WORKSHOP ON WEB PERSONALIZATION, RECOMMENDER SYSTEMS AND SOCIAL MEDIA, 2015 1

Spoilers Ahead - Personalized Web Filtering

Pascal Bissig, Philipp Brandes, Roger Wattenhofer, Roman Willi
ETH Zurich
firstname.lastname @ethz.ch

Abstract—Unwanted content on web pages can take many
forms, be it ads, malicious code, pointless clutter, or specific
topics that the user does not want to read about (yet). Unlike
most other work, we focus on the latter. The user can define
terms based on which we prevent the disclosure of undesired
information (e.g., the latest sports result) and warn the user
before it is revealed. The user can decide if and when the filtered
elements should be displayed. We define this formally as the
node removal problem and show its equivalence to the A/P-
hard knapsack problem. We developed a proof of concept Firefox
extension to filter web pages based on user defined terms and
our heuristic. Our evaluation shows that we correctly distinguish
between wanted and unwanted content in approximately 9 out
of 10 cases.

Keywords-personalization techniques, web personalization, fil-
tering

I. INTRODUCTION

Be it Ads, spam or malicious code, Unwanted content on
the web can take many forms. While there exist great filters
for ads, spam and malicious code, all these problems share
the property that one filter mostly fits all users. For example,
if one user considers content to be an ad, most other users
will do so as well. The same holds for malware and spam.
This means that filters can be constructed once and applied to
all users which is how ad- or malware filters usually work. In
addition to that, ad filters [1]] as well as spam filters heavily
rely on blacklisting of hosts that serve either content type.

In this paper, we focus on filtering user specific content.
For scalability reasons it is impossible to have a specialized
filter for each user specific topic. Even worse, classical host
blacklisting techniques do not apply in our case since unde-
sired content may very well be served by the same host as
the content the user wants to see. Think of a news site that
reports on the latest sports results. Since you did not watch
the event yet, you do not want to know the result but may
still be interested in the latest political developments, which
are shown on the same web page. The upside in our scenario
is that we are not competing with companies selling ads or
black-hats distributing malware.

We present a personalized filter that removes content from a
web page based on user specified terms or topics. The running
example in this paper is a spoiler such as a plot development
in a TV show or a sports result. Some communities have dealt
with this by requiring spoiler tags but this requires manually
tagging every post and is topic but not user specific. However,
our filter is universally applicable to remove undesired content
and we use the notion of a spoiler just as an example.

HTML objects are by definition organized in a tree structure.
The Document Object Model Tree (DOM Tree) maps an

HTML document to a tree structure whose nodes can be
addressed and manipulated easily. These nodes include text,
links, images, and all other content displayed on a website. We
replace nodes that contain undesired content with placeholder
nodes that reveal the original content when clicked. This
preserves the overall layout of a web page when removing
undesired content.

We explore the tradeoff between removing as many spoilers
as possible while not removing too much unrelated content.
Only hiding all user defined terms on a web site does not lead
to the desired outcome since spoilers will be revealed by text or
pictures nearby. For example, sentences like
arrested for drunk driving* or “The
won the Super Bowl 28-24“ still reveal a lot of information
even though the spoiler terms are hidden. Especially so when
we consider the fact that the user herself defined which terms
to filter. Blocking the whole web page greatly diminishes the
user experience when applied to sites that serve content that
is mostly unrelated to the users filter terms, yet contains a
small section that reveals spoilers. Thus, neither of the two
extremes — solely hiding all user defined terms or blocking
the whole web page — are desirable. Unfortunately, the middle
ground — removing as many bad words from the web page
while removing as little good words as possible — turns out to
be an N'P-hard problem.

Hence, we use a heuristic to exploit the locality of content
in the DOM tree to filter entire paragraphs or sections of a
website that may contain spoilers.

II. RELATED WORK

There is a large number of different content filters. Designed
to filter specific undesired content types, they span from
lightweight browser based filters up to search-engine filters,
which may offer safety filters to exclude inappropriate links
from the search results. In between those two approaches,
there are solutions such as network-based filtering and content-
limited filters offered by Internet service providers [2].

Classic Content Filtering Problems. Advertisements and
malware are content types that received a lot of attention.
Both content types share the property that different people
share a common view of what qualifies as malicious content
or ads. This means that filtering such content comes down to
the task of identifying content that should be filtered once. The
obtained list of elements which should be hidden can then be
shared with all users such that the filtering logic on the client
side is simple and fast.

One example of such a filter is Prophiler [3l]. The focus
of the system is set on finding websites that serve mali-

WORKSHOP ON WEB PERSONALIZATION, RECOMMENDER SYSTEMS AND SOCIAL MEDIA, 2015 2

cious JavaScript code to its visitors. Malicious behavior is
detected by executing JavaScript in a virtual environment
which tracks behavior such as drive-by downloads. While
such systems identify malicious scripts with high accuracy, it
is computationally intensive to sift through large amounts of
websites. To reduce the computational requirements, Prophiler
uses machine learning to quickly discard benign websites. The
results can be used to efficiently blacklist websites that serve
malicious code to its visitors.

ZOZZLE [4] is a browser plug-in that recognizes JavaScript
malware, through static code analysis, while a user is visiting
websites. Our method follows ZOZZLE'’s idea of filtering con-
tent within the clients browser without using global blacklists.
However, since malware is still the same for most users, we do
not see the advantage of such a solution when filtering malware
instead of user specific content. The growing amount of junk
email has led to the development of email spam filters [S].
The arms race between spammers and filter providers has
fueled the development of a large number of different filtering
mechanisms ranging from host blacklisting [[6] to content
analysis [[7].

User Specific Content Filtering. Systems that allow users to
filter content based on personal preferences or circumstances
have also been proposed before. While malware- and Ad-filters
are vastly popular, user specific filters, to our knowledge, are
rarely applied. Since user specific topics should be filtered,
building a global blacklist is usually not practical since each
topic would require a custom blacklist. This is the main reason
why such filters, in general, are implemented to filter content
on the client machine. Existing filters do not apply to both:
general websites and arbitrary topics.

Goldbeck et al. [8] filter tweets according to user defined TV
shows or sporting events. However, their filtering mechanism
is only applied to tweets. Using blacklist creation methods
that are specific to the given scenario (TV shows or sporting
events), the system hides undesired content with high success
rates. However, to achieve this performance, many tweets that
do not contain any spoilers were hidden. While our approach
uses user defined keywords similar to the ones presented in this
paper, we do not limit the application scenario to twitter and
topics can be chosen freely. Guo et al. [9]] use Latent Dirichlet
Allocation to hide spoilers in movie reviews found on IMDB.
The effectiveness of the system is remarkable. However, its
application range is strongly limited due to the focus on IMDB
in both design and evaluation of the method. Boyd-Graber et
al. [10] show that crowd-sourcing is a viable option to obtain
annotated training data for their spoiler filter.

III. MODEL

We model a website as a rooted tree G = (V, E) with n
being the number of nodes |V|. Each node v € V contains
b(v) many keywords (bad words) and g(v) many unrelated
(good) words. Note that inner nodes of the tree can and do
contain good and bad words. We can remove any node v from
the graph, we denote this with cutting. Upon removing v, by
extension, all its children are removed from the graph as well.
We denote with G(v) and v(v) the sum of the bad and good

Fig. 1: Placing the cuts only at the leaf nodes to filter the
keywords

words of v and all of its children, respectively. Hence, 3(v) =
b(v) for every leaf v of the tree. Let R denote the set of nodes
that were removed. This set includes the children of explicitly
removed nodes. The user has to specify a threshold ¢. Our

oal is to remove as many bad words as possible subject to

ﬁ'ig < t. We call this the node removal problem.

A. Example

We show a simplified example in Figure [} The four nodes
containing keywords are shown in red and the corresponding
text of a node is replaced by the ID of that node.

In order to filter all nodes containing keywords at the leaf
node level, we need to perform four cuts in the tree at nodes 3,
4, 6, and 9 (indicated by a box surrounding the corresponding
node). If we use the minimal number of cuts, namely one cut
at the root node 1, we remove the whole web page.

IV. N'P-HARDNESS

We now show that finding the best set of cuts for a given tree
is N"P-hard. We show this by a reduction from the knapsack
problem, which is well known to be N'P-hard [11].

Theorem 1. The node removal problem is N'P-hard.

Proof: We briefly describe the traditional knapsack prob-
lem before we present the main idea of the reduction. There
are n items zp,..., 2z, and each item z; has weight w; and
value y;. The knapsack has a capacity of WW. The task is to
pack the knapsack and maximize the value of the set S of
items that are in the knapsack without putting too many items
in it, i.e., maximize Zzies y; subject to ZzieS w; < W.

We will mimic the knapsack problem in our graph. Each
node v that we remove will add value (bad words), but use
up space (removes too many good words compared to the
number of bad words, i.e., ggz; > t). The size of the knapsack
is mimicked by a single node vy that has b(vg) = W and
g(vo) = 0. Hence, maximizing the number of bad words that
are removed while staying below the threshold is equivalent to
maximizing the value of items in the knapsack while staying
below the capacity of the knapsack.

Given an instance I of the knapsack problem with I =
(W, (21,...,2,)) with each item z; = (w;,y;) and size of
the knapsack W, we create a rooted tree G = (V, E) with
n + 2 nodes and set the threshold ¢ to any positive number.
The root node has n + 1 children, v, ...,v,. Note that this
tree has depth 1. Node vy has by = W and gy = 0. Every

WORKSHOP ON WEB PERSONALIZATION, RECOMMENDER SYSTEMS AND SOCIAL MEDIA, 2015 3

Vo V1 (%] V3 V4

nodes
g(v;) 0 5 3 7 4
b(v;) 5 3 1 4 2
node removal problem
items 21 22 23 24
w; 2 2 3 2
knapsack problem

Fig. 2: Instance of knapsack problem with W = 5 (and
therefore b(vg) = 5) and the transformed instance of the
node removal problem. We set ¢ = 1. Thus, the number
of bad words b(v;) is the value of the item z;, and the
number of good words g(v;) is the sum of the value and the
weight of the item z;. The optimal solution S of the knapsack
problem is z2 and z3 (total value is 5). The optimal solution
R of the node removal problem is vy, vs,vs. The number

of bad words that are removed is 5 + 2 + 3. The ratio is
vier9Wi) 04347 1=t
S enblvi) — 5243 =TT

node v; with 1 <4 < n has b(v;) = y; and g(v;) = w;t + y;t.
Hence, there is a bijection between the items z1, ..., 2, from
the knapsack instance and the nodes v, ..., v, of our graph.
A simple example of this construction is depicted in Figure 2]

We now claim that if and only if there exists a set of items
S such that Zzies y; > Y and ZziES w; < W, then there
exists a set of nodes R in the node removal problem where we

remove at least W 4+ Y many bad words from the tree while

preserving % <t.

Let S be such a set. We claim that if we remove R :=
S U {vo} from the tree, then we have % < t and we

vER
remove at least W +Y many bad words. Since } _, b(vi) =

W 4+Y by construction, we now look at the ratio. We obtain

ZviER b(vl) W+Zvi€R\{vo}yi - W+Y ’

which establishes the claim.

Let R be the set, which, if removed, removes W +Y many
bad words from G. It is easy to see that vy must be part of
any optimal solution. We know that > pb(v;) > W +Y
and therefore

Z’U«LGR g(vl) _ ZvieR (wit + ylt)
ZU,ER b(vl) W+ ZvieR\{vg} Yi
; Y
_ Luerwit £Vt
W+Y -

S g wittYt
% < t holds, we

vieR Wi < tW and thus those items fit in the

ie., ZvieR o} Vi = Y. Since
know that ¢

knapsack.

This establishes the claim. []

Hence, the problem is A/P-hard. Even though there exists
a factor 2 approximation and even FPTAS for the knapsack
problem [11], we chose not to use either of these algorithms.
We do so for two reasons. None of these algorithms takes
the tree structure of the web page into account. Furthermore,
even the simple ones require the nodes to be sorted according
to their ratio of good to bad words. This takes O (nlogn)
time. Hence, we opt for a simpler algorithm that runs in linear
time (in the number of nodes) to ensure a smooth surfing
experience.

V. CONCEPT

Since the initial problem is AP-hard, we decided to use
a heuristic to select which nodes to remove. This heuristic is
based on the following assumptions:

o A node v’ that is close to a node v that contains bad words
has a higher chance of revealing unwanted content than
nodes further away (close in the number of hops in the
tree).

« Every node v that contains bad words must be removed.

The reason for the first assumption is based on the fact that
these nodes are also close on the web page as it is shown to
the user. Hence, the content of these nodes tends to be closely
related and thus node v should be considered for removal. The
second assumption ensures that we remove every user defined
keyword. Our algorithm traverses the graph three times; each
time starting from the root. Since the values S(v) and ~(v)
at every node v are not known to us in the beginning, we
store these during the first traversal of the tree. During the
second traversal, we consider each node v with S(v) > 0 and
its children. The bad words must originate from either the
node v itself or one of its descendants. Since every child v’
of v has a value 5(v’), we know which children contribute to
B(v). Furthermore, the number of children that contribute to
B(v) are a lower bound on the number of cuts that we need
to perform if we do not remove v. We denote this value with
¢(v). An example of this is shown in Figure

Armed with this information, we traverse the tree again —
starting from the root. At every node v we consider the ratio
r(v) = 5((2)), i.e., the minimal number of cuts we have to
perform if we do not remove v divided by the number of good
words in v and all its descendants. As soon as the ratio of a

Fig. 3: An example showing the number of children that
contain bad words c(v) for each node in addition to its Id
(notation: Id,c(v)).

WORKSHOP ON WEB PERSONALIZATION, RECOMMENDER SYSTEMS AND SOCIAL MEDIA, 2015 4

TABLE I: News sites including sections, keywords, and page
size in number of nodes used for evaluation.

[Website | Section [Keyword | # Nodes (bad / all) |

International IS- 188 /1753

20min.ch Finance Bank 388 /2333

’ Switzerland Ecopop 121/ 2135

Sport Sieg 200 / 2529

International IS- 62 /1203

. Economy Bank 50/ 1159
blick.ch Politics Ecopop 90 7801
Sport Sieg 58 7 1909

International IS- 186 / 4565

nzz.ch Finance Bank 530 / 4125

’ Switzerland Ecopop 67 /2904

Sport Sieg 215/ 1913

node v exceeds a predefined threshold 7', we remove it (and
thereby all its children) from the tree. Let us first assume that
¢(v) = 1, then this ratio is high once there are not many good
words left. For larger values of c¢(v), we implicitly assume
that the good words are spread out over its children. Thus,
in order to avoid too many cuts, we increase the chance to
remove node v — keeping in mind that it is better to err on
this side.

VI. EVALUATION

As a proof of concept, we implemented a Firefox extension
that uses our filtering mechanism. The extension was devel-
oped and tested with Firefox versions 34.0 to 36.01 [12]]. In
the following, we discuss the performance evaluation based
on the Firefox extension. Our test set contains three different
news sites as shown in Table [[l for which we downloaded the
overview page of the sections International, Sports, Economy/-
Finance and Switzerland/Politics. For each section we defined
a keyword that matches part of the content to filter with.

This set up provides us with nine different pages to process
and allows us to explore the tradeoff by filtering too much or
too little by varying 7'. All sites are tested against all spoiler
terms which means that we also test sites that do not contain
any content that matches the spoiler term. We downloaded
the sites on Sth of November 2014 and manually annotated
the parts of the web pages that contain spoilers before the
experiments were performed. Note that our approach is also
designed to remove pictures with using the alt attribute.

Depending on the user preference, 7' can be set in the
preferences of our plug-in. Decreasing the value of 7' will
lead to lower false negative rates and hence minimize the
probability of spoilers being shown. However, smaller values
of T also lead to higher false positive rates which means
that the likelihood of unrelated content being filtered grows.
Figure [4] shows the performance trade-off for varying values
for T. An ideal system would reach the top left corner
and maximize the true positive rate while maintaining low
false positive rates. The figure shows, for example, that our
system can reach a true positive rate of more than 90% with
reasonable false positive rates of less than 15%. The ideal
value for T' can vary for different web pages because of the

1
0.9

0.7
0.6
0.5
0.4

True Positive Rate

0.3

0.2

0.1 = ROC Curve
: : : | = = =Random Guessin
O H H H H 2 2 2 2 2

0 0.1 0203040506070809 1
False Positive Rate

e i

Fig. 4: ROC curve plot for varying values of T’

different structures in the DOM Tree. However, our test set
indicates that a global threshold still delivers good results.

REFERENCES

[1] H. Pomeranz, “A simple dns-based approach for blocking web advertis-
ing,” Aug. 2013.

[2] D. Danchev, “South korea to block port 25 as anti-spam countermea-
sure,” in http://www.zdnet.com/article/ south-korea-to-block-port-25-as-
anti-spam-countermeasure/, Nov. 2011.

[3] D. Canali, M. Cova, G. Vigna, and C. Kruegel, “Prophiler: A fast filter
for the large-scale detection of malicious web pages,” in Proceedings of
the 20th International Conference on World Wide Web, ser. WWW ’11.
New York, NY, USA: ACM, 2011, pp. 197-206. [Online]. Available:
http://doi.acm.org/10.1145/1963405.1963436

[4] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert, “Zozzle: Fast
and precise in-browser javascript malware detection,” in Proceedings
of the 20th USENIX Conference on Security, ser. SEC’11. Berkeley,
CA, USA: USENIX Association, 2011, pp. 3-3. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2028067.2028070

[5] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz, “A bayesian
approach to filtering junk e-mail,” 1998.

[6] C. Dietrich and C. Rossow, “Empirical research of ip blacklists,” in ISSE
2008 Securing Electronic Business Processes, N. Pohlmann, H. Reimer,
and W. Schneider, Eds. Vieweg+Teubner, 2009, pp. 163—171. [Online].
Available: http://dx.doi.org/10.1007/978-3-8348-9283-6_17

[71 A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly, “Detecting
spam web pages through content analysis,” in Proceedings of the
15th International Conference on World Wide Web, ser. WWW ’06.
New York, NY, USA: ACM, 2006, pp. 83-92. [Online]. Available:
http://doi.acm.org/10.1145/1135777.1135794

[8] J. Golbeck, “The twitter mute button: A web filtering challenge,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI *12. New York, NY, USA: ACM, 2012, pp. 2755-
2758. [Online]. Available: http://doi.acm.org/10.1145/2207676.2208673

[9] S. Guo and N. Ramakrishnan, “Finding the storyteller: Automatic spoiler
tagging using linguistic cues.” in COLING, C.-R. Huang and D. Jurafsky,
Eds. Tsinghua University Press, 2010, pp. 412-420. [Online]. Available:
http://dblp.uni-trier.de/db/conf/coling/coling2010.html#GuoR 10

[10] J. Boyd-Graber, K. Glasgow, and J. S. Zajac, “Spoiler alert:
Machine learning approaches to detect social media posts with
revelatory information,” in Proceedings of the 76th ASIS&T Annual
Meeting: Beyond the Cloud: Rethinking Information Boundaries,
ser. ASIST ’13. Silver Springs, MD, USA: American Society
for Information Science, 2013, pp. 45:1-45:9. [Online]. Available:
http://dl.acm.org/citation.cfm?1d=2655780.2655825

[11] V. V. Vazirani, Approximation Algorithms. Springer, 2004.

[12] MDN, “Firefox-version,” in https://www.mozilla.org/en-US/firefox/ re-
leases/, Mar. 2015.

http://doi.acm.org/10.1145/1963405.1963436
http://dl.acm.org/citation.cfm?id=2028067.2028070
http://dx.doi.org/10.1007/978-3-8348-9283-6_17
http://doi.acm.org/10.1145/1135777.1135794
http://doi.acm.org/10.1145/2207676.2208673
http://dblp.uni-trier.de/db/conf/coling/coling2010.html#GuoR10
http://dl.acm.org/citation.cfm?id=2655780.2655825

