
Periodic Extrapolative Generalisation in Neural
Networks

Peter Belcak
ETH Zürich
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Abstract—The learning of the simplest possible computational
pattern – periodicity – is an open problem in the research
of strong generalisation in neural networks. We formalise the
problem of extrapolative generalisation for periodic signals and
systematically investigate the generalisation abilities of classical,
population-based, and recently proposed periodic architectures
on a set of benchmarking tasks. We find that periodic and
“snake” activation functions consistently fail at periodic extrapo-
lation, regardless of the trainability of their periodicity parame-
ters. Further, our results show that traditional sequential models
still outperform the novel architectures designed specifically for
extrapolation, and that these are in turn trumped by population-
based training. We make our benchmarking and evaluation
toolkit, PERKIT1, available and easily accessible to facilitate
future work in the area.

Index Terms—neural networks, generalisation, extrapolation,
periodicity

I. INTRODUCTION

Neural networks have for long been hailed for their ability
to construct representations capturing the prevailing patterns
in data provided, and to meaningfully generalise to previously
unseen data of similar nature. The ability of a network to
perform interpolating generalisations is commonly associated
with settling at loss surface minima that are surrounded by
large areas of flatness [5]. This is also the mode of generalisa-
tion exploited by autoencoder [9], [11] and variational autoen-
coder [10] architectures. Generalising with neural networks
by extrapolation is often impossible for non-linear tasks, and
only sometimes possible if the appropriate non-linearities are
encoded in the architecture and input representation [17], or if
the task is fundamentally algorithmic and tailored to that end
[1], [2].

We focus on the extrapolative generalisation and observe
that the simplest possible patterns permitting extrapolation are
periodic, requiring only a single-tape write-only Turing ma-
chine unconditionally outputting the pattern without halting. In
the context of neural networks, we distinguish between three
distinct periodicity-related learning tasks, namely the learning
of a periodic signal

L1. without the need for extrapolation (e.g. for conditional
generation),

1PERKIT: A toolkit for the study of periodicity in neural networks.
Available at https://github.com/pbelcak/perkit .

L2. with the need for extrapolation but with the knowledge
of the (approximate) period a priori, and

L3. with the need for extrapolation but with period being a
learned parameter.

Naturally, even more complex tasks (more difficult than L3)
can be considered, for example the learning to separate indi-
vidual periodic components from which a class of signal is
composed. These are beyond the scope of our work.

We show that models succeeding in L1 are prone to fail
at L2, and that models proposed for L2 fail or struggle with
L3. This leads to an establishment of an order of learning
difficulty for neural networks. Given a downstream task, all
models of higher levels generally succeed at lower levels of the
hierarchy. We further find that the standard evaluation metrics
used for regression tasks do not represent the relative successes
of models learning periodic patterns well when training models
for extrapolation. After classifying the common prediction
faults for L2-L3 tasks, we therefore propose new metrics for
this purpose.

Having noticed that the current literature lacks a unified
set of criteria to evaluate the suitability of models for L1-
L3 tasks, we develop a benchmarking dataset for periodic
generalisation and produce a comprehensive comparative study
of models proposed so far. On top of models that have
been introduced specifically to tackle the problems of learn-
ing periodic functions and periodic generalisation, we also
evaluate classical and evolutionary population-based training
(PBT) methods on the same benchmarking dataset. These
methods are consistent in their execution with their peers in
literature and their evaluation results give a natural insight into
what can be achieved by making repeated “informed guesses”
about the periods of the signals being learned. Since PBT
methods operate on a population of simple networks that are
iteratively trained and adjusted for best fit with the target
signal, their performance serves as an expectation baseline
for future work aiming to address periodic generalisation in a
more sophisticated manner.

Our contributions are therefore
• the formal specification of the problem of periodic ex-

trapolative generalisation in neural networks and the
establishment of difficulty hierarchy L1-L3 (Sect. III),

• a systematic evaluation of the behaviour of the models
recently proposed for learning of periodic signals with

https://github.com/pbelcak/perkit


neural networks (Sect. V),
• the establishment of an expectation baseline on the pos-

sible performance of neural models for the periodic ex-
trapolation tasks by performing population-based training
of simple neural networks (Sect. IV and Sect. V), and

• the introduction of a comprehensive, accessible bench-
marking toolkit, consisting of a dataset and tasks tailored
to meaningfully asses the ability of models to perform
periodic extrapolative generalisations and of a unified
software framework designed to accelerate further re-
search in the field (Footnote 1).

II. RELATED WORK

Trigonometric Activations. A feedforward neural architec-
ture aiming to mimic the behaviour of Fourier series has first
been proposed in [7], introducing the “cosine squasher” activa-
tion, very similar in shape to the now-familiar sigmoid but with
domain directly adjusted to π-periodicity. A further attempt of
similar nature has been made in [16], which introduced an
activation featuring frequency-adjusted and frequency-offset
cosines, aiming for “Fourier Neural Networks”. More recently,
[14] introduced an activation based on a linear combination
of frequency-adjusted and frequency-offset sine and cosine.
These trigonometric activations have, however, been singled
out for causing problems in optimisation due to their non-
monotonicity [15], [18]. These proposed approaches are in-
cluded in our evaluation.

Monotonicitised Trigonometric Activations. To address what
has been thought of as the main fault of the work on neural
networks mimicking the behaviour of Fourier series, [19]
proposed x+sin(x), x+cos(x), and x+sin2(ax) activations
and demonstrated that they possess some potential for gener-
alisation beyond the training domain while still performing
well on standard tasks defined on real-world data such as
classifying the MNIST dataset. In later sections, we show
that these activation functions consistently fail at periodic
extrapolation, and that they offer little to no improvement over
purely periodic activations.

Fourier-Based Decoder. [13] designed a VAE-based archi-
tecture giving coefficients of Fourier series as decoder output
and evaluated it against both synthetic and ECG data, showing
superior performance in comparison to methods common
in time-series analysis. The authors, however, normalise all
signals to have period 1 and do not explore extrapolative
generalisation behaviour of their model.

Recurrent Architectures. Recurrent architectures are the
canonical tool for time-series prediction but have been crit-
icised in [13] for their shortcomings when the input samples
are fed in irregular time intervals or contain noisy observations.
We find that they are remarkably robust nevertheless.

Classical Approaches. In the context of structure discovery,
several methods have been proposed for decomposing time
series in an explainable fashion to arrive at a composition
of patterns that permits straightforward extrapolation [3], [4].
While our work carries some resemblance to the motifs of this
research, our goal is to investigate the extrapolative abilities

of neural networks, rather than to propose neurosymbolic or
evolutionary methods to further research in structure discovery.

III. LEARNING FOR PERIODIC EXTRAPOLATIVE
GENERALISATION

A. Formal Specification

Let DT ⊆ Rdi × Rdo be a training domain (dataset) where
di, do are the input and output dimensions, respectively. Let
γ : Rdi → Rdo be a function such that for ψ ∈ Rdi

γ(ψk + ϕ) = γ(ψ(k + 1) + ϕ)∀k ∈ Z, ϕ ∈ Rdi

and for (x, y) ∈ DT , y = γ(x).
The problem of periodic generalisation in neural networks

is the problem of designing a neural model M such that when
trained on DT ,

M(x) = γ(x) for x = ψkx + ϕx ̸∈ DT .

Let Γ be the set of all pairs (γ, ψ) satisfying the above
requirement. Then the dimension of span(ψ : (γ, ψ) ∈ Γ) is
the order of periodicity of DT .

It is, however, difficult to find out whether a network outputs
a particular value on infinitely many points. We therefore
evaluate the ability of M to extrapolate periodically by testing
its predictions M(x) against γ(x) only for x ∈ DE , where
DE ⊆ Rdi ×Rdo with DE∩DT = ∅ is the evaluation domain.

B. Difficulty of Periodicity-Learning Tasks

We illustrate the existence of the difficulty hierarchy L1-
L3 of periodicity-learning tasks experimentally. For the direct
GRU and snake experiments, we sample training data ran-
domly from example periodic functions in the range [−5π, 5π].
In the case of the L1 task, we further add Gaussian noise
randomly generated for every epoch of learning with mean
0 and variance 0.0225 to the original signal. For the L2 and
L3 tasks we look at the model predictions on the wider range
[−8π, 8π] except for auto-regressive GRU, where we train on
[0π, 12π] and evaluate on [12π, 23π]. The results are shown
in Fig. 1.

We see that the GRU recurrent network fed directly with
signal time input succeeds in uncovering the original signal
despite the presence of noise in training, but fails to generalise
the learned signal beyond the training range even when trained
on regular inputs without the presence of noise. We also
observe that auto-regressive GRU recurrent networks fare
fairly well on the L3 tasks but suffer from loss of information
the further away from the training data they extrapolate. It was
presented in [19] that a snake-activated feedforward neural
network can learn to fit a periodic signal if the period is
known beforehands. The bottom row of Fig. 1 shows that
such networks, however, fail to learn periodic signals when the
frequency parameter of the snake activation is made trainable,
something we elaborate on in Sect. III-D. In our experience,
models that succeed at L3 tasks do well on L2 tasks, and those
which succeed at L2 tasks mostly do not struggle with L1
tasks either if the period is known. This illustration is further
supported by our results in Sect. V.



C. Recurrent Extrapolation

It was previously demonstrated that the extrapolation be-
haviour of feedforward neural networks with ReLU and tanh
activation functions is dictated by the analytical form of
the activation function (ReLU diverges to ±∞, tanh tends
towards a constant value), and that this result also holds for
sigmoidal networks and the corresponding common variants
[19]. This is despite the fact that feedforward neural net-
works regularly show excellent performance in approximating
sampled functions on training intervals, even in the presence
of balanced noise. We extended on this by looking at the
extrapolative properties of recurrent architectures and noted
that while recurrent networks in auto-regressive predictive
setup succeed in extrapolating reasonably well beyond the
training range, they do not do so if the immediate signal past
does not serve as a reliable clue to the future. The results of an
experiment showcasing the extrapolative behaviour of RNNs
in auto-regressive configuration are depicted in Fig. 2

D. Snake Extrapolation

To address the shortcomings of standard activation functions
in extrapolation, [19] proposed the family of “snake” activation
functions. If the frequency a of the periodic signal to be
approximated is known, a two-layer feedforward network with
the corresponding snake activation x + sin2(ax) has been
demonstrated to be able to approximately learn the amplitude
of the signal. Authors further proposed to make the parameter
a of the activation a learnable parameter and appealed to
Fourier convergence for justification of general learnability
properties. Our experiments following the setup and training
from [19] show that regardless of the trainability of the

Fig. 1. An experimental analysis of how a selection of models learns and
extrapolates various basic function types. The red curve represents the median
model prediction and the shaded regions show the 90% credibility interval
from 30 runs. GRU networks used 120 units aligned in a single layer, and the
snake network was a two-layer feedforward network with 128 snake neurons
in the hidden layer.

frequency parameter, a snake-activated feedforward neural
network often resorts to maximising the frequency and ignores
the loss minima corresponding to the Fourier coefficients
(Fig. 3). Further, we observed (Fig. 4) that when the frequency
parameter is trainable, such feedforward networks even fail to
learn the activation function itself.

E. Common Modes of Signal Degradation in Periodic Extrap-
olation

Three types information can be lost or slowly degrading
with increasing distance from the training domain, namely
the values of frequency and amplitude parameters, and the
shape of the underlying periodic function (Fig. 5). In Fig. 2
we have observed on recurrent networks that these three modes
of information loss do not necessarily have to happen at same
the pace.

If the data in the evaluation domain DE consists of only
sampled points, it might be difficult or impossible to judge
the quality of predictions when the signal shifts in “time” (the
argument of γ), even if only slightly.

In our experimentation, we recognised three modes of model
prediction degradation related to the periodicity parameters of
the ground-truth γ:

• Periodic Shift (SH). The model clips away or fills in
parts of the learned or previously predicted signal period-
ically in discrete increments, thus making the predictions
for individual periods increasingly more shifted with
every iteration.

• Periodic Speedup (SP). The model believes that the
frequency of γ is a constant f ′ ̸= f and the predictions
are continuously shifted due to the frequency mismatch.

• Periodic Acceleration (AC). The model relies on its
previous predictions for the periodicity information and

Fig. 2. The results of a systematic experiment on the ability of auto-
regressive RNNs to generalise by extrapolation. Regular sampling means
sampling training points at regular intervals, random sampling entails choosing
a point at random from equally-spaced bins.



increases or decreases its belief f ′ about the ground-truth
frequency f periodically in discrete increments.

We perform systematic evaluation with these defects in mind
in Sect. V.

IV. POPULATION-BASED TRAINING FOR PERIODIC
GENERALISATION

To give a reasonable expectation on the possible perfor-
mance of machine-learning models on the PERKIT’s bench-
mark datasets we also evaluate the extrapolation performance
of populations of simple models trained with Bayesian and
genetic approaches. In contrast to the recurrent networks and
feedforward networks with periodic activations of Sect. III,
populations of simple models benefit from being able to
make multiple simultaneous guesses about the period of the
signal being learned. Further, once a “good guess” has been
identified, they can start to exploit the guess to train ever
better-performing models – a behaviour hard to induce in
traditional neural network training.

We consider three population-based models, BAYES, N-
FITTEST, and PARETO, for learning periodic signals with the
objective to extrapolate. These are all parametrised the same
and train populations of networks of the same architecture.

BAYES performs Bayesian optimisation [6], aiming to min-
imise individual final training losses. It does so by tuning
its period guess by guided sampling in each iteration of

Fig. 3. A depiction of the tendency of snake neural networks to increase
frequency and treat the snake activation as almost-linear component to
interpolate the training data. Top. The results of 40 training instances of
snake-powered two-layer feedforward neural networks on general signals.
The hidden layer is 128 neurons wide and its initial frequencies are drawn
according to a continuous uniform distribution on the closed interval [1, 6].
The shaded region represents the 90% confidence interval, and the median
line is bold red. Bottom. As for the above but on periodic signals.

Fig. 4. The results of an experiment using a single-snake-neuron network to
learn an underlying snake signal with parameter a = 1. The parameter a of
the network attempting to learn the signal is trainable and initialised according
to a uniform distribution on [0.7, 1.3]. The blue and red histograms chart the
initial (pre-training) and post-training values of parameter a in the network.
We observe that the trained parameters settle consistently around nearby local
minima and only a fractional minority finds the true frequency of 1.

Fig. 5. An illustration of information loss by recurrent neural networks in
extrapolative generalisation. The left-most sinusoidal signal is shifted and its
frequency is higher than that of the ground truth (periodic speedup). Other
three signals suffer from slow dissolution of shape and amplitude information.
In the right-most plot, the recurrent network failed to learn the shape of the
signal.

the optimisation process. N-FITTEST and PARETO follow
a common skeleton evolutionary algorithm with parametric
neighbourhood crossovers, differing only in the method by
which they choose the subset of the population that is to repro-
duce. They too aim to minimise individual final training losses,
but they do so by choosing the best-performing models to
reproduce for each generation. For simplicity and consistency,
we will refer to sampling in BAYES as reproduction and to
iterations of BAYES as generations.

The inputs to each of the above models are the assumed
signal master period range [ra, rb], root (starting) population
nr, and minimum number of individuals to reproduce each
generation ng ≤ nr. Further, N-FITTEST and PARETO also
need a minimum number of descendants of different roots that
the algorithm is to enforce to be present among the population
that is to reproduce – ne ≤ nr. The algorithms run until the
maximum number of generations has been reached or until a
fitness threshold has been crossed. Their output is a population
P , whose fittest individuals are those who are likely to achieve
the best performance in terms of their ability to extrapolate
pure periodic signals or periodic signals with trends.

A. Individuals

The individuals of the population, or population units, are
neural networks consisting of trend, periodicity, and composer
sub-units (Fig. 6). In our experiments, we chose the trend
sub-unit to be a linear feedforward network, periodicity sub-
unit to be a feedforward network with ReLU-activated hidden
layers and a linear output layer, and the composer to be a



simple single-layer linear network. We have also successfully
experimented with a polynomial neuron (such as the one seen
in GMDH networks) as the trend unit and aim to report
on our findings in our future work. Every individual a has
an associated genetic parameter pa representing its period
estimate. The input to population units is the time-component
x of a potentially periodic signal. x is wired directly to the
trend sub-unit, x mod pa (modulo taken in direction from
−∞ to ∞) is fed into the periodicity sub-unit, and the outputs
of the periodicity and trend sub-units are then forwarded to
the composer, which yields the signal estimate ya of a. This
configuration assumes that a new period of the target signal
begins at the origin (0).

The initial population consists of nr root individuals, with
parameters p• spaced evenly on [ra, rb] including at the end-
points of the interval. In our experiments, the weights of roots’
sub-units are initialised with the Glorot uniform distribution
[8]. When individuals a1, a2 are chosen to reproduce, we
designate the root ancestor of the fitter of the two roots the
root ancestor of their offspring. The root ancestor of each root
is the root itself.

We number generations as g = 1, 2, . . . (the zeroth genera-
tion is the root population). For each generation, we first train
previously untrained units on 80% of the available training
data with mean squared error loss, and use the remaining data
for validation. We terminate training early if the validation loss
stops improving for a number of epochs.

B. Evolution of BAYES

We simply follow the iterative procedure for Bayesian
optimisation [6].

C. Evolution of PARETO, N-FITTEST

While it could be argued that the fitness should be assessed
on the basis of an evaluation sample that is taken from outside
the training range, it is precisely the point that our models learn
to extrapolate periodically without any information about the
signal besides what is available in training. For each individual
a we keep the end validation loss ℓa (the “unfitness” of a).

Once the training phase has been completed, we proceed
with selecting the set of “best” candidates for reproduction B.
For the N-FITTEST algorithm, we use −ℓa as the measure
of fitness and take the ng individuals with least ℓ• to be
B, choosing the younger individual in case of a tie. For the
PARETO algorithm, we fit a Pareto distribution across the range
of losses in P and calculate Pareto fitness scores s• according
to the formula

µa =
ℓa −minz∈P ℓz

maxz∈P ℓz −minz∈P ℓz
sa =

S
√
g

(1 + µa)1+S
√
g
,

where S is a score-scaling hyperparameter of the model
controlling the exploration-exploitation balance and µ• is the
validation loss normalised to the range seen in P . ng candi-
dates for reproduction are then chosen to form B according to
a multinoulli distribution where the probability of individual
a being selected is proportional to sa.

Fig. 6. The architecture of a single population unit a. pa denotes the genetic
parameter.

We then count the number of distinct root ancestors dr
among candidates in B and if it is less than ne, we keep
adding least unfit individuals not yet in B with root ancestors
different from all the previous until dr = ne.

Finally, we perform the crossovers. For every b2 ∈ B, we
choose the other parents b1, b3 such that

b1 = argmax
z s.t. pz<pb2

pz and b3 = argmin
z s.t. pz>pb2

pz.

We place parameter of the offspring individuals b1, b2 pro-
portionally to the parents’ fitness scores. Let bi, bj be parents
such that pbi < pbj . We first calculate the pair-relative fitness
scores,

σN-FITTEST
bi =

ℓbi
ℓbi + ℓbj

σN-FITTEST
bj = 1− σN-FITTEST

bi

σPARETO
bi =

sbj
sbi + sbj

σPARETO
bj = 1− σPARETO

bi ,

(note the contrasting roles of bi and bj per case), and then
compute the new parameter,

pc = pbi + σ•
bi(pbj − pbi)

We perform this procedure for the pairs b1, b2 and b2, b3 to
get children parameters pc1 , pc2 respectively.

Instead of initialising units for children ci afresh, we clone
the trained state of b2 (central parent) into ci and begin the
training from that state. Experimenting, we learned that while
this approach does not lead to consistent improvements in
terms of accuracy of our models’ predictions when compared
to starting from default weight initialisation, it significantly
accelerates the training.

The offspring of B are then added to P and if the pre-
specified termination criteria such as accuracy or maximum
number of generations are not met, the algorithms proceed
with the next generation.

We illustrate the outputs of N-FITTEST in Fig. 7.

V. EVALUATION

A. Method

To systematically evaluate the ability of a neural model
to generalise extrapolatively, we design a straightforward but



Fig. 7. An example of the training and predictions of the N-FITTEST model
with configuration as in Fig. 1. nr = 8, ng = 7, ne = 3, ra = 3π, rb = 5π.

rich collection of classes of continuous periodic signals with
hierarchically increasing complexity.

We begin with generation of periodic forms. Recursively, a
periodic form is either an elementary form (see Table I) or a
sum, product, or chained application of a periodic form and
an elementary form. More formally,

FORM0 := FORME

FORM +×◦
i := {f + g, fg, f ◦ g

: f ∈ FORME , g ∈ FORMi−1}

where i ≥ 1, FORME is the set of elementary forms, FORM−
i

the set of forms of order i ≥ 0 arrived at by combining lower-
order forms by operations in superscript.

On top of learning to generalise in periodicity, some models
are also able to capture a general trend offsetting an otherwise
periodic signal. To represent that in our signal collection,
we consider polynomial and exponential trends. Denoting the
trend forms (Table I) by FORMT , a general form is a sum of
a periodic form and a trend form.

B. Experiments

We conduct three experiments, assessing the ability of mod-
els to extrapolate (L2-L3): periodic signals, periodic signals
with noisy training, and signals generated by offsetting a
periodic base with a linear trend.

For the noiseless and noisy periodic signals we use forms
in FORM +×

2 , for signals with trend we use forms {f + g :
f ∈ FORM +×

2 , g ∈ FORMT }. For each form we generate nv
variants, drawing every coefficient including frequencies uni-
formly at random from a fixed range. Then, we choose a mas-
ter period τ from [0.5, 1.0] uniformly at random and normalise
individual frequencies so that the variant is a periodic signal
with period τ . The training domain is DT = (−nT τ, nT τ)
and we evaluate on DE = (−nEτ, nEτ)\DT , where nT , nE
represent the numbers of periods to train/evaluate on. The
signal is normalised by a constant so that all values on DE lie
between −1 and 1 inclusive. In the noisy scenario, we further
add Gaussian noise with mean 0 and variance σ2. The data is
then sampled uniformly at random and used for training. We
repeat the training and evaluation independently nr times for
each variant.

The literature on trigonometric activation functions [15],
[18] cites problems with their optimisation due to the existence
of a series of local minima. In an attempt to counter this, we
ran all of the above models on the whole dataset 6 times – once
for each optimiser among SGD, RMSprop, Adam, AdaMax,

TABLE I. An overview of forms used to evaluate extrapolative
generalisation abilities. square, saw, and poly denote the unit square wave
with 50% duty cycle, unit positive sawtooth wave, and symmetric bilateral

polynomial wave of order n, respectively, each with period 1.

Name Type Analytic Form

square wave elementary square( x
T

+ ϕ)
sawtooth wave elementary saw( x

T
+ ϕ)

sinusoid elementary sin(2π x
T

+ 2ϕπ)
tangent elementary tan(π x

T
+ ϕπ)

polynomial wave of order n elementary poly(π x
T

+ ϕπ, n)
polynomial trend of order n trend c0 + c1x+ . . .+ cnxn

exponential trend trend c0ec1x

AdaDelta, and Nadam. We compared the aggregate results for
the whole benchmarking dataset and observed no significant
differences between the results of different optimisers. Our
final results, reported below, are thus computed on the collation
of runs, disregarding the optimiser used.

We chose a uniform width of 64 hidden units for all
feedforward networks, including those used by N-FITTEST
and PARETO. In the case of snake activation functions and
by the analysis of [19] this would correspond to a target of 32
(not necessarily consecutive) harmonics in the approximating
Fourier series, while for sin+ cos [14] this corresponds to 64
harmonics. Individual experiments showed that adding more
hidden neurons did not improve the extrapolative performance
of feedforward networks. We also set the number of recurrent
units to 64 for LSTM, GRU, and simple RNNs, but note
that recurrent units are more complex in their structure than
individual feedforward neurons. For the population units of
neuroevolutionary models, we use a two-layer periodic unit
60 neurons wide with ReLU activation on the hidden layer,
and a trend unit consisting of a single linear neuron.

C. Metrics

As was shown in Sect. III, neural models might exhibit a
wide range of behaviours in periodic extrapolation scenarios,
and straightforward per-point losses such as mean squared
error (MSE) or mean absolute error (MAE) may not be
representative of the models’ ability to learn information
pertaining to signal periodicity and to extrapolate beyond the
training range.

We therefore use a range of metrics to capture and report
on prevalence of phenomena seen in Sect. III such as periodic
signal shift, signal frequency shift (signal “speed-up”), and
signal frequency acceleration. Each of the evaluation metrics
is based on a point-based metric m and is arrived at by min-
imising m across a parameter trying to correct the predictions.
Let x, y(x), y′(x) be the position, true, and predicted signal
values respectively, eT the nearest endpoint of the training
domain, and τ a period of the signal. If the signal is offset by
a trend or otherwise modified, τ is a period of the periodic



component. We then define

SHm = min
w∈(−ϵ,+ϵ)

m
(
x, y(x), y′

(
x+ w

⌊
x− eT
τ

⌋))
SPm = min

w∈(−ϵ,+ϵ)
m (x, y(x), y′ (x(1 + w)))

ACm = min
w∈(−ϵ,+ϵ)

m
(
x, y(x), y′

(
x

(
1 + w

⌊
x− eT
τ

)⌋))
The choice of the metrics specific to degradation phenomena

can be justified as assuming that the corresponding prediction
degradation phenomenon is present and finding the minimum
value of point-based metric m for a parameter characterising
the decay in predictive ability within some permissible range.

Further, in our experiments we observed that the tails of
the extrapolative predictions (i.e. the segments of the signal
farthest from the training domain) often disproportionally
affected the summary metrics, and in response we chose to
weigh the point contributions to the original metrics decreas-
ingly with the increasing distance from the training domain.
Let m be a point-based metric. The the distance-adjusted m is

DA-m(x, y, y′) = m(y, y′)

(
x− eT
dT

)α

where dT is the diameter of the training domain and α ≥ 1 is
the weighing decay parameter. The comparison of the values
for a per-point metric m and the distance-adjusted m allows
us to quickly assess the extent to which the predictions of the
model deteriorate with increasing distance from the training
domain.

D. Results

The results of our experiments are shown in Tables II
to IV. We performed the experiments with nv = 10, nr =
5, nT = 5, nE = 10, σ2 = 0, α = 1, sampling rate 100
per period, and recurrent window of length 7. PBT methods
were run for exactly 10 generations with nr = 8, ng =
7, ne = 3, ra = 0.5, rb = 1.0. Each experimental instance
was repeated 6 times, once for each optimiser considered. For
metric evaluation, ϵ = 0.05, and 21 samples were taken over
[−ϵ, ϵ]. Emph. and emph. denote the best performance per
metric and model, respectively.

In the scenario with noiseless periodic signals (Table II), we
observe that the snake activations outperform x+sin and x+
cos, and that the snake feedforward neural network with frozen
frequency parameters further outperforms snake networks with
trainable frequencies. All of the recurrent networks outperform
the feedforward networks, and our genetic models N-FITTEST
and PARETO further improve on the best-performing recurrent
networks by 32-35% in MSE and 45-46% in SHDA-MSE.

There was a noticeable drop in performance of feedforward
networks when noisy signals were considered (Table III). Both
recurrent and PTB models remained largely unaffected.

On trend-offset periodic signals (Table IV), we observe
that x + sin and x + cos show performance comparable to
snake activations and that GRU networks outperform simple
recurrent networks and LSTM architectures. It is surprising

TABLE II. Results of the experiments on noiseless periodic signals.

MSE DA- SHDA- SPDA- ACDA-

sin 0.209 0.149 0.148 0.147 0.147
cos [16] 0.245 0.174 0.172 0.171 0.171
sin+ cos [14] 0.319 0.220 0.218 0.217 0.217
x+ sin [19] 5.095 3.624 3.620 0.317 3.621
x+ cos [19] 4.662 3.289 3.283 3.281 3.280
snake [19] 0.375 0.264 0.262 0.261 0.261
t-snake [19] 0.391 0.275 0.273 0.272 0.272
SRNN 0.081 0.811 0.074 0.070 0.070
GRU 0.071 0.072 0.065 0.061 0.062
LSTM 0.076 0.076 0.069 0.063 0.065

BAYES 0.050 0.038 0.037 0.037 0.049
N-FITTEST 0.048 0.037 0.036 0.036 0.048
PARETO 0.046 0.036 0.035 0.035 0.049

TABLE III. Results of the experiments on noisy periodic signals with
σ2 = 0.15.

MSE DA- SHDA- SPDA- ACDA-

sin 0.338 0.232 0.231 0.228 0.274
cos [16] 0.373 0.274 0.273 0.269 0.322
sin+ cos [14] 0.358 0.250 0.248 0.248 0.247
x+ sin [19] 0.399 0.279 0.277 0.276 0.276
x+ cos [19] 0.257 0.181 0.180 0.179 0.179
snake [19] 0.391 0.274 0.272 0.271 0.271
t-snake [19] 0.435 0.305 0.303 0.302 0.302
SRNN 0.075 0.075 0.069 0.065 0.065
GRU 0.072 0.072 0.065 0.059 0.061
LSTM 0.073 0.073 0.066 0.061 0.063

BAYES 0.051 0.039 0.038 0.038 0.049
N-FITTEST 0.045 0.035 0.034 0.034 0.049
PARETO 0.046 0.035 0.035 0.035 0.049

TABLE IV. Results of the experiment on trend-offset periodic signals
without noise.

MSE DA- SHDA- SPDA- ACDA-

sin 0.338 0.232 0.231 0.228 0.274
cos [16] 0.373 0.274 0.273 0.269 0.322
sin+ cos [14] 0.520 0.371 0.370 0.367 0.431
x+ sin [19] 0.486 0.336 0.334 0.331 0.432
x+ cos [19] 0.342 0.237 0.236 0.235 0.346
snake [19] 0.441 0.307 0.305 0.303 0.381
t-snake [19] 0.498 0.345 0.344 0.342 0.451
SRNN 0.081 0.081 0.074 0.070 0.070
GRU 0.026 0.026 0.019 0.018 0.034
LSTM 0.366 0.366 0.355 0.351 0.378

BAYES 0.006 0.005 0.004 0.004 0.107
N-FITTEST 0.006 0.005 0.004 0.004 0.107
PARETO 0.006 0.005 0.004 0.004 0.107

that GRU networks perform very well on the trend-offset data,
tentatively suggesting that the gated recurrent unit possesses
some ability to preserve shape while recognising the presence
of a linear trend. The genetic models N-FITTEST and PARETO
further improve on the best-performing recurrent networks by
77-79% in MSE and 85% in SHDA-MSE and SPDA-MSE.

Comparing MSE with DA-MSE allows us to judge whether
there are large prediction deviations from the target signal at
the points far from the training range. We observed that the



gap (15-33%) between MSE and DA-MSE was particularly
common for trigonometric and snake feedforward networks,
irrespective of whether they used activations monotonicitised
by linear offset. There was hardly any difference between MSE
and DA-MSE for for recurrent and evolutionary models.

We see that the most common mode of extrapolative signal
degradation is that of periodic speedup (cf. Sect. III-E), and
that the difference is particularly noticeable (in terms of
relative improvement over base metrics) in recurrent neural
networks.

We attribute the generally comparable performance of N-
FITTEST and PARETO to the simplicity of the search space
and note that a significant difference is immediately seen
if the assumed master period range [ra, rb] is made larger
and contains several multiples of the master period. We also
note from the results that trigonometric activations that had
been proposed for L2 tasks do not perform well on L3 tasks,
consistently with our outline of the difficulty hierarchy for
periodicity learning.

E. Training Resource Consumption of PBT Methods

Pupulation-based training and especially evolutionary meth-
ods are often associated with high computational cost and long
program runtime.

We trained and evaluated our models on a single NVIDIA
TITAN Xp GPU. For the performance comparison, we trained
all our models with the Adam optimiser [12]. Thanks to
the simplicity the genetic unit architecture, the full multi-
generational evolutionary training and evaluation of BAYES,
N-FITTEST, and PARETO took only 12-15% longer than that
of snake feedforward neural networks with frozen frequencies
and 40-44% shorter than snake networks with trainable fre-
quency parameters, while outperforming both in terms of the
metrics above in all scenarios.

This suggest that population-based training, albeit naive
in its motivation, currently trumps the best available models
tailored for periodic extrapolation in practice.

VI. CONCLUSION

We have identified periodic extrapolation as the compu-
tationally simplest mode of extrapolative generalisation. Our
work systematically evaluates network architectures thought
to generalise well beyond training domains and finds that
traditional recurrent neural networks outperform all of the
architectures proposed specifically to tackle extrapolation.
Moreover, the latest invention proposed – snake activation
– also consistently fails at periodic extrapolation and offers
little to no improvement over purely periodic activations. We
believe that these results suggest that there does not yet exist a
universal architecture with plausible extrapolative properties,
despite the claims of effectiveness founded on the existence
of weights corresponding to the Fourier series of the target
signal.

With the classical Bayesian and neuroevolutionary
population-based training methods outperforming all other
models while keeping their training time below that of the

most recent architectures for periodic generalisation, we view
their performance as natural baselines to be overcome by
future work.

All our code is available as PERKIT1 – a toolkit for the
study of periodicity in neural networks. PERKIT has been
designed specifically to allow making of future benchmarking
extensions and additions of new models for evaluation with
ease. We hope that together with our study it will help to
facilitate research in extrapolative generalisation.
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