagonal grid if and only if

max
{

|2j − (d mod 2)|
, |i| +

|j + (d mod 2)|
}

= d. (1)

3 3
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Fig. 1. The (i, j) coordinate system used throughout Section 2. f = (0, 0) is the red vertex at the center. Its three neighbor vertices, starting from
the one directly above, and in clockwise order, are (0, 2), (1, −1), and (−1, 1).

The proof that (1) characterizes points at distance d from the origin is straightforward but tedious, so we only give a
sketch of the argument here. Let Ed be the points of V satisfying (1). It is straightforward to check that the Ed partition V ,
E0 = P0, and if u ∈ Ed1 is adjacent to v ∈ Ed2 , then |d1 − d2| = 1. Using these facts and induction on d, we can show that
Ed = Pd. One can see that Pd ⊆ Ed by the fact that every vertex of Pd must have a neighbor in Ed−1, and thus must be in
Ed−2 or Ed, but are not in Ed−2. And to see that Ed ⊆ Pd, it suffices to show that every vertex of Ed has a neighbor in Ed−1.
We can do this by checking cases that depend on the parity of d, the sign of i, and the sign of j+ (d mod 2). For instance,
consider a vertex (i, j) ∈ Ed with j < 0 and d even. This implies that j mod 3 = 0, so (i, j+ 2) is a neighbor of (i, j). Finally,
we see that (i, j + 2) ∈ Ed−1 since

max
{

|2(j + 2) − ((d − 1) mod 2)|
3

, |i| +
|(j + 2) + ((d − 1) mod 2)|

3

}
= max

{
|2j + 3|

3
, |i| +

|j + 3|
3

}
= max

{
|2j|
3

− 1, |i| +
|j|
3

− 1
}

= d − 1.

The other cases can be checked similarly.
Our strategy can be broken down into the following steps (see Fig. 2 for a visual outline):

1. Before turn 2τ , build two protective rays, that if extended indefinitely would protect 2
3 of the grid.

2. Advance the ray building by one extra step with the extra firefighter at turn 2τ .
3. Bend the protective rays to be parallel to each other. Grow a strip containing the fire with these parallel rays for a

sufficiently long time.
4. Bend a ray into a spiral around a vertex c . The spiral will collide with the other ray.
18
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Fig. 2. Outline of the strategy. All angles are multiples of 30◦ . The portions of the protective rays built in Section 2.1, that if extended indefinitely
would protect 2

3 of the grid, are labeled 2.1. Once the rays have been bent to be parallel to each other, they are labeled after Section 2.3, where
the parallel rays are built from the right to the left and the fire is constrained inside a strip. The bottom ray is eventually bent into a spiral around
the vertex c , and L1, L2, L3, L4 are the segments of the spiral built in Section 2.4.

The improvement over the strategy described in [3] is given in the second and third parts. The first and last parts of
ur strategy are essentially the same as that in [3], but we describe them here for completeness.

.1. Protecting two-thirds of the grid

For 0 ≤ k ≤
τ−3
2 , on turn 4k + 2, protect v2k+1 := (1 − k, −1 − 3k); on turn 4k + 4, protect v2k+2 := (1 − k, 3 + 3k).

Observation 2.1. Let v1, v2, . . . , vτ−1 be the vertices protected in the manner described above. For all r with 1 ≤ r ≤ t − 1,
we have dist(f , vr ) = r.

Proof. When r = 2k + 1, we protect vr , which is at (1 − k, −1 − 3k). Note that

max
{

|2(−1 − 3k) − 1|
3

, |1 − k| +
|(−1 − 3k) + 1|

3

}
= max {2k + 1, |1 − k| + k} = r.

urthermore, when r = 2k + 2, we protect (1 − k, 3 + 3k), and

max
{

|2(3 + 3k) − 0|
3

, |1 − k| +
|(3 + 3k) + 0|

3

}
= max {2 + 2k, |1 − k| + 1 + k} = r,

o by Eq. (1), dist(f , vr ) = r . □

Any burning vertex on turn 2j is at distance strictly less than j from f . And so, by Observation 2.1, we are permitted
to protect the vertices described above. Fig. 3(a) illustrates this part of strategy.

2.2. Accelerating the ray building

At turn 2t when we receive the extra firefighter, we continue with the ray building strategy of the previous part, but
accelerate it with the extra firefighter: We protect the vertices at (1−

τ−1
2 , −1−

3(τ−1)
2 ) and (1−

τ−1
2 , 3+

3(τ−1)
2 ) in turn

t , instead of just (1 −
τ−1
2 , −1 −

3(τ−1)
2 ). Fig. 3(b) shows this step.

2.3. Restricting the fire to a strip

For 0 ≤ k ≤
15τ+11

2 , on turn 2τ + 4k + 2 we protect vτ+2k+1 := (− τ+1
2 − 2k, − 3(τ+1)

2 ), and on turn 2τ + 4k + 4 we
protect vτ+2k+2 := (− τ+1

2 − 2k, 2 +
3(τ+1)

2 ).

Observation 2.2. Let vτ+1, vτ+2, . . . , v16τ+13 be the vertices protected in the manner described above. For all r with
τ + 1 ≤ r ≤ 16τ + 13, we have dist(f , vr ) = r.

Proof. When r = τ + 2k + 1, the vertex vr is at (− τ+1
2 − 2k, − 3(τ+1)

2 ), so we have that

max
{

|2 (−3(τ + 1)/2) − 0|
3

,

⏐⏐⏐⏐−τ + 1
2

− 2k
⏐⏐⏐⏐ +

|(−3(τ + 1)/2) + 0|
3

}
= max {τ + 1, τ + 2k + 1} = r,
19
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Fig. 3. Grid after turns 2τ − 1, 2τ + 1, 2τ + 5, and 2τ + 9; τ = 5 and f is circled.

and when r = τ + 2k + 2, vr is at (− τ+1
2 − 2k, 2 +

3(τ+1)
2 ), and

max
{

|2 (2 + 3(τ + 1)/2) − 1|
3

,

⏐⏐⏐⏐−τ + 1
2

− 2k
⏐⏐⏐⏐ +

|(2 + 3(τ + 1)/2) + 1|
3

}
= max {τ + 2, τ + 2k + 2} = r.

Thus, by Eq. (1), dist(f , vr ) = r . □

As before, these moves are permitted since on turn 2j, we protect a vertex v with dist(f , v) = j. Fig. 3(d) shows this
ffective bending of the rays. We claim that so far, we have constrained the fire to a ‘‘strip’’.

emma 2.3. After the fire spreads at turn 32τ + 27, a vertex v = (i, j) is on fire if and only if all of the following inequalities
old:

• dist(f , v) ≤ 16τ + 13
• −4 + 3i < j < 6 − 3i
•

−3(τ+1)
2 < j < 2 +

3(τ+1)
2

Proof. After turn 32τ + 27, the fire has spread exactly 16τ + 13 times, so the fire is completely contained inside
(f , 16τ + 13), where B(f , r) := {v ∈ V | d(f , v) ≤ r} is the closed ball of radius r centered around the vertex f ,
hich corresponds to the restriction imposed on the first bullet point above.
In Sections 2.1 and 2.2 , we protected every vertex of the form (1 − k, −1 − 3k) and (1 − k, 3 + 3k), for all k with

≤ k ≤
(τ−1)

2 , which corresponds exactly to vertices of the form (i, j) where j = −4 + 3i and j = 6 − 3i as i ranges from
1 −

τ−1
2 to 1. Note that after turn 2τ , the fire has spread τ − 1 times, so it was completely contained inside B(f , τ − 1),

and the vertices we protected in Sections 2.1 and 2.2 separate B(f , τ − 1) into two regions, with f in the left region, so at
urn 2τ , the points on fire all satisfy the second bullet point above.

In Section 2.3, we protected the vertices (− τ+1
2 −2k, − 3(τ+1)

2 ) and (− τ+1
2 −2k, 2+

3(τ+1)
2 ) for all k with 0 ≤ k ≤

15τ+11
2 ,

which correspond to vertices (i, j) that satisfy the first and second bulletpoints above, and that have j =
−3(τ+1)

2 or
j = 2 +

3(τ+1)
2 . The set of vertices protected after turn 32τ + 26 again separate B(f , 16τ + 13) into two regions, and

the region containing f is characterized by the second and third bulletpoints above, so these points and no other points
are on fire after the fire spreads on turn 32τ + 27. □

Fig. 3 provides an example of the early part of our strategy when τ = 5.

2.4. Building a protective spiral

We will now bend the lower ray we built in Section 2.3 into a clockwise spiral around the vertex c = (−15τ − 13, 0).
Our goal is to construct this spiral in a way that it eventually collides with the upper ray, thus containing the fire. We
first note where the actively burning vertices are.

Observation 2.4. After the fire spreads at turn 32τ + 27, a vertex (i, j) is actively burning if and only if (i, j) is at distance τ

rom c and −3(τ+1)
2 < j < 2 +

3(τ+1)
2 while i < −15τ − 13.
20
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Fig. 4. A complete picture of our strategy for τ = 1, once the last vertex in L4 has been protected. f and c are circled. The line segments L1, L2, L3 ,
and L4 are drawn in violet. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Proof. By Lemma 2.3, the vertices that are actively burning are the vertices on the line segments (−16τ − 13, −1) to
−31τ−25

2 , 3τ+1
2 ), and (−16τ − 13, −1) to (−31τ−27

2 , −3τ+1
2 ). All of these vertices are at distance τ from c. □

When we build the protective spiral, we will do so in such that way that for every s ≥ 0, on turn 2s + 32τ + 28 we
protect a vertex vs+16τ+14 with dist(vs+16τ+14, c) = τ + s+ 1. By Observation 2.4, on turn 32τ + 28 every actively burning
vertex is at distance τ from c , so the placement of vs+16τ+14 will be a legal move. We start by noting that a shifted variant
of Eq. (1) holds: Given a vertex v = (i, j), the distance dist(c, v) = d in the hexagonal grid if and only if

max
{

|2j − (d mod 2)|
3

, |i + 15τ + 13| +
|j + (d mod 2)|

3

}
= d. (2)

The spiral is built by initially bending the lower ray 30◦ clockwise, and then bending it 60◦ clockwise at three later
points in time. The initial 30◦ bend will occur at the vertex (−31τ−27

2 , −3τ−3
2 ), while the subsequent 60◦ bends will occur

at the vertices (−17τ − 15, 0), (−17τ − 15, 6τ + 6), and (−11τ − 9, 12τ + 12).
We first protect the vertices on the line segment L1, which runs from (−31τ−27

2 , −3τ−3
2 ) to (−17τ − 15, 0), then we

rotect the vertices on the line segment L2, from (−17τ − 15, 0) to (−17τ − 15, 6τ + 6), then the vertices on the line
egment L3, from (−17τ − 15, 6τ + 6) to (−11τ − 9, 12τ + 12), and finally, the vertices on the line segment L4, from
−11τ − 9, 12τ + 12) to (−τ−3

2 , 3τ+9
2 ). Note that if we were to extend this final line segment by one vertex, this vertex

would be (−τ−1
2 , 3τ+7

2 ) = (1 −
τ−1
2 , 3 +

3(τ+1)
2 ), which was protected in Section 2.2. Hence, as long as the vertices along

these line segments are indeed legal moves, the spiral has collided with the upper ray we built in Sections 2.2 and 2.3 ,
so we have successfully contained the fire. We now list the specific vertices which will be protected at each step so we
can verify that they indeed are at the correct distances from c. Fig. 4 shows the end state we will reach after protecting
the last vertex in L4.

Note that L1 consists of τ + 2 vertices, so for 0 ≤ k ≤
τ−1
2 , on turn 4k + 32τ + 28, we will protect v2k+16τ+14 :=

(−31τ−27
2 − 3k, −3τ−3

2 + 3k) and on turn 4k + 32τ + 30, we will protect v2k+16τ+15 := (−31τ−31
2 − 3k, −3τ+1

2 + 3k). Then
finally on turn 34τ + 30, we protect v17τ+15 := (−17τ − 15, 0).

Then the line segment L2 \ L1 consists of 2τ + 2 vertices, so for each 0 ≤ k ≤ τ , on turn 4k + 34τ + 32, we protect
2k+17τ+16 := (−17τ −15, 6k+2), and on turn 4k+34τ +34, we protect v2k+17τ+17 := (−17τ −15, 6k+6). This culminates
hen we protect v19τ+17 = (−17τ − 15, 6τ + 6) on turn 38τ + 34.
Now, the line segment L3 \ L2 has 4τ + 4 vertices, so for 0 ≤ k ≤ 2τ + 1, on turn 4k + 38τ + 36, we protect

v2k+19τ+18 := (−17τ−13+3k, 6τ+8+3k) and on turn 4k+38τ+38, we protect v2k+19τ+19 := (−17τ−12+3k, 6τ+9+3k).
We protect the last vertex on L3 on turn 46τ + 42 where we protect v23τ+21 = (−11τ − 9, 12τ + 12).

Finally, the line segment L4\L3 has 7τ +5 vertices, so for 0 ≤ k ≤
7τ+3

2 , on turn 4k+46τ +44, we protect v2k+23τ+22 :=

(−11τ − 8+ 3k, 12τ + 11− 3k), and on turn 4k+ 46τ + 46, we protect v2k+23τ+23 := (−11τ − 6+ 3k, 12τ + 9− 3k). This
ndeed finishes with vertex v = (−τ−3 , 3τ+9 ). Note that if we extended L by one more vertex, we would arrive at
30τ+26 2 2 4

21
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(−τ−1
2 , 3τ+7

2 ) = vτ+2, so L4 intersects the upper ray, containing the fire. See Fig. 2 for a depiction of the line segments
1, L2, L3 and L4.
Now that we have described the remaining vertices we will protect, we will show that they indeed have the correct

distance from c , implying that all these moves were legal moves.

Lemma 2.5. The distance dist(c, vs+16τ+14) = τ + s + 1 for every 0 ≤ s ≤ 14τ + 12.

roof. It suffices to verify Eq. (2) for each point with the correct value of d. We will do so for the vertices on L1 to show
ow this could be done, but omit the remaining calculations for brevity.
The vertices in L1 correspond to 0 ≤ s ≤ τ +1. When s = 2ℓ for some ℓ, the vertex vs+16τ+14 = (−31τ−27

2 −3ℓ, −3τ−3
2 +

3ℓ), so

max
{

|2((−3τ − 3)/2 + 3ℓ) − 0|
3

,

⏐⏐⏐⏐(−31τ − 27
2

− 3ℓ
)

+ 15τ + 13
⏐⏐⏐⏐ +

|((−3τ − 3)/2 + 3ℓ) + 0|
3

}
= max {τ + 1 − 2ℓ, τ + 1 + 2ℓ} = τ + s + 1,

nd when s = 2ℓ + 1, the vertex vs+16τ+14 = (−31τ−31
2 − 3ℓ, −3τ+1

2 + 3ℓ), so

max
{

|2((−3τ + 1)/2 + 3ℓ) − 1|
3

,

⏐⏐⏐⏐(−31τ − 31
2

− 3ℓ
)

+ 15τ + 13
⏐⏐⏐⏐ +

|((−3τ + 1)/2 + 3ℓ) + 1|
3

}
= max {τ − 2ℓ, τ + 2ℓ + 2} = τ + s + 1.

ll other vertices in L2 ∪ L3 ∪ L4 can be similarly verified. □

Lemma 2.5 shows that each move in Section 2.4 was legal, which completes the proof of Theorem 1.2.
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