
A Log-Star Distributed Maximal Independent Set Algorithm
for Growth-Bounded Graphs

Johannes Schneider, Roger Wattenhofer
{jschneid, wattenhofer}@tik.ee.ethz.ch

Computer Engineering and Networks Laboratory
ETH Zurich, 8092 Zurich, Switzerland

ABSTRACT
We present a novel distributed algorithm for the maximal
independent set (MIS) problem. On growth-bounded
graphs (GBG) our deterministic algorithm finishes in
O(log∗ n) time, n being the number of nodes. In light of
Linial’s Ω(log∗ n) lower bound our algorithm is asymp-
totically optimal. Our algorithm answers prominent open
problems in the ad hoc/sensor network domain. For
instance, it solves the connected dominating set problem
for unit disk graphs in O(log∗ n) time, exponentially
faster than the state-of-the-art algorithm. With a new
extension our algorithm also computes a δ + 1 coloring in
O(log∗ n) time, where δ is the maximum degree of the graph.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems – computa-
tions on discrete structures;
G.2.2 [Discrete Mathematics]: Graph Theory – graph
algorithms;
G.2.2 [Discrete Mathematics]: Graph Theory – network
problems

General Terms
Algorithms, Theory

Keywords
Ad Hoc Networks, Sensor Networks, Radio Networks, Unit
Disk Graphs, Growth Bounded Graphs, Local Algorithms,
Parallel Algorithms, Maximal Independent Sets, Dominat-
ing Sets, Connected Dominating Sets, Coloring, Symmetry
Breaking

1. INTRODUCTION
Minimum dominating sets (MDS) and connected domi-

nating sets (CDS) are most likely the best studied theo-
retical problems in wireless multi-hop networks, such as ad
hoc, mesh, or sensor networks. In hundreds of papers they

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’08, August 18–21, 2008, Toronto, Ontario, Canada.
Copyright 2008 ACM 978-1-59593-989-0/08/08 ...$5.00.

have been identified as key to efficient routing, media ac-
cess control, or coverage, to just name three popular exam-
ples of usage. Consequently, the networking community has
suggested a great number of algorithms towards computing
CDS et al.; almost all of these algorithms are distributed,
as wireless networks tend to be unreliable and dynamic,
and conventional global algorithms seem too slow to cope
with this constant churn. However, most algorithms are also
heuristic in nature, and have been shown to perform poorly
in efficacy and/or efficiency, when analyzed rigorously. How-
ever, there are exceptions; we will discuss them in detail in
Section 2.

Given the huge impetus from the application side, recent
research mostly concentrated on special graph classes that
represent the geometric nature of wireless networks well.
The classic theoretical model for wireless networks is the
so-called unit disk graph (UDG) model, where the nodes
are points in the plane, and two nodes are neighbors in the
graph if and only if their Euclidean distance is at most 1.
However, wireless radios will never transmit in perfect cir-
cles, and hence the UDG model has recently gotten a lot of
stick. Instead the community started looking into general-
ized models, e.g. the quasi unit disk graph (QUDG) model,
or the unit ball graph (UBG) model. In Section 3 we adopt
the so-called growth-bounded graph (GBG) model [11]; the
GBG model only restricts the number of independent nodes
in each neighborhood and is therefore a generalization of the
UDG, QUDG and UBG models.

In Section 4 we present a novel distributed algorithm for
the maximal independent set (MIS) problem. On growth-
bounded graphs our algorithm finishes in O(log∗ n) time, n
being the number of nodes. As we will discuss in more de-
tail in Section 2, our algorithm beats all existing algorithms
for geometric models such as UDG or GBG by an expo-
nential factor. Indeed, thanks to a lower bound argument
by Linial [15], our algorithm is asymptotically optimal. In
the GBG model a MIS is a constant approximation of a
MDS, hence our algorithm gives the fastest constant MDS
approximation. In Section 5 we will also quickly mention
how to compute a CDS, how to obtain a polynomial time
approximation scheme (PTAS), and an asymptotically op-
timal algorithm for computing a δ+1 coloring, as well as a
distance two coloring.

2. RELATED WORK
Symmetry breaking is one of the main problems in dis-

tributed computing. Deterministic algorithms need a way to
distinct between nodes, i.e. IDs. In their pioneering work

Cole and Vishkin [6] established the“deterministic coin toss-
ing” method. They applied it to compute a MIS in a ring
graph. For more than two decades their deterministic coin
tossing technique has been a method of choice for break-
ing symmetries. Consequently it has been used in various
algorithms [8, 3, 12, 11, 10]. However, it seems that the
technique is limited to simple graphs such as rings or other
constant-degree graphs. In contrast to Cole/Vishkin our
technique extends to unbounded degree.

The MIS problem has also been studied in graphs be-
yond the ring (and other constant degree graphs). In gen-
eral graphs the simple and elegant randomized algorithm
by Luby [16] with running time of O(log n) (see as well
[1, 9]) outperforms the fastest known deterministic dis-

tributed algorithm [18] which is in O(n
√

c/ log n) with con-
stant c. In Luby’s algorithm neighbors try to enter the
MIS based on their degrees, the deterministic algorithm
uses network decompositions introduced in [4]. In general

graphs every algorithm requires at least Ω(
√

log n/ log log n)
or Ω(log ∆/ log log ∆) communication rounds for computing
a MIS [13].

In this paper we concentrate on geometric graph classes
that are relevant in wireless networking, breaking the lower
bound for general graphs. For these geometric graphs the
relevant lower bound is by Linial [15]. He showed that even
on a ring topology at least time Ω(log∗ n) is required to com-
pute a MIS. Only very recently (and probably stirred by the
interest in wireless networking) MIS algorithms for geomet-
ric graphs (such as UDG or GBG) have been discovered.
The currently fastest randomized algorithm by Gfeller and
Vicari [7] runs in O(log log n · log∗ n) time. Using random-
ization a set S is created, where every node v ∈ S has at
most O(log5 n) neighbors in S. Thereafter the fastest de-
terministic algorithm up to now [10] with time complexity
O(log ∆ · log∗ n) is used, which computes an O(log ∆) inde-
pendent ruling set in the first phase. This set is transformed
into an 3-ruling independent set, and this set in turn is taken
to compute a MIS using again the deterministic coin tossing
technique. Our algorithm is not only exponentially faster
than the state-of-the-art [7], it is also deterministic, and last
not least simpler. Thanks to Linial’s lower bound we know
that it is asymptotically optimal. So far the most general de-
scendant of [6] is [12] which achieves asymptotic optimality
in a geometric model where all distances to the neighbors
are known. It is rather surprising that we can match the
bound of [12] without any distance information.

3. MODEL AND DEFINITIONS
The communication network is modeled with a graph G =

(V, E). For a node v its neighborhood Nr(v) represents all
nodes within r hops of v (not including v itself). A set T ⊆ V
is said to be independent in G if no two nodes u, v ∈ T
are neighbors. A set S ⊆ V is a maximal independent set
(MIS), if it is independent and there exists no independent
superset T ⊃ S. A MIS S of maximum cardinality, i.e.
|S| ≥ maxMIS T |T |, is called a maximum independent set
(MaxIS). We consider growth-bounded graphs, which are
defined as:

Definition 1. A graph G = (V, E) is growth-bounded if
there is a polynomial bounding function f(r) such that for
each node v ∈ V , the size of a MaxIS in the neighborhood
Nr(v) is at most f(r), ∀r ≥ 0.

In particular, this means that for a constant c the value f(c)
is also a constant. A subclass of growth-bounded graphs are
quasi unit disk graphs and unit disk graphs, which are often
used to model wireless communication networks and have
f(r) ∈ O(r2).

Our algorithm is uniform, i.e. it does not require any
knowledge of the total number of nodes n. Communication
among nodes is done in synchronous rounds without colli-
sions, i.e. each node can exchange one distinct message of
size O(log n) bits with each neighbor. We understand that
such a powerful communication layer is unrealistic in many
application domains; in wireless networks for instance trans-
mission collisions will happen, and must be addressed. We
will discuss this in detail in the conclusions.

Definition 2. The function log∗() is defined recursively
as follows log∗ 0 = log∗ 1 = log∗ 2 = 0 and log∗ n = 1 +
log∗dlog ne for n > 2.

Expressed differently, log∗ n describes how often one has to
take the logarithm to end up with at most 2. We denote
by log(j) n the binary logarithm taken j times recursively.
Thus log(1) n = log n, log(2) n = log log n, etc.

Every node has an ID represented by l bits, where l
is upper bounded by log n. An ID and all other binary
numbers are in little endian notation and have the form:
xl, xl−1, ..., x1, where xi ∈ {0, 1}. Observe that for technical
reasons the low order bit has index 1 (not 0).

4. MIS ALGORITHM
Let us start by giving an informal description of our de-

terministic MIS algorithm. Each node performs a series of
competitions against neighbors, such that more and more
nodes drop out until only MIS nodes remain. For all nodes
not in the MIS or not adjacent to a MIS node, the process
is repeated.

To get a deeper understanding of a competition we take a
closer look at the very first competition. A node v competes
against the neighbor u with minimum ID. If IDu is larger
than IDv, i.e. node v has smallest ID among all neighbors,
the result is 0. If IDv is not the smallest of all neighbors, the
result of the competition is the maximum position for which
v’s ID has a bit equal to 1 and u’s ID has a bit equal to 0.
For IDv being 11101 and IDu being 10001, the two differing
positions are 3 and 4 and thus the result of the competition
for v is 4, i.e. rv = 4.

The result rv of the first competition forms the basis for
the next competition, the result of that competition in turn
is used for the following competition and so forth. In other
words, competitions are recursive.

A node can be in one of five states, which it might alter af-
ter each competition (see Algorithm Update State). Initially
each node is a competitor. If the result of the competition
for node v is (strictly) smaller than that of all its competing
neighbors, node v becomes a dominator and joins the MIS.
All adjacent nodes of a dominator become dominated. Both
dominators and dominated nodes are not involved in further
competitions. In case the result of a node is as small as that
of all its neighbors and at least one neighbor has the same
result, the node becomes a ruler, it does not compete any
more for at most log∗ n + 2 recursive competitions (we call
this a phase; lines 4 to 14 in Algorithm MIS). In a phase
every competing node must have changed its state (as will

be shown in Section 6). The subsequent competition (of the
next phase) starts over again by using IDs. A neighbor of
a ruler gets ruled (if not dominated) and stays quiet until
all neighbors are ruled (or dominated). After a node v has
executed a constant number of phases (we call this a stage;
lines 2 to 15), it must become ruled. It starts a new phase
and becomes a competitor again if all neighbors u ∈ N(v)
are ruled as well. We will give no bound on the time when a
node starts a new stage. However, as long as node v waits,
some neighbor u ∈ N(v) is not ruled and thus executing a
stage. For some more examples including updates of states
consider Figure 1. For an overview of all possible state tran-
sitions during the execution of the algorithm see Figure 2.

Next, we give a more formal definition of a competition
to clarify our notation. Let rj

v denote the result of the jth

(recursive) competition for node v. The first competition
is always based on the IDs. Thus we define r0

v := IDv.
Any number rj−1

u consists of t bits (t ≤ log(j) n as shown
in Lemma 4) and has the form rj−1

u = yt
u, yt−1

u , ..., y1
u. A

competitor only competes against nodes that are also com-
petitors, i.e. the results of ruled or dominated nodes are not
considered. In order to perform the jth (recursive) compe-
tition with j ≥ 1 node v chooses a competitor u ∈ N(v),
s.t. rj−1

u = minw∈N(v) rj−1
w . In case the length of rj−1

u

and rj−1
v differ, we make them equal by prepending ze-

ros to the smaller number rj−1. The result rj
v for node v

gives the maximum position, s.t. the (rj
v)th bit of number

rj−1
v is 1 (i.e. y

rj
v

v = 1) and the (rj
v)th bit of rj−1

u is 0 (i.e.

y
rj

v
u = 0). If rj−1

v is a minimum of all rj−1 (i.e. rj−1
v ≤ rj−1

u),
then we set rj

v = 0. Taking into account both cases yields:
rj

v := max({k|(yk
v > yk

u) ∧ (rj−1
v > rj−1

u)} ∪ {0}). Observe
that by definition all bits higher than the (rj

v)th bit are the

same (i.e. yi
u = yi

v for rj
v < i ≤ log(j) n) if rj−1

v ≥ rj−1
u .

Termination of Algorithm MIS will be shown in Section
6 for growth-bounded graphs. However, the algorithm is
robust in the sense that it is correct for general graphs as
well.

A node executes phases, stages and competitions in a syn-
chronous manner with its neighbors. For a reader not famil-
iar with distributed computing this might seem a too strong
assumption. A simple way to solve the problem is that we
let all nodes know an upper bound of n. With that all nodes
can execute all steps of the algorithm in lock-step, even if
some of the nodes are not participating in some of the steps
(because they are not competing anymore, for instance). On
the one hand this guarantees global synchronization, on the
other hand our algorithm is not uniform anymore.

A better solution is to use a local synchronizer (i.e. syn-
chronizer α). With that, all messages can be exchanged
completely asynchronously; the only constraint is that nodes
need to wait until their neighbors have signalled that they
are okay with executing the next step of the algorithm. Us-
ing a synchronizer it may happen that some nodes already
are two stages ahead of others, however, locally all nodes
always are within one step.

5. APPLICATIONS OF MIS
Our MIS algorithm serves as a key building block to tackle

many other problems for growth-bounded graphs. We give
three well-known examples.

Algorithm MIS

For each node v ∈ V
1: repeat
2: {Stage start} state sv := competitor
3: repeat
4: {Phase start} r0

v := IDv

5: if sv = ruler then sv := competitor end if
6: j:=0
7: repeat
8: {Competition start} j:= j+1
9: if sv = competitor then

10: Select competitor u ∈ N(v) with rj−1
u =

minw∈N(v) rj−1
w

11: rj
v := max({k|(yk

v > yk
u)∧ (rj−1

v > rj−1
u)∪{0})

12: end if
13: Update state sv {Competition end}
14: until @u ∈ (N(v)∪v) with su = competitor {Phase

end}
15: until @u ∈ (N(v) ∪ v) with su = ruler {Stage end}
16: until sv ∈ {dominator,dominated}

Algorithm Update State

1: if sv = competitor then
2: Exchange rj with competing neighbors t ∈ T ⊆ N(v)
3: if ∀t ∈ T holds rj

t > rj
v then

4: sv := dominator
5: else if ∀t ∈ T holds rj

t ≥ rj
v then

6: sv := ruler
7: end if
8: end if
9: Exchange state s with all neighbors t ∈ N(v)

10: if ∃ t ∈ N(v) with (st = dominator) then
11: sv := dominated
12: else if (sv 6= ruler)∧ (∃ t ∈ N(v) with (st=ruler)) then
13: sv := ruled
14: end if

5.1 CDS and MDS
In order to obtain a CDS given a MIS S, each node v ∈ S

chooses a shortest path for every node u ∈ (N3(v) ∩ S)
with IDu < IDv and adds all nodes from the path to the
CDS. Because the size of the set N3(v) ∩ S is at most f(3)
and the length of any chosen path is at most 3, at most
3 · f(3) · |S|+ |S| nodes form the CDS. Since S is a constant
approximation of the MDS in a growth bounded graph, we
get a constant approximation of the Minimum CDS (MCDS)
in O(log∗ n) time. See also [2]. Due to a lower bound [14]
of Ω(log∗ n) to get a constant approximation of an MDS,
our algorithm has asymptotically optimal time complexity
for the MDS and MCDS problem. (Observe that the lower
bound is also valid for the MCDS problem, since a MCDS is
a constant approximation of an MDS in a growth-bounded
graph.)

5.2 PTAS for MDS and MaxIS
By using the clustering technique from [11] together with

our MIS algorithm, a (1 + ε)-approximation for the MDS

and MaxIS problem is computed in O(log∗ n/εO(1)) time.

Figure 1: Graph showing a complete execution of Algorithm MIS. Dominators and dominated nodes are
shown with a dotted line. Ruled nodes with a dashed line.

Figure 2: Illustration of stages, phases and competitions.

5.3 δ+1 Coloring
We state two methods for computing a δ+1 coloring, both

relying on the same observation that a node v can color all
its neighbors if no other node u ∈ N3(v) does so at the same
time. See Figure 3.

Figure 3: Illustration showing that the distance be-
tween two nodes concurrently coloring their neigh-
bors must be at least 4

In the first procedure a node v competes against a neigh-
bor u ∈ N3(v), i.e. we compute a MIS S on the graph
G′ = (V, E′) with E′ = E ∪ {(u, v)|{(u, s), (s, v)} ⊆ E} ∪
({(u, v)|{(u, s), (s, t), (t, v)} ⊆ E}). All MIS nodes v ∈ S
color all their neighbors in G and themselves, taking into
account already used colors of colored nodes w ∈ N2(v).
This procedure is repeated for all uncolored nodes. In each
iteration i an MIS Si is computed and an uncolored node
u ∈ V either gets colored or has distance at most three in
G to a node v ∈ Si. The union of MIS Si and Sj with i 6= j
forms an independent set in G. The number of independent
nodes for node v at distance at most three is bounded by
f(3). Thus after at most f(3) computations of a MIS in G′

node v gets colored. The graphs G′ is also growth-bounded
with f ′(r) ≤ f(3 · r), yielding an overall running time of
O(log∗ n). Due to Linial’s Ω(log∗ n) [15] lower bound our
algorithm is asymptotically optimal. Observe that in or-
der to compete against all nodes in Nk(v) messages of size
O(log n) are sufficient, since a node only needs to know the
minimum result of a competition. At first a node broadcasts
its own result to all neighbors and from then on forwards the
smallest result it received so far for k−1 rounds. A distance
two coloring with the same message and time complexity
can be obtained, when every node v competes against all
nodes u ∈ N6(v) instead of N3(v) and colors its two hop
neighborhood.

Alternatively to the above method a MIS S on G = (V, E)
can be computed first. Next we consider the graph G′

defined by nodes S and edges between two nodes u, v ∈
S, if they can reach each other by a path of length at

most three, i.e. G′ = (S, E′) with E′ = {(u, v)|u, v ∈
S ∧

(
(∃s ∈ (V \ S)({(u, s), (s, v)} ⊆ E) ∨ (∃s, t ∈ (V \

S)({(u, s), (s, t), (t, v)} ⊆ E)
)
}. We compute a MIS S′ ⊆ S

on G′. Every node v ∈ S′ colors all its neighbors, respecting
already used colors. The process is repeated for all uncol-
ored nodes. Thus in an iteration a node v either gets colored
or a neighbor u ∈ N4(v) ∩ S′ colors itself and all its neigh-
bors. Since colored nodes are not considered any more, for
a node v there are at most f(4) such neighbors u ∈ N4(v).
Therefore in total at most 2 · f(4) MIS computations are
required, giving an overall running time of O(log∗ n).

6. ANALYSIS
The proof for Algorithm MIS is done by showing correct-

ness of the computed MIS first, i.e. dominators are inde-
pendent and every node has a dominator as a neighbor at
the end. Then we focus on termination and give evidence
that a phase ends after at most log∗ n + 2 competitions.
In other words no node can be a competitor for more than
log∗ n + 2 competitions. In addition we prove that after ev-
ery phase some nodes near a competitor v stop competing
with v for the rest of the stage. As a next step, we prove
that in the f(2)st phase every competing node must end up
in exactly one clique of rulers and thus in the next phase the
node in the clique with smallest ID becomes a dominator.
Putting all things together yields that after a stage every
non-dominated node and non-dominator has another dom-
inator within hop distance f(2) + 3. Since dominators are
independent and the number of independent nodes within
distance f(2)+3 is constant, it follows that after a constant
number of stages the MIS is computed.

Lemma 3. No dominators can be adjacent. On termina-
tion of Algorithm MIS every node is either a dominator or
must have at least one dominator as a neighbor.

Proof. When a node v becomes a dominator, no neigh-
bor u ∈ N(v) turns into a dominator in the same competi-
tion, since result rv is smallest for all neighbors.

When a node v becomes a dominator after competition
j, no neighbor can become a dominator or a ruler later.
This follows from the fact that dominators don’t alter their
states and due to Algorithm Update State (line 12) for all
neighbors u ∈ N(v) holds that su = dominated and they
will remain in that state, as long as they are adjacent to a
dominator.

The property that every node gets dominated or is a dom-
inator after the execution of Algorithm MIS follows directly
from the condition in line 16.

The next lemma bounds the number of competitions
per phase and furthermore says that all competitors must
change their states during a phase (as illustrated in Figure
2).

Lemma 4. After a phase, i.e. after at most log∗ n + 2
recursive competitions, no node is a competitor.

Proof. The first competition is based on the IDs, which
have at most log n bits. The result of the first competi-
tion r1 gives an index of a bit of the ID and thus re-
quiring at most dlog log ne bits. The result r2 of the sec-
ond competition is a number less than dlog log ne and uses
at most dlog log log ne bits etc. In general rj needs up to

dlog(j+1) ne bits. After log∗ n + 1 (see Definition 2) com-
petitions the result will be a single bit, i.e. 0 or 1. If
(rlog∗ n+1

v = 0) ∨
(
∀u ∈ N(v) holds rlog∗ n+1

u = 1
)

then
sv ∈ {dominator,ruler} else sv ∈ {dominated,ruled}. Thus
every node becomes a non-competitor once. Since within the
loop (lines 7 to 14) no node turns from a non-competitor into
a competitor, the lemma follows.

The upcoming Lemma 5 essentially guarantees that
phases and stages are locally synchronous, i.e. for a node
v no passive (i.e. ruled) neighbor u ∈ N(v) can compete in
a phase or start a new stage, as long as node v is still active
in the current phase (i.e. it is a competitor) or stage (i.e. it
is a ruler or competitor).

Lemma 5. As long as v is active (i.e. it is a competitor
or ruler) in some stage, neither a neighbor can start a new
stage nor can a passive (i.e. ruled) neighbor become active
(i.e. compete in some phase) during that stage.

Proof. Consider the first competition j > 1 of some
phase, where node v, which has not taken part in competi-
tion j − 1, competes with a node u, which has participated
in competition j − 1. Assume v took part in a prior com-
petition i with i < j in the same phase. Then v could not
have passed the condition in line 14 in Algorithm MIS as
long as u stays a competitor. Assume v did not partici-
pate in an earlier competition i with i < j. Due to the
local synchronizer (line 9 in Algorithm Update State), i.e.
all non-dominated and non-dominators wait until they have
received the state of all non-dominated and non-dominators
neighbors, v knows that u is a competitor after the first
competition of the phase. Thus it cannot pass the condition
in line 14 in Algorithm MIS and is not able to start a new
phase.

Once a node v becomes a ruler, no neighbor can remain a
competitor in Algorithm Update State. A dominated node
does not change its state any more. All neighboring rulers
pass the condition in line 14 in Algorithm MIS simultane-
ously with v but fail the condition in line 15 and change
their states in line 5 to competitor. Thus they will not start
a new stage. Any ruled node w ∈ N(v), which also passes
the condition in line 14, must fail in line 15, since neighbor
v is a ruler. Thus it cannot start a new stage. Additionally,
it cannot become a competitor (line 2) and be active in a
later phase. Any ruled node w ∈ N(v) that did not pass the
condition in line 14 will get to know that neighbor v became
competitor again and cannot pass the condition in line 14 as
long as neighbor v is a competitor. Thus node w ∈ N(v) can
only start a new stage once all neighbors N(w), including
node v, have state ruled.

Definition 6. Let the set U ⊆ V be a connected set of
competitors of maximal size, s.t. no competitor w /∈ U is
a neighbor of a node v ∈ U . Let U i

v be such a set in the
beginning of phase i with v ∈ U i

v.

Initially, node v starts with all nodes at the same time,
i.e. U0

v = V . For i > 0 Lemma 7 shows that the set U i
v

must have been a connected set of rulers (of maximal size)
at the end of phase i − 1. Furthermore, they must must
have become rulers in the same competition of the same
phase. Lemma 9 ensures that all nodes of a set of connected
rulers have the same result r (and the results in the previous
competition have the same prefix). Afterwards, Lemma 11

shows that in each phase some nodes near every ruler stop
competing with it.

Lemma 7. All nodes from U i
v for every v ∈ V with i >

0 must have become rulers in the same competition during
phase i − 1 of a stage. Furthermore, no ruler w /∈ U i

v is a
neighbor of a ruler u ∈ U i

v, i.e. U i
v must be of maximal size.

Proof. In case there exist two nodes from U i
v that be-

came rulers in a different competition of some phase or in
the same competition but in a different phase, then since U i

v

is connected there must exist two neighbors u, w ∈ U i
v with

u ∈ N(w) for which this is also true.
Due to Lemma 5 adjacent nodes execute phases and stages

in a synchronous fashion, i.e. neighbors u, w can only start
a new phase or stage together or one of them has to wait
while the other is executing. Thus nodes u, w must execute
the same phase. Assume node u became a ruler in the same
phase as u ∈ N(w) but in an earlier competition. Then node
w would have become ruled and could not alter its state to
competitor in that stage.

Observe that when a node u becomes a ruler, all neigh-
bors either become ruled, dominated or rulers themselves
in phase i − 1. All rulers will pass the condition in line 14
Algorithm MIS but fail the condition in line 15 and thus
start a new phase together. Therefore there cannot be a
ruler w /∈ U i

v with a neighbor u ∈ U i
v, since w would have

become a competitor in phase i and due to the maximality
of U i

v it would have to hold that w ∈ U i
v. Since all ruled and

dominated nodes will not be active (i.e. compete) in the
following phases of that stage, no others node can be added
to U i

v.

Definition 8. A node u ∈ V can be reached by a path p
of rulers from v, if ∃p = (v = t0, t1, ..., u = tq) s.t. ∀(0 ≤
i < q) holds sti = ruler}

Lemma 9. If nodes U i
v with i > 0 became rulers in com-

petition j in phase i−1 then the results rj
v and rj

u for a node
u ∈ U i

v as well as the prefixes of rj−1
v and rj−1

u are the same,
i.e. yi

v = yi
u for rj

v < i ≤ log n.

Proof. Assume u was reachable by the path p = (v =
t0, t1, ..., u = tq) of rulers from v and rj

v 6= rj
u. Due to maxi-

mality of U i
v (Lemma 7) all rulers ti are in U i

v, i.e. ti ∈ U i
v

for 0 ≤ i < q. By assumption there would have to exist two
neighboring rulers tl, tl+1 ∈ U i

v with rj
tl
6= rj

tl+1
. Since ei-

ther rj
tl

> rj
tl+1

or the other way round, they could not both

have become rulers in the same competition contradicting
Lemma 7. Assume their prefixes differed, i.e. yi

v 6= yi
u for

rj
v < i ≤ log n. Then rj

v could not be equal to rj
u.

The next lemma gives evidence that for a ruler v after ev-
ery phase one node w at hop distance two and all its neigh-
bors N(w) will not compete with v for the rest of the stage.
Since there are at most f(2) of such nodes w (see Lemma
14) only f(2) + 1 phases are needed until a ruler has no two
hop neighbors and thus must be in a clique. After the first
competition of the next phase a dominator is chosen in ev-
ery clique (see Lemma 15). This implies that no node can
become a ruler in the last phase of a stage (see Figure 2).

Definition 10. Let the set W i
v ⊆ U i

v be the set of nodes
at distance two from node v that compete with v in phase i,
i.e. W i

v := (N2(v) \N(v)) ∩ U i
v.

Figure 4: Graph of some nodes that participated with node v in the first competition

Lemma 11. Consider a node v, which has become a ruler
in the jth competition in phase i. If |W i

v| > 0 then ∃w ∈ W i
v,

which cannot be reached by a path of rulers from v.

Proof. The proof will be done by induction. Let us in-
vestigate the first competition, which is based on IDs.

Consider the value of r1
v. If r1

v = 0, then v has a smaller
ID than all its neighbors and thus is a dominator. If r1

v =
log n, then by definition ylog n

v = 1 and node v must have
had a neighbor u with ylog n

u = 0. This neighbor u must
have r1

u < log n and thus r1
v cannot be a ruler. So assume

r1
v ∈ [1, log n− 1].
Due to Lemma 9 all rulers s reachable by a path of rulers

from v must have rj
s = rj

v and their values rj−1 must have
the same prefix as v. By definition of rj

v there must exist
a node u ∈ N(v), s.t. yi

v = yi
u for rj

v < i ≤ log n and

1 = y
rj

v
v > y

rj
v

u = 0. Thus IDv > IDu. Since nodes u and
v differ in position r1

v, we have r1
u 6= r1

v. Since v is a ruler,
r1

v < r1
u. Because r1

v < r1
u and IDv > IDu, this neighbor u

must itself have a neighbor w with IDw < IDu and yi
w = yi

u

for r1
u < i ≤ log n and 1 = y

r1
u

u > y
r1

u
w = 0. Apart from that,

v and u have an ID with the same prefix from bit (at most)
log n down to bit r1

v + 1. The node w cannot be a neighbor
of any ruler x with value r1

x = r1
v, since otherwise r1

v ≥ r1
u

because 1 = y
r1

u
v = y

r1
u

u > y
r1

u
w = 0, i.e. the prefix of w is

smaller than that of v. See Figure 4.
Let us look at the jth competition. Assume node v was

competing in all previous competitions and was in particular
not a ruler after the (j−1)st one. The arguments are similar
to those of the first competition.

Assume 0 < rj
v ≤ log(j) n then the same reasoning applies

as for the first competition – only the value for r1
v has to be

substituted by rj
v, IDv by rj−1

v and log n by log(j) n.
Assume rj

v = 0. Since v was not a ruler (or dominator)
in competition j − 1, there exists a neighbor u ∈ N(v) with
rj−1

u < rj−1
v . Neighbor u cannot participate in competition

j, since otherwise by definition rj
v > 0. Since v is a ruler, u

must have become dominated or ruled in competition j − 1
by a neighbor w ∈ N(u). If w became a dominator in round
j − 1, all neighbors s ∈ N(w) became dominated in round
j − 1 as well. Thus w cannot be reached by a path of rulers
from v. If w turned into a ruler in round j−1 and v in round
j, then due to Lemma 7 nodes w, v cannot be in the same

connected set of rulers and thus node w cannot be reached
by a path of rulers from v. See Figure 5.

Figure 5: Graph of some nodes that participated
with node v in competition j − 1 and j

Lemma 12 shows that every connected set of competitors
in phase j must be a subset of a previous connected set of
competitors from phase i with i < j. This will be used by
Lemma 13 to show that if a set of arbitrary nodes does not
have a common node with a set of connected competitors
in some phase, then this will hold for all later phases of the
stage.

Lemma 12. If U i ∩ U j 6= {} with i < j for some stage,
then U j ⊆ U i.

Proof. For i = 0, we have that U i = V and the lemma
follows. Once the nodes from U i with i > 0 became rulers
in phase i−1, all nodes v ∈ N(u) with u ∈ U i became ruled
or dominated and thus cannot become a competitor in that
stage and therefore cannot be in any set U j for phase j with
i < j of that stage. Thus a competitor v ∈ U i ∩ U j cannot
reach a competitor t /∈ U i by a path of competitors, since

Figure 6: Algorithm MIS on an instance of a UDG. It shows the state of each node after the very first
competition. For dominators and rulers a circle indicating the transmission range is shown. Rulers are
depicted by green diamonds, ruled nodes by big crosses, dominated nodes by small crosses, dominators by
small circles and competitors by red boxes. As can easily be seen, most nodes are already dominated after
the first competition. After the second there are no competitors left and after the first competition of the
second stage the algorithm is done.

the path would contain a ruled or dominated node v ∈ N(u)
with u ∈ U i. Thus if U i ∩ U j 6= {}, then U j ⊆ U i.

Lemma 13. For a set T ⊂ V , s.t. U i ∩ T = {} holds that
U j ∩ T = {} with i < j.

Proof. Due to Lemma 12, we have that U j ⊆ U i. Due
to the independence of U i and T , U j and T must also be
independent.

The next two lemmas together give an upper bound of the
number of phases of a stage.

Lemma 14. If a node v has become a ruler in the f(2)th

phase, then it is in a clique of competitors in phase f(2)+1.

Proof. Let a node w, as defined in Lemma 11, for phase i
be denoted by wi ∈ W i

v. Lemma 11 implies that no neighbor
t ∈ N(wi) can be a ruler reachable by a path of rulers from
v. Thus by definition U i+1

v ∩ N(wi) = {}. Due to Lemma
13, no node t ∈ N(wi) ∪ wi will be reachable by a path of
competitors from s with s ∈ U i

v for the rest of the stage.
Since W i

v ⊆ U i
v, this implies that W i+1

v ⊆ (W i
v \ (N(wi) ∪

wi)). As a consequence nodes wi ∈ W i
v and wk ∈ W k

v with
i 6= k (i.e. from different phases) are independent. The size
of a maximum independent set in N2(v) is upper bounded
by f(2). In every phase i, at least one node wi ∈ W i

v at
distance two from v is removed. Thus after at most f(2)
phases, node v cannot reach any competitor at hop distance

at least 2 by a path of competitors, i.e. the nodes U
f(2)+1
v

form a clique.

Lemma 15. If a node v is still competing in the (f(2) +
1)st phase then either v or a neighbor of v will become a
dominator in that phase.

Proof. Using Lemma 14, we have that each competitor
v is in a clique in the beginning of the (f(2) + 1)st phase.
Thus in the first competition the node with the smallest ID
of the clique will become a dominator.

Lemma 15 implies that after a stage no node can be a
ruler or competitor. Because of this and since a node can-
not become ruled (or dominated) without having a ruler
(or dominator) in its neighborhood (see Algorithm Update
State), it follows that after a stage at least one competing
node must become a dominator. Next we show that for
every non-dominated node v a dominator is chosen within
constant distance from v. Since dominators are independent
(see Lemma 3) and in a growth bounded graph the num-
ber of independent nodes within constant distance is also a
constant, only a constant number of stages are needed (see
Lemma 17).

Lemma 16. After a stage, a node v is either a dominator
or there exists a node that has become a dominator in that
stage within hop distance f(2) + 2.

Proof. We will show that the distance between a ruler
in phase i and node v is at most i. The proof will be done
by induction: After the first phase, every node v is a ruler
itself or adjacent to a ruler.

Assume the distance was at most i− 1 after the (i− 1)st

phase. In the ith phase only rulers become competitors again

(line 5) and participate in the competitions. Thus after the
ith phase, every competitor will become a ruler or a domina-
tor or have at least one of the two in its neighborhood. Thus
the distance between a ruler and a ruled node grows at most
by 1 per phase. Due to Lemma 15 every competitor or one
of its neighbors must become a dominator in the (f(2)+1)st

phase.

Lemma 17. After at most f(f(2) + 3) stages, i.e. execu-
tions of the repeat loop (lines 1 to 16), the computation of
the MIS has finished.

Proof. Assume node v is ruled. Then due to Lemma 16
after at most f(2) + 2 phases node v or some neighbor(s)
u ∈ N(v) start a new stage, i.e. all neighbors of v or u
(or of both) are ruled. Due to Lemma 16 a dominator is
chosen for any node that has competed in a stage within
distance f(2)+2, implying a distance of up to f(2)+3 for v.
Since dominators are independent (Lemma 3), the number
of dominators within distance f(2)+ 3 is upper bounded by

the size of a maximum independent set in Nf(2)+3(v), which
is f(f(2) + 3). This yields that at most f(f(2) + 3) stages
are needed.

Theorem 18. The total time to compute a MIS is in
O(log∗ n) and each message is of size O(log n).

Proof. For initialization all IDs (of maximum length
log n) have to be exchanged among neighbors requiring one
communication round for the first competition to execute.
The following update of the state needs every message to
be of size O(log log n) and takes three rounds of communi-
cation. Namely, exchanging the result of the prior com-
petition which also serves as input for the next. Addi-
tionally, a request and possibly delayed reply of the cur-
rent state of all neighbors. Apart from that no commu-
nication has to take place for initialization and the first
competition. In an analogous derivation the second com-
petition requires only messages of size O(log log log n) etc.
and three communication rounds. This yields together with
Lemma 4 that during one phase O(log∗ n) rounds of com-

munication have to take place because
∑log∗ n+2

i=1 log(i) n ≤
log n + log log n + ... + 222

+ 22 + 2 + 1 ≤ O(log n). Since a
stage consists of f(2) + 1 phases (see Lemma 15) and after
f(f(2) + 3) stages (see Lemma 17) the algorithm is done,
the lemma follows.

7. CONCLUSIONS
In this paper we have presented a novel deterministic coin

tossing technique which enables us to achieve an asymptot-
ically optimal distributed algorithm for computing a MIS
in growth bounded graphs. Although the hidden constants
in the analysis are significant, our simulations indicate that
the constants will be small in practice. Indeed, quite sur-
prisingly, the example of Figure 6 was completed after 3
rounds of communication only. Our algorithm is applicable
in various settings beyond the MIS problem, for instance
for computing a δ+1 coloring or an asymptotically optimal
CDS in O(log∗ n).

We believe that our paper strikes a chord with symmetry
breaking. Randomized symmetry breaking has the problem
of only producing results “in expectation”. Often however
symmetry breaking algorithms are used as building blocks,
and then they need to work “with high probability” which

regularly causes a logarithmic overhead. In other words,
when it comes to “ultra-fast” distributed algorithms, deter-
minism may have an advantage over randomization.

Finally, as promised in Section 3, let us discuss the com-
munication model in more detail. We presented our algo-
rithm in the classic local model, where each node can talk
to each neighbor in each round. In some application do-
mains, in particular in wireless networks, this assumption
is too demanding, as it asks for a perfect (and hence non-
existent!) media access control (MAC) protocol. In reality
MAC protocols are quite unreliable, with messages not being
received because of wireless channel fluctuations, or message
collisions. One way to address this is to study the problem
in a model that includes the MAC layer, in the sense that
the algorithm designer has to exactly specify at what time
the nodes transmit or receive. This is a cumbersome job,
especially since the result is often related to the algorithm
in the clean local model, e.g., the with-collision-detection
model [19] uses the local algorithm presented in this paper
as a building block. For a MIS algorithm in a wireless model
without collision detection see, e.g. [17].

What about situations where the software engineer has no
control over the MAC layer? How should our algorithm be
implemented? We argue that one should simply simulate
our algorithm in the ”rollback compiler“ self-stabilization
framework [5]. Note that our algorithm does not use all the
flexibility provided by the local model, instead the result
messages ri

v can be broadcast in the neighborhood. In the
self-stabilization framework our protocol then boils down to
repeatedly transmitting the same single message, contain-
ing information about the relevant result values computed
in the individual stages/phases/competitions. This message
is of logarithmic size, and resilient to a whole array of fail-
ures and dynamics, e.g., message collisions, message failures,
even nodes rebooting and topology changes due to mobility
or late node wake-ups. Nodes will always have a correct MIS
at most O(t log∗ n) time after the last failure, assuming that
each node can successfully transmit a message at least once
in time t!

8. REFERENCES
[1] N. Alon, L. Babai, and A. Itai. A fast and simple

randomized parallel algorithm for the maximal independent
set problem. J. Algorithms, 7(4):567–583, 1986.

[2] K. Alzoubi, X. Li, Y. Wang, P. Wan, and O. Frieder.
Geometric Spanners for Wireless Ad Hoc Networks. IEEE
Transactions on Parallel and Distributed Systems, 14(5),
2003.

[3] A. Andersson, T. Hagerup, S. Nilsson, and R. Raman.
Sorting in Linear Time. Journal of Computer and System
Sciences, 57:74–93, 1998.

[4] B. Awerbuch, A. V. Goldberg, M. Luby, and S. A. Plotkin.
Network decomposition and locality in distributed
computation. In Proceedings of the 30 th Symposium on
Foundations of Computer Science (FOCS), pages 364–369,
1989.

[5] G. V. B Awerbuch. Distributed program checking: a
paradigm for buildingself-stabilizing distributed protocols.
In Proceedings of the 32nd Annual Symposium on
Foundations of Computer Science (FOCS), 1991.

[6] R. Cole and U. Vishkin. Deterministic Coin Tossing with
Applications to Optimal Parallel List Ranking. Inf.
Control, 70(1):32–54, 1986.

[7] B. Gfeller and E. Vicari. A Randomized Distributed
Algorithm for the Maximal Independent Set Problem in
Growth-Bounded Graphs. In Proc. of the 26 th ACM
Symposium on Principles of Distributed Computing
(PODC), 2007.

[8] A. Goldberg, S. Plotkin, and G. Shannon. Parallel
Symmetry-Breaking in Sparse Graphs. SIAM Journal on
Discrete Mathematics (SIDMA), 1(4):434–446, 1988.

[9] A. Israeli and A. Itai. A Fast and Simple Randomized
Parallel Algorithm for Maximal Matching. Information
Processing Letters, 22:77–80, 1986.

[10] F. Kuhn, T. Moscibroda, T. Nieberg, and R. Wattenhofer.
Fast Deterministic Distributed Maximal Independent Set
Computation on Growth-Bounded Graphs. In Proc. of the
19 th Int. Symposium on Distributed Computing (DISC),
2005.

[11] F. Kuhn, T. Moscibroda, T. Nieberg, and R. Wattenhofer.
Local Approximation Schemes for Ad Hoc and Sensor
Networks. In Proc. of the 3 rd ACM Joint Workshop on
Foundations of Mobile Computing (DIALM-POMC), 2005.

[12] F. Kuhn, T. Moscibroda, and R. Wattenhofer. On the
Locality of Bounded Growth. In Proceedings of the 24 th

ACM Symp. on Principles of Distributed Computing
(PODC), pages 60–68, 2005.

[13] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What
Cannot Be Computed Locally! In Proc. of the 23rd ACM
Symp. on Principles of Distributed Computing (PODC),
pages 300–309, 2005.

[14] C. Lenzen and R. Wattenhofer. Leveraging lineal’s locality
limit. In Submission.

[15] N. Linial. Locality in Distributed Graph Algorithms. SIAM
Journal on Computing, 21(1):193–201, 1992.

[16] M. Luby. A Simple Parallel Algorithm for the Maximal
Independent Set Problem. SIAM Journal on Computing,
15:1036–1053, 1986.

[17] T. Moscibroda and R. Wattenhofer. Maximal Independent
Sets in Radio Networks. In Proceedings of the 24 th ACM
Symp. on Principles of Distributed Computing (PODC),
pages 148–157, 2005.

[18] A. Panconesi and A. Srinivasan. Improved distributed
algorithms for coloring and network decomposition
problems. In Proc. of the 24th annual ACM symposium on
Theory of computing (STOC), pages 581–592. ACM Press,
1992.

[19] J. Schneider and R. Wattenhofer. An Asymptotically
Optimal Distributed Maximal Independent Set Algorithm
for Wireless Networks with Collision Detection. In
Submission.

