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Abstract

This book introduces several techniques to make global localization meth-
ods, most importantly GPS, more robust. The main topic is the collective
detection (CD) maximum likelihood localization technique for Global Navi-
gation Satellite Systems (GNSS), such as GPS.

CD has several benefits compared to classical receiver techniques. It
improves the signal-to-noise ratio after processing of the received satellite
signals. This leads to more certain and robust localization even when mul-
tipath signals are present, such as in urban canyons. With a rough initial
estimate of the receiver state of the order of 100 km and one minute, the
improved received signal power can also be used to make localization fea-
sible with received signals as short as one millisecond. Snapshot receivers
which build on this idea have several benefits. One is the short time to first
fix (TTFF), compared to classical receivers which need approximately six
or even 30 seconds for such a first localization. Also, the few milliseconds of
signal captured by snapshot receivers amount to only a few kilobytes of data,
which permits offloading the location computation to the cloud. Therefore,
GPS data loggers can be built without correlators, which are the hardware
components that consume the most power in classical GPS receivers. Like
this, also the area of the receiver can be reduced. But most importantly,
snapshot receivers can run for months or even years on a small battery, like
a coin cell. Also, snapshot receivers allow for arbitrary duty cycles, as op-
posed to classical GPS receivers, which need to track the satellite signals
continuously. Further, current GPS receivers are susceptible to rogue sig-
nals sent by attackers to mislead the receiver. Using CD helps detecting
and mitigating such spoofing attacks.

As an alternative to GPS for situations with low received signal power,
such as in urban environments or even indoors, an experimental localiza-
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tion method is presented. This method localizes a receiver handset using
ADS-B signals sent by aircraft for air traffic control purposes. Aircraft are
comparatively close to the ground and send strong signals. Hence, these sig-
nals reach the Earth surface with signal power several orders of magnitude
stronger than GNSS satellite signals and are thus easier to recognize.

The first chapter gives an overview of current and potential future lo-
calization applications, which are more widespread than many people may
be aware of. Thereafter, the book introduces the concepts of GNSS and
localization in general, and then builds on these to discuss the robustness
improvements. As such, the book is suitable for readers with a technical
background, but no prior knowledge of localization systems. Readers famil-
iar with GNSS can skip the introductory chapters and directly dive into the
advanced material provided in the subsequent chapters.







Zusammenfassung

Dieses Buch präsentiert verschiedene Möglichkeiten, um globale Lokalisie-
rungsmethoden, insbesondere GPS, robuster zu machen. Das Hauptthema
ist die Collective Detection (CD) Methode für globale Navigationssatelliten-
systeme (GNSS) wie GPS.

CD hat mehrere Vorteile gegenüber herkömmlichen Empfängertechni-
ken. Es verbessert das Signal-Rausch-Verhältnis nach dem Verarbeiten der
empfangenen Satellitensignale. Das führt zu zuverlässigerer und robusterer
Lokalisierung, auch wenn Signalreflexionen empfangen werden, wie häufig
zwischen Hochhäusern. Mit einer ungefähren ersten Schätzung des Empfän-
gerzustands, in der Grössenordnung von 100 km und einer Minute, kann
die verbesserte Signalstärke auch genutzt werden, um Lokalisierung mit
nur einer Millisekunde empfangener Signale zu ermöglichen. Sogenannte
Schnappschuss-Empfänger, die auf diesem Prinzip beruhen, haben mehrere
Vorteile. Ein Vorteil ist die kurze Zeit bis zur ersten Lokalisierung, verglichen
mit konventionellen Empfängern, welche dazu ungefähr sechs oder sogar 30
Sekunden brauchen. Ausserdem resultieren die wenigen aufgezeichneten Mil-
lisekunden Signale in nur wenigen Kilobytes Datenvolumen, was es erlaubt,
die Positionsberechnung in die Cloud auszulagern. Deshalb können GPS-
Datenlogger ohne Korrelatoren gebaut werden, welche in herkömmlichen
GPS-Empfängern die Hardwarekomponenten mit dem höchsten Energiever-
brauch sind. So kann auch die Fläche des Empfängers reduziert werden. Aber
am wichtigsten ist, dass Schnappschuss-Empfänger monatelang oder sogar
jahrelang laufen können mit nur einer kleinen Batterie, wie einer Knopfzel-
le. Ausserdem können Schnappschuss-Empfänger mit beliebigem Arbeitszy-
klus betrieben werden, im Gegensatz zu herkömmlichen GPS-Empfängern,
welche die Satellitensignale fortwährend verfolgen müssen. Ferner sind gän-
gige GPS-Empfänger anfällig für arglistige Signale von Angreifern, die den
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Empfänger irrezuführen versuchen. Mit CD können solche Angriffe besser
entdeckt und entschärft werden.

Als Alternative zu GPS für Situationen mit schwachen Signalen, wie
zwischen Gebäuden und in Innenräumen, wird eine experimentelle Lokali-
sierungsmethode vorgestellt. Diese Methode lokalisiert einen mobilen Emp-
fänger mithilfe von ADS-B-Signalen, die von Luftfahrzeugen zu Flugsiche-
rungszwecken ausgesendet werden. Luftfahrzeuge verkehren vergleichswei-
se nah am Boden und senden starke Signale aus. Daher erreichen diese
Signale die Erdoberfläche mehrere Grössenordnungen stärker als GNSS-
Satellitensignale und können somit einfacher erkannt werden.
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1
Introduction

“The idea that a robot will become more aware of its environment,
that telling it to ‘go to the kitchen’ means something - navigation
and understanding of the environment is a robot problem. Those
are the technological frontiers of the robotics industry.”

— Colin Angle, CEO of iRobot Company

Global localization is a driver for so many applications that it is often consid-
ered to be a key technology of our time. For instance car navigation systems
and smartphones assist our navigation needs in unfamiliar places and are
therefore well-known. However, many people are unaware that localization
technology pervades the infrastructure that serves our lives every day. That
includes critical services such as communication, electricity distribution and
emergency services.

Due to their ubiquitous availability and high accuracy, Global Navigation
Satellite Systems (GNSS) such as the Global Positioning System (GPS) are
a universal localization technology that is widely and diversely used. Also,
GNSS receivers are cheap, which accelerates their dispersion and integration
into all sorts of consumer products. However, GNSS receivers currently have
two major problems:
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2 CHAPTER 1. INTRODUCTION

The localization is not robust. Obstructions such as buildings or fo-
liage may render localization infeasible; attackers are able to spoof signals
that deceive receivers; and signal reflections can lead to unacceptably large
localization errors.

The energy consumption is high. GNSS receivers drain mobile de-
vices’ batteries quickly. Even smartphones, which have relatively large bat-
teries, run out of power after several hours of continuous GNSS operation.
In contrast, low power sensors such as accelerometers or compasses do not
have a significant effect on the total power draw of a smartphone and can be
active at all times. GNSS tracking devices with more constrained size, such
as for cats or dogs, opt for low duty cycles, determining and sending their
location only every few hours. Still, their batteries drain in several days.
Therefore, GNSS receivers necessitate large batteries or frequent recharging.

This book addresses both shortcomings. The robustness issue can be
tackled with a maximum likelihood localization technique called collective
detection (CD). CD processes all satellite signals jointly, instead of acquiring
each satellite signal individually like the classical least-squares method. This
improves the resulting signal-to-noise ratio (SNR), making the localization
more robust, especially with weak or obstructed signals. Also, the computed
receiver location likelihood distribution opens up new possibilities to detect
spoofed signals and easily integrate the GPS observations with sensor data.
For instance accelerometer readings can be used for enhancing localization
certainty and spoofing rejection.

Although with the increased SNR, CD enables localization in some areas
without direct line-of-sight of the GPS satellites, indoor GPS localization
is still out of reach unless many seconds or even minutes of signals are
combined like in existing high-sensitivity GPS receivers. In Chapter 8, we
explore an alternative localization method using signals transmitted by air-
craft. Aircraft repeatedly send so-called ADS-B messages containing their
location for airspace control purposes. ADS-B signals are transmitted with
similar power as GPS signals, but are of the order of ten thousand times
stronger than GPS signals when arriving on Earth. This is due to the hun-
dredfold closer distance of aircraft to the Earth surface than GPS satellites
– usually between 10 and 400 km instead of about 20.000 km – and due to
the inverse square law of the signal power decrease with distance. With a
set of ground stations at known locations, ADS-B messages can be used in-
stead of GPS signals for localizing a receiver handset. This may improve the
localization robustness in situations with weak GPS signals such as urban
areas and might even render indoor localization feasible in some situations.
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GPS and ADS-B localization complement each other well. GPS localization
is unrivaled in uninhabited spaces where signal obstructions are rare and
due to the independence from ground infrastructure. Meanwhile, densely
populated regions are rife with aircraft signals, due to the usual proximity
of airports.

The energy consumption of GPS localization can be reduced by three
orders of magnitude through snapshot receivers, which capture only a few
milliseconds of satellite signals. Such a signal snapshot suffices to compute
the corresponding location, assuming a coarse knowledge of the receiver lo-
cation and time with an accuracy of the order of 100 km and one minute,
respectively. The energy savings of a snapshot GPS receiver are twofold:
The active time of the receiver is reduced from seconds to milliseconds; and
due to the low amount of data, the processing can be offloaded to another
device, saving processing power on the receiver itself. The latter also means
that processing hardware can be omitted, leading to smaller receiver size and
cost. Snapshot receivers also allow for arbitrary and dynamic duty cycles.
Whenever an application requires a so-called location fix, a snapshot can be
immediately taken. Classical receivers need about six or even 30 seconds
at startup, depending on the prior availability of satellite orbit data, before
being able to compute their location. For some workloads, this is not accept-
able. For instance, when taking holiday pictures, many people turn on their
camera, take a picture and turn it off again, in order to save battery energy.
If the time is too short to determine the location with an integrated GPS
receiver, the photographs can either be tagged with an outdated location
or none at all. Therefore, with classical GPS receivers, dynamic location
requests can often only be satisfied if the receiver is continuously running.
Also, due to the energy overhead of the heavy processing for finding the
satellite signals at startup, even low duty cycles are often better served by
continuously tracking the signals instead of switching the GPS receiver on
and off for each location fix.

So far, snapshot GPS receivers have mostly been a concept, without
major commercial implementations. In practice, the low signal power ac-
cumulated during just a few milliseconds poses a challenge to extract the
signals from the snapshots. Again, CD helps, because the signals from in-
dividual satellites do not need to be found. Instead, the signal power of all
available signals is united for the receiver location determination. Classical
receivers only sum the signal power of each satellite over time (coherent
and non-coherent integration). CD therefore adds another power accumu-
lation dimension by summing the signal power also over the satellites. This
increases the localization robustness with equal snapshot duration. Apart
from this theoretical foundation, we also present a snapshot GPS receiver
hardware design in Chapter 7. It uses a small number of components and
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consumes so little power that it can capture GPS snapshots in 15 minute
intervals for about two years while being powered by a coin cell. Our pro-
totype implementation has a size of 23 mm × 14 mm and weighs 1.3 grams.
It exhibits the potential of snapshot GPS receivers for enabling new ap-
plications, for instance tracking small birds for years. Also, it multiplies
the operating time of cameras tagging photographs with their location and
fitness trackers and the receiver can be hidden in valuable belongings like
wallets and bags. Real-world measurements with our receiver using only
one millisecond of data show that the localization is robust and has an ac-
curacy of the order of ten meters while a single snapshot consumes only
0.74 mJ. With longer snapshots, the localization accuracy can be improved
while trading off the longevity of the receiver, which is currently constrained
by the used flash chip’s data capacity.

GPS Applications

To illustrate the importance of global localization to the modern world, we
start by revealing a number of current and potential future GPS applica-
tions. We also discuss some challenges that these applications face.

Because a GPS receiver measures arrival times of electromagnetic signals
that travel at the speed of light, the receiver’s location and time are linked
tightly. Each nanosecond of error corresponds to a distance offset of about
30 cm. Thus, the GPS receiver needs to be synchronized with the satellites’
time, which is the reason why the receiver location and time are resolved
jointly. Due to the resulting time accuracy of the order of tens of nanosec-
onds, GPS is widely used for time synchronization, besides the self-evident
localization. Therefore, GPS applications can generally be divided in two
categories, actual localization applications and timing applications.

Localization
Satellite Navigation Starting with consumer products, satellite naviga-
tion systems spring to mind. These come in the form of dedicated devices or
just as smartphone applications. Their uses are for pedestrians and vehicles
such as cars, trucks, ships, aircraft or bikes. Especially for ships and aircraft,
GPS may often be the only absolute source of localization and navigation
information, as landmarks for orientation are missing on many parts of the
oceans. GPS navigation devices are not just a replacement for reading a
map or following directions. Integrating external real-time information, for
instance about traffic jams, can be used to adapt paths to current conditions.
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Fitness Tracking Fitness trackers have gained some popularity and some
include GPS receivers to log one’s workout routes and compute some statis-
tics like running speed and distance and estimate burned calories. Many
smartwatches also include this functionality, nowadays.

Holiday Logging Many people like to log their travel routes and tag
their holiday photographs with the corresponding location. Since commer-
cial GPS receivers take about 30 seconds from startup to being able to
compute their location, they need to run continuously to support tagging
photographs. Otherwise, the tag might include an old location or none at
all. Due to this problem annoying users, many middle class cameras do
not feature GPS receivers any more. Cameras which do, like many pro-
fessional cameras, need frequent battery replacements. Some travelers and
photographers use standalone GPS loggers, which commonly run for a few
days on a single battery charge. Logged tracks can later be combined with
timestamped photographs, in order to tag them with their location.

Asset Tracking Some people use GPS receivers to keep track of their
pets, such as dogs and cats. Not only due to the high power draw of current
commercial GPS receivers, but also because the location needs to be trans-
mitted wirelessly to the device owner, such trackers need to be recharged
every week and still report the pet’s location only every few hours. If the
power of such devices can be improved substantially, this may result in
a more general class of asset trackers, for instance for bags, bikes or other
valuable belongings to retrieve them in the case of loss or theft. Both energy-
consuming parts are seeing some development: On the GPS side, snapshot
receivers are promising huge energy savings, although these are reduced
when the data has to be sent out wirelessly, since snapshots are several
kilobytes large, compared to only a few bytes for coordinates only. At the
same time, narrowband cellular communication standards such as LTE-M
and NB-IoT are deployed worldwide. These are optimized for relatively
low data rates of a few hundred kilobytes per second but use significantly
reduced transmission power compared to standard LTE.

Logistics In the industrial and commercial domain, goods and fleet track-
ing in logistics is an important application. Taxi and emergency services
use their cars’ location for real-time management and dispatch. Parcels are
tracked to inform recipients of estimated arrival dates and times and medical
goods like drugs are traced for supply chain verification and to control the
appropriate handling, for example by a certified party. Aircraft and trains
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use GPS as an additional and more accurate localization method besides
radar or sensors between rail tracks (so-called balises), respectively.

Services Related to the examples above, taxi passenger locations are used
to pick those passengers up and calculate fares, and emergency requests
from cell phones are pinpointed, since people in need of help are not always
aware where they are exactly or able to describe their location. In the digital
realm, online advertisements, often personalized and localized for users are
an important driver for some of the world’s largest businesses, for instance
Google. However, such ads are not undisputed. Third parties tracking users’
location continuously raises privacy concerns. While privacy is an important
aspect of ubiquitous user localization, this book focuses on the underlying
technology.

Robotics Automation is changing most industry branches. This trans-
formation is so important that the emerging automated industry processes
are called “Industry 4.0”. Localization is an integral part of many of those
processes. In agriculture, tractors and planes use GPS to guide their path
through fields. In automated storage spaces, robots may use GPS to find
goods and drop them off in the right places. While autonomous cars are
mostly being developed using lidars for localization, radar, ultrasound and
GPS systems may be required in situations when lidar fails, for instance in
fog. Also during normal operation, these secondary systems my improve the
localization certainty. Even for more mundane tasks, there is a substantial
automation potential. Examples include painting line markings on soccer
fields. Such lines need to be drawn precisely, which can be facilitated by
GPS [89].

Science Bird tracking is one research application that was already men-
tioned above. Recently, an eagle was found in Saudi Arabia twenty years
after it was equipped with a GPS receiver and solar cells in Russia [117]. In-
terestingly, the reconstructed track shows that the eagle never crossed over
wide waters, but instead stayed above land at all times. Large birds like this
eagle can carry relatively heavy loads, allowing them to carry sizeable bat-
teries and solar cells. However, small songbirds can usually carry only a few
grams [17]. Due to the high power draw of GPS receivers, multi-year GPS
tracking has been infeasible so far. Instead, researchers equip birds with
light sensors and a clock, and hope to catch some birds again after a year to
retrieve this package with the logged data. From the day length and start,
determined from the (sun) light intensity, the latitude and longitude can be
reconstructed, respectively. However, the error is of the order of 200 km,
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which cannot give insights for instance on swarm behavior [17]. With our
receiver that is presented in Chapter 7, the accuracy is improved to some ten
meters while preserving the multi-year battery life. At the other end of the
spectrum, GPS is also used for tracking millimeter geological ground shifts
to predict land slides [12]. This application needs high precision, but is less
energy constrained, as large solar panels and batteries can be deployed with
each sensor.

Time Synchronization
Database Synchronization Instead of using classical synchronization
algorithms, distributed databases can also achieve consistency by tagging
events with accurate timestamps for correct ordering later when messages
about these events are exchanged [33]. This is especially useful for datacen-
ters with large latencies due to long distances, such as those spanning the
globe and if high throughput must be tolerated, making it impractical to
wait for one or several message round trips before accepting new transac-
tions.

Communication Cellular networks use microsecond-level time synchro-
nization to minimize guard periods in time-division multiple access (TDMA).
Like this, short time slots can be allocated to provide low latencies to indi-
vidual handsets while keeping the utilization of the available radio spectrum
high for good throughput. For this purpose, cellular base stations are nor-
mally equipped with GPS receivers, since GPS provides the most accurate
global timing service. As a result, mobile devices like smartphones, deployed
sensors and increasingly even cars (for software updates or real-time traffic
data) all depend on GPS.

Electricity Distribution In electricity grids, the sequence, types and
locations of unexpected perturbations such as power plant failures or tripped
lines can be reconstructed using power measurements along the grid. Since
electricity propagates at the speed of light, such measurements must be
accurately synchronized. This is done using GPS. Such measurements are
important for maintaining the integrity of electric grids, which always need
to have balanced power production and consumption.

Stock Markets The transition from trading floors to electronic stock ex-
changes enabled automatic, algorithmic trading using computers. Especially
the high-frequency trading (HFT) branch now generates more than half of
the stock market volume [78]. HFT is for instance used for arbitrage, that
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is for leveraging price differences between multiple exchange markets. Such
price differences are short-lived, meaning that traders have to be fast to
make a profit. Therefore, orders also have a short expiration time. Orders
with an expired deadline are not executed. Thus, it is important that traders
and markets are synchronized. Otherwise, if a trader’s time lags behind the
market, none of its orders might be executed [34]. Since the time synchro-
nization uses GPS, an attacker might push a trader out of the market by
spoofing GPS signals. Also, since markets and traders check the integrity of
their data, transaction sequences with out-of-order timestamps or other time
anomalies due to forged GPS signals might halt trading activities. Even if
only individual traders are affected, liquidity is removed from the market,
which leads to more price volatility and loss of trust in the market [105].
Even more attacks misusing timing properties exist: Attackers which get
market order information with lower latency than the granularity of times-
tamps used in the market can cheat as follows. When a long-term investor
places an order to buy shares, a high-frequency trader can place a large or-
der to buy shares of the same company so quick that the market treats both
orders as incoming concurrently. Subsequently, the high-frequency trader’s
order might be executed first, making the shares more expensive for the
investor. Also the investor’s buy increases the share price, so the trader can
sell his position immediately at a profit. The resulting decrease in the share
price leaves the investor with an instant loss [78]. To prevent such fraud,
stock markets need to use precise and synchronized timestamps, which can
be provided by GPS.

The above examples illustrate that GPS localization and timing are key
drivers for distributed systems and smart devices. As localization technol-
ogy becomes cheaper, more available, smaller and more power efficient, it
can be included in a growing number of products like for instance smart
clothing or other wearables. To progress into this direction, a few chal-
lenges remain to be solved: Currently, the most widely available localization
technology are Global Navigation Satellite Systems (GNSS), such as the US
Global Positioning System (GPS). However, GNSS receivers require a sub-
stantial amount of energy to produce a location fix, that is, compute their
location. This means that 1) relatively large and 2) heavy batteries need
to be used and that 3) receivers run for a few hours at most on a single
battery charge. Also, due to the weakness of the satellite signals when they
reach the Earth, GNSS receivers work poorly or not at all indoors and in
environments such as urban canyons and under foliage.

In this book, we explore possibilities to compute GNSS location fixes
from only a few milliseconds of the received satellite signals, instead of using
several seconds like classical receivers. Due to the shorter recorded signals,
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the required energy per fix is reduced significantly, and more importantly,
the location computation can be offloaded to the cloud. While the reduced
signal power trades off some accuracy, the localization error increases by
only a few meters, as we will see in Chapter 5.

Our discussion includes theory, software and also hardware aspects of
GPS receivers. Chapter 4 gives an overview of classical GPS localization
and introduces assisted GPS techniques such as Assisted GPS (A-GPS),
which is widely used in smartphones, and snapshot GPS, which is the main
focus of this book. Namely, Chapter 6 shows how robust maximum likeli-
hood methods, that are used for snapshot receivers, can also help protecting
receivers from fake satellite signals sent by attackers and Chapter 7 elabo-
rates how a snapshot GPS receiver can be built. The latter is important
since no commercial snapshot receivers exist and therefore, the real-world
advantages of such a receiver design cannot easily be tested and further
research is hindered.

Unfortunately, GNSS work poorly indoors due to signal attenuation in
walls and multipath effects. Many different other indoor localization ap-
proaches exist. While some use dedicated hardware beacons, other use
existing hardware such as Wi-Fi base stations. Also the techniques vary.
Most common are fingerprinting approaches and time-of-flight based meth-
ods. The drawback of all these methods is that they have to be set up
or initialized locally and this process may need to be repeated each time
the physical setup changes. Ideally, we would like a worldwide system such
as a GNSS for indoor localization. For this purpose, we propose an ap-
proach that is based on signals regularly sent by aircraft. These signals are
so-called automatic dependent surveillance – broadcast (ADS-B) messages,
required by flight traffic control authorities to be sent by each aircraft twice
per second. As such, those signals are available in most urban areas, where
GNSS often do not work well, as mentioned above. Those aircraft messages
contain the location of the aircraft and can be used in a similar manner as
GPS satellites. In fact, the aircraft determine their location using GPS and
then relay this information to the ground. Since aircraft are in the sky, their
view of the GPS satellites is unobstructed. Therefore, aircraft always receive
GPS signals with good quality. With some efforts explained in Chapter 8,
like using ground stations to determine the send time of the ADS-B signals,
the aircraft sending ADS-B messages can be leveraged as a sort of “satellite
signal amplifiers”. This is meant in the sense that the same time-of-flight
(ToF) localization method that is the standard for GPS receivers can be
used with the aircraft signals.





2
Localization

“Ubi materia, ibi geometria. — Where there is matter, there is
geometry.”

— Johannes Kepler

First, we study some geodesy basics and global coordinate systems. Then,
an overview and classification of localization systems and methods is given.

Definition 2.1 (Localization). Localization is the process of determining
an object’s place with respect to some reference, usually a coordinate system.

Positioning is an alternative expression for localization. We stick to the
term localization in this book, except for proper names like Global Posi-
tioning System. Note that in other domains, localization can also mean the
adaptation of products for different regions, for instance the translation of
text in a smartphone app [57]. Meanwhile, positioning is a term used in
marketing for the formation of a product or brand identity. Instead of using
a coordinate system, one could also just resolve the relative ordering of ob-
jects, find the closest object in a given set or decide which region an object
is situated in.

11
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2.1 Coordinate Systems

Definition 2.2 (Coordinate System). A coordinate system uses an or-
dered list of coordinates, to uniquely describe the location of points in
space. The meaning of the coordinates is defined with respect to some an-
chor points. The point with all coordinates being zero is called origin.

Often, coordinates are just numbers, but they can also include letters or
symbols, such as in 47°22�38.1��N 8°33�11.7��E. Depending on the applica-
tion, different anchors are used. In astronomy, celestial coordinate systems
are used, which are fixed with respect to galaxies, stars and other distant ob-
jects. Meanwhile, virtual and augmented reality (VR and AR) systems use
anchor points in a room. For global localization, we are mostly concerned
with terrestrial coordinate systems, used to locate places on and around
Earth.

Definition 2.3 (Earth-Centered Coordinate System). An Earth-centered
or geocentric coordinate system has its origin at Earth’s center of mass.

The center of mass is also called the geocenter or barycenter [86].

Definition 2.4 (Earth-Fixed Coordinate System). An Earth-fixed coor-
dinate system rotates with Earth’s surface, that is, the coordinates of a point
on Earth are time-invariant.

In contrast, celestial coordinate systems do not rotate with respect to
the stars.

Definition 2.5 (Pole). The (geographic) poles are the two points where
Earth’s axis of rotation meets Earth’s surface.

Note that Earth’s magnetic poles differ from the geographic poles. The
choice between the North and South Poles is an arbitrary convention. Actu-
ally, Earth exhibits polar motion, moving its rotational axis several meters
relative to its crust [21]. Due to the rotational forces, Earth is not a perfect
sphere, but resembles an ellipsoid.

Definition 2.6 (Ellipsoid). An ellipsoid is the surface obtained by rotating
an ellipse about one of its axes.

For the Earth, the rotational axis is the shorter (semi-minor) axis of the
ellipse. Such a shape is called an oblate spheroid. The fraction by which
the rotational (semi-minor) axis is shorter than the equatorial (semi-major)
axis is called flattening. Earth’s diameter ranges from 12,714 km between
the poles to the equatorial diameter of 12,756 km [131].
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Definition 2.7 (Equator). The equator is the circle formed by the inter-
section of the ellipsoid with the plane containing all points equidistant from
both poles.

The equatorial plane is perpendicular to the rotational axis. Earth’s
circumference, or the length of the equator, is 40,075 km.

Definition 2.8 (Meridian). A meridian is a (curved) line segment on the
ellipsoid connecting the poles.

A meridian connects points of equal longitude. The prime meridian,
defining the 0° longitude, can be chosen arbitrarily. The historically popu-
lar Greenwich prime meridian passes through the Royal Observatory, Green-
wich, United Kingdom.

Definition 2.9 (Longitude). The longitude is a coordinate indicating
the angle corresponding to the horizontal (east-west) location of a point on
Earth. The angle is formed between the plane through the meridian contain-
ing the point and the plane through the prime meridian. The longitude is
zero at the prime meridian and ±180° opposite of it. Positive longitudes are
east of the prime meridian, while negative longitudes are west.

Definition 2.10 (Latitude). The latitude is a coordinate indicating the
angle corresponding to the vertical (north-south) location of a point on Earth.
The angle is formed between the equatorial plane and a line passing through
the point. In the case of geodetic latitude, this line is perpendicular to the
ellipsoid. For geocentric latitude, the line passes through the geocenter.
The latitude is zero at the equator and ranges from -90° at the South Pole
to +90° at the North Pole.

Often, the type of latitude is not indicated. By convention, this means
that latitudes are geodetic. Still, without specifying the parameters of the
used ellipsoid or other surface shape model, the geodetic latitude is under-
determined. Different coordinate systems may use different reference ellip-
soids to get a better fit of the ellipsoid to the surface in some geographic
region, like a certain country.

Definition 2.11 (Geoid). The geoid is a model defining the mean sea
level over the whole Earth according to Earth’s gravity and rotation [137,
Sec. 2.2].

The geoid does not consider winds or tides. Due to the Earth’s uneven
mass distribution, the geoid has an irregular shape. Therefore, the height
above sea level generally differs from the height above the ellipsoid. The
difference is called geoid separation.
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Figure 2.12: Relation between different height definitions and the geoid
separation.

Definition 2.13 (Height). A point’s height is its distance to the employed
Earth model, perpendicular to that model’s shape.

In common use, height refers to the height above mean sea level (AMSL),
that is, above the geoid (orthometric height) [137, Sec. 2]. GPS height
is measured with respect to the ellipsoid (ellipsoidal height) [137, Sec. 2].
These two heights differ approximately by the geoid separation – usually less
than 100 m. The concepts are illustrated in Figure 2.12. Elevation refers to
the height of a point on the ground, while altitude is used for points above
ground.

Definition 2.14 (Terrestrial Coordinate System). A terrestrial coordinate
system is used to locate places on or near Earth’s surface. It uses anchor
points on Earth’s surface.

The Royal Observatory in Greenwich, United Kingdom is a well-known
anchor point, defining the Greenwich prime meridian.The two most im-
portant types of terrestrial coordinate systems are Cartesian and geodetic
coordinate systems. Both are Earth-centered and Earth-fixed.

Definition 2.15 (Cartesian Coordinate System). A Cartesian coordinate
system represents points in space as their projection onto perpendicular axes.

Definition 2.16 (International Terrestrial Reference System). The Inter-
national Terrestrial Reference System (ITRS) is a standard defin-
ing an Earth-centered, Earth-fixed Cartesian coordinate system. Its real-
izations are the International Terrestrial Reference Frames (ITRF).
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The ITRF positive z-direction crosses the north pole. The x-axis points to-
wards the intersection of the equator with the prime meridian passing through
Greenwich. The y-axis completes a right-handed coordinate system, surfac-
ing in the Indian Ocean between Sri Lanka and Sumatra [67].

The newest ITRF, ITRF2014, was published in 2016 [2]. The ITRF is
updated every few years to account for changes in Earth’s crust motion and
improved surveying technology [90]. The term ECEF (for Earth-centered,
Earth-f ixed) usually stands for an ITRS coordinate system.
Definition 2.17 (Geodetic Coordinate System). A geodetic coordinate
system represents each point on or near Earth’s surface by two angular co-
ordinates, latitude and longitude, and by a height coordinate.

As an example, the main building of ETH Zurich has the coordinates
(47°22�35.2��N, 8°32�53.1��E, 412 m) or (47.376442°, 8.548075°, 412 m) in
the WGS 84 geodetic coordinate system. N and S indicate north and south
of the equator, respectively, while E and W indicate east and west of Green-
wich (longitude 0), respectively. In the absence of such a letter, negative
coordinates correspond to south and west, respectively. Like in the example
above, coordinates can be indicated in decimal degrees or in degrees (°),
arcminutes (�) and arcseconds (��). These units are related by 1° = 60� =
3600��. Conceptually, it does not matter if Cartesian or geodetic coordi-
nate systems are used, as coordinates can be converted between different
systems. In practice, using Cartesian coordinates results in simpler compu-
tations, while geodetic coordinates are more easily interpretable.
Definition 2.18 (World Geodetic System). The World Geodetic Sys-
tem (WGS) is a standard defining a geodetic coordinate system [32]. The
coordinate system is geocentric and Earth-fixed. The current version, WGS
84, uses an ellipsoid with equatorial radius a = 6378137 m and flattening
f = 1/298.257223563 [55]. The WGS 84 prime meridian passes 102 m
east of the Royal Observatory, Greenwich, United Kingdom [84, 98]. WGS
84 also defines a geoid based on the Earth Gravitational Model 2008
(EGM2008). The geoid separation ranges from -106 to 85 meters [99].

WGS is maintained by the U.S. Department of Defense and used by
GPS. The WGS 84 prime meridian does not pass exactly through the Royal
Observatory because the observations for the historic Greenwich Meridian
were based on plumb line observations. Due to local gravitational effects,
this plumb line does not pass through the geocenter, which is called deflec-
tion of the vertical. In WSG 84, that effect is accounted for and the plane
containing the prime meridian contains the geocenter. The current version,
WGS 84, was established in 1984, with updates having been made regularly
since then.
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2.2 Setup

Definition 2.19 (Handset). In localization systems, a handset is a re-
ceiver and/or transmitter with unknown location.

In robotics, handsets are sometimes called rovers. A handset’s location
can either be computed by the handset itself or by the localization infras-
tructure.
Definition 2.20 (Base Station). In localization systems, a base station
is a transmitter and/or receiver with known location.

Base stations do not need to have a fixed location, like for instance
GPS satellites which orbit around the Earth. Base stations located on the
ground are sometimes called ground stations. Base stations range from
simple beacons, which repeat a fixed signal over and over again, to more
elaborate transceivers which execute a protocol with a handset or a network
of base stations which compute the location of the handset together.
Definition 2.21 (Attenuation). Signal attenuation is the reduction of a
signal’s power during transmission. In free space, the attenuation is propor-
tional to the square of the distance from the emitter.

The fact that the signal power decreases inversely proportional with
distance in free space is also referred to as the inverse-square law. The
reason for the inverse-square law is that the signal’s waves cover a spherical
sector. Such a sector’s surface area grows with the square of the signal’s
traveled distance. The signal power is distributed over that surface area.
Thus, there is a tradeoff for localization system base stations: Using a low
number of long-range transceivers keeps the infrastructure cost low, while
using many short-range transceivers provides high signal power to handsets.
While the inverse-square law holds in free space, objects like walls further
attenuate signals. Therefore, most indoor localization systems employ base
stations in each room.
Definition 2.22 (Localization Signal). A localization signal is a signal
used for localization.

Localization signals need not always be specifically designed and gener-
ated for localization. With some effort, localization can also be performed
using existing signals such as Wi-Fi, LTE or DVB-T signals. Wi-Fi, Blue-
tooth and many other signals use the industrial, scientific and medical (ISM)
radio bands, which can be used without a license in many countries as long
as the emitted power is kept below some thresholds [132]. Apart from ra-
dio waves, ultrasound and light are commonly used for localization. For
instance lidar (from light radar or light detection and ranging) is the prime
localization technology of most current autonomous car designs.
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2.3 Methods

While in most localization systems the handset receives signals from the
base stations to compute its location, a handset can also send signals that
enable the base stations to collaboratively determine the handset location.
Since transmitting wireless signals consumes more power than receiving such
signals, the former option is more common.

Definition 2.23 (Fingerprinting). Fingerprinting is a localization method
which matches observed signals with a previously compiled set of signals ob-
served at different locations. The handset location is estimated based on the
best-matching signal observations from the precompiled set and those obser-
vations’ locations.

To achieve fine-grained localization, extensive data sets have to be col-
lected before a fingerprinting-based localization system can be used. Since
signals usually vary over time and with infrastructure changes, like obsta-
cles being moved around, databases should be updated regularly. For coarse
localization, smartphones match available Wi-Fi or cellular base stations
against previously known base station locations. That base station data
can be collected and updated by all users of this method together.

Definition 2.24 (Triangulation). Triangulation is a localization method
based on measuring angles of arrival (AoA), that is, angles between base
stations and a handset.

Geometrically, the handset is located at the intersection of the straight
lines with the measured angles, passing through the anchor points, which
are the base stations. In practice, measurement errors have to be accounted
for. This is also the case for the localization methods below. Theodolites
are common instruments used to optically measure AoA for construction
site and land surveying.

Definition 2.25 (Trilateration). Trilateration is a localization method
based on measured ranges between a handset and base stations.

Often, distances are determined through time-of-flight (ToF) measure-
ments of signals sent at a known time and location. Geometrically, the
handset location can be found by intersecting the spheres (or circles in
2D) around the base stations with the radii being the measured distances.
Through the use of an additional independent measurement, a common dis-
tance bias of all measurements can be compensated. This is for instance
needed when the handset is not synchronized with the base stations, like in
GPS. Some alternative terminology exists: Trilateration is also called mul-
tilateration and ToF measurements are equivalent to time of arrival (ToA)
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measurements when the signal transmission times at the base stations are
known.







3
Time

“Nanosecond precision matters for worldwide communications sys-
tems. It matters for navigation by Global Positioning System satel-
lite signals: an error of a billionth of a second means an error of
just about a foot, the distance light travels in that time.”

— James Gleick, Author and Science Historian

Location and time are tightly related in GNSS. The distance and ToF of
the satellite signals have a direct correspondence with the proportionality
coefficient being the speed of light. While the previous chapter puts GPS
into context from the localization perspective, this chapter gives an overview
of the time and clock synchronization side.

3.1 Time & Clocks

The standard unit of time is the second, which is officially defined by the
Bureau International des Poids et Mesures. A slightly simplified definition
is the following.

Definition 3.1 (Second). A second is the time that passes during 9,192,631,770
oscillation cycles of a caesium-133 atom [50, Résolution 1].

21
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Historically, a second was defined as one in 86,400 parts of a day, dividing
the day into 24 hours, 60 minutes and 60 seconds [63]. Since the duration
of a day depends on the unsteady rotation cycle of the Earth, the novel
oscillation-based definition has been adopted. Leap seconds are used to
keep time synchronized to Earth’s rotation.

Definition 3.2 (Wall-Clock Time). The wall-clock time t∗ is the true
time (a perfectly accurate clock would show).

Definition 3.3 (Clock). A clock is a device which tracks and indicates
time.

A clock’s time t is a function of the wall-clock time t∗, that is, t = f(t∗).
Ideally, t = t∗, but in reality there are often errors.

Definition 3.4 (Clock Error). The clock error or clock skew is the dif-
ference between two clocks, for instance, t − t∗ or t − t�.

The importance of accurate timekeeping and clock synchronization is
reflected in the following statement by physicist Steven Jefferts: “We’ve
learned that every time we build a better clock, somebody comes up with a
use for it that you couldn’t have foreseen.” [63]

In practice the clock error is often modeled as t = (1+δ)t∗+ξ(t∗). There-
fore, the variation of the clock error over time is divided into a predictable
and a random part.

Definition 3.5 (Drift). The drift δ is the predictable clock error.

Drift is relatively constant over time, but may change with supply volt-
age, temperature and age of an oscillator. It is possible to fit higher-order
models, capturing for instance quadratic errors. But in practice, this is
rarely done. Stable clock sources, which offer a low drift, are generally pre-
ferred, but also more expensive, larger and more power hungry. Thus, many
consumer products feature inaccurate clocks.

Definition 3.6 (Parts Per Million). Clock drift is indicated in parts per
million (ppm). One ppm corresponds to a time error growth of one mi-
crosecond per second.

In PCs, the so-called real-time clock (RTC) normally is a crystal oscilla-
tor with a maximum drift between 5 and 100 ppm. Applications in signal
processing, for instance GPS, need more accurate clocks. Common drift
values are 0.5 to 2 ppm.

Definition 3.7 (Jitter). The jitter ξ is the unpredictable, random noise of
the clock error.
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Figure 3.8: Drift (left) and Jitter (right). On top is a square wave, the
wall-clock time t∗.

In other words, jitter is the irregularity of the clock. Unlike drift, jitter
can vary fast. Jitter captures all the errors that are not explained by drift.
Figure 3.8 visualizes the concepts.

3.2 Clock Synchronization

In this section, we study several clock synchronization protocols, including
NTP, which is used in most computers and smartphones.

Definition 3.9 (Clock Synchronization). Clock synchronization is the
process of matching multiple clocks (nodes) to have a common time.

A trade-off exists between synchronization accuracy, convergence time,
and cost. Different clock synchronization variants may tolerate crashing,
erroneous or byzantine nodes.

Algorithm 3.10 Network Time Protocol (NTP) [87]
1: Two nodes, client u and server v

2: while true do
3: Node u sends request to v at time tu

4: Node v receives request at time tv

5: Node v processes the request and replies at time t�
v

6: Node u receives the response at time t�
u

7: Propagation delay δ = (t�
u−tu)−(t�

v−tv)
2 (assumption: symmetric)

8: Clock skew θ = (tv−(tu+δ))−(t�
u−(t�

v+δ))
2 = (tv−tu)+(t�

v−t�
u)

2
9: Node u adjusts clock by +θ

10: Sleep before next synchronization
11: end while

NTP estimates the packet delay to reduce clock skew. Unbalanced prop-
agation path delays lead to estimation errors. The regular synchronization
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of NTP limits the maximum error despite unpredictable clock errors. Syn-
chronizing clocks just once is only sufficient for a short time period.

Many NTP servers are public, answering to UDP packets. The most
accurate NTP servers derive their time from atomic clocks, synchronized to
UTC. To reduce those server’s load, a hierarchy of NTP servers is available
in a forest (multiple trees) structure.

Definition 3.11 (PTP). The Precision Time Protocol (PTP) is a clock
synchronization protocol similar to NTP, but which uses medium access
control (MAC) layer timestamps [9].

MAC layer timestamping removes the unknown time delay incurred
through messages passing through the software stack. PTP can achieve
sub-microsecond accuracy in local networks.

Definition 3.12 (Global Synchronization). Global synchronization estab-
lishes a common time between any two nodes in the system.

For example, email needs global timestamps. Also, event detection for
power grid control and earthquake localization need global timestamps.
Earthquake localization does not need real-time synchronization; it is suffi-
cient if a common time can be reconstructed when needed, also known as
“post factum” synchronization. NTP and PTP are both examples of clock
synchronization algorithms that optimize for global synchronization. How-
ever, two nodes that constantly communicate may receive their timestamps
through different paths of the NTP forest, and hence they may accumulate
different errors. Because of the clock skew, a message sent by node u might
arrive at node v with a timestamp in the future.

Algorithm 3.13 Local Synchronization
1: while true do
2: Exchange current time with neighbors
3: Adapt time to neighbors, e.g., to average or median
4: Sleep before next synchronization
5: end while

Local synchronization is the method of choice to establish time-division
multiple access (TDMA) and coordination of wake-up and sleeping times in
wireless networks. Only close-by nodes matter as far-away nodes will not
interfere with their transmissions. Local synchronization is also relevant for
precise event localization. For instance, using the speed of sound, measured
sound arrival times from co-located sensors can be used to localize a shooter.
While global synchronization algorithm such as NTP usually synchronize to
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an external time standard, local algorithms often just synchronize among
themselves, that is, the notion of time does not reflect any time standards. In
wireless networks with fixed device locations, one can simplify and improve
synchronization.

Algorithm 3.14 Wireless Clock Synchronization with Known Delays
1: Given: transmitter s, receivers u, v, with known transmission delays

du, dv from transmitter s, respectively.

2: s sends signal at time ts

3: u receives signal at time tu

4: v receives signal at time tv

5: Δu = tu − (ts + du)
6: Δv = tv − (ts + dv)

7: Clock skew between u and v: θ = Δv − Δu = tv − dv + du − tu

3.3 Time Standards

Definition 3.15 (TAI). The International Atomic Time (TAI) is a
time standard derived from over 400 atomic clocks distributed worldwide [43,
Résolution 4].

The involved clocks are synchronized using simultaneous observations of
GPS or geostationary satellite transmissions using Algorithm 3.14. Using a
weighted average of all involved clocks, TAI is an order of magnitude more
stable than the best clock. While a single satellite measurement has a time
uncertainty on the order of nanoseconds, averaging over a month improves
the accuracy by several orders of magnitude [7].

Definition 3.16 (Leap Second). A leap second is an extra second added to
a minute to make it irregularly 61 instead of 60 seconds long.

Time standards use leap seconds to compensate for the slowing of the
Earth’s rotation. In theory, also negative leap seconds can be used to make
some minutes only 59 seconds long. But so far, this was never necessary. For
easy implementation, not all time standards use leap seconds, for instance
TAI and GPS time do not.

Definition 3.17 (UTC). The Coordinated Universal Time (UTC) is
a time standard based on TAI with leap seconds added at irregular intervals
to keep it close to mean solar time at 0° longitude [43, Résolution 5].
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The global time standard Greenwich Mean Time (GMT) was already
established in 1884 [106]. With the invention of caesium atomic clocks and
the subsequent redefinition of the SI second, UTC replaced GMT in 1967.
Before time standards existed, each city set their own time according to
the local mean solar time, which is difficult to measure exactly. This was
changed by the upcoming rail and communication networks.

Different notations for time and date are in use. A standardized format
for timestamps, mostly used for processing by computers, is the ISO 8601
standard. According to this standard, a UTC timestamp looks like this:
1712-02-30T07:39:52Z. T separates the date and time parts, while Z indi-
cates the time zone with zero offset from UTC. Why UTC and not “CUT”?
Because France insisted. Same for other abbreviations in this domain, like
TAI.

Definition 3.18 (Time Zone). A time zone is a geographical region in
which the same time offset from UTC is officially used.

Time zones serve to roughly synchronize noon with the sun reaching the
day’s highest apparent elevation angle. Some time zones’ offset is not a
whole number of hours. For instance the Indian Standard Time is five and
a half hours ahead of UTC.

3.4 Clock Sources

Definition 3.19 (Atomic Clock). An atomic clock is a clock which keeps
time by counting oscillations of atoms.

Atomic clocks are the most accurate clocks known. They can have a
drift of only about one second in 150 million years, about 2e-10 ppm! Many
atomic clocks are based on caesium atoms, which led to the current definition
of a second. Others use hydrogen-1 or rubidium-87. In the future, atoms
with higher frequency oscillations could yield even more accurate clocks.
Atomic clocks are getting smaller and more energy efficient. Chip-scale
atomic clocks (CSAC) are currently being produced for space applications
and may eventually find their way into consumer electronics.

Atomic clocks can serve as a GPS fallback for data center synchroniza-
tion [33].

Definition 3.20 (System Clock). The system clock in a computer is an
oscillator used to synchronize all components on the motherboard.

Usually, a quartz crystal oscillator with a frequency of some tens to
hundreds MHz is used. Therefore, the system clock can achieve a precision of
some ns! The CPU clock is usually a multiple of the system clock, generated
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from the system clock through a clock multiplier. To guarantee nominal
operation of the computer, the system clock must have low jitter. Otherwise,
some components might not get enough time to complete their operation
before the next (early) clock pulse arrives. Drift however is not critical for
system stability. Applications of the system clock include thread scheduling
and ensuring smooth media playback. If a computer is shut down, the
system clock is not running; it is reinitialized when starting the computer.

Definition 3.21 (RTC). The real-time clock (RTC) in a computer is a
battery backed oscillator which is running even if the computer is shut down
or unplugged.

The RTC is read at system startup to initialize the system clock. This
keeps the computer’s time close to UTC even when the time cannot be syn-
chronized over a network. RTCs are relatively inaccurate, with a common
maximum drift of 5, 20 or even 100 ppm, depending on quality and temper-
ature. In many cases, the RTC frequency is 32.768 kHz, which allows for
simple timekeeping based on binary counter circuits because the frequency
is exactly 215 Hz.

Definition 3.22 (Radio Time Signal). A Radio Time Signal is a time
code transmitted via radio waves by a time signal station, referring to a time
in a given standard such as UTC.

Time signal stations use atomic clocks to send as accurate time codes as
possible. Radio-controlled clocks are an example application of radio signal
time synchronization. In Europe, most radio-controlled clocks use the signal
transmitted by the DCF77 station near Frankfurt, Germany. Radio time
signals can be received much farther than the horizon of the transmitter due
to signal reflections at the ionosphere. DCF77 for instance has an official
range of 2,000 km. The time synchronization accuracy when using radio
time signals is limited by the (unknown) ToF (same as propagation delay)
of the signal. For instance the delay Frankfurt-Zurich is about 1 ms.

Definition 3.23 (Power Line Clock). A power line clock measures the
oscillations from electric AC power lines, for instance 50 Hz.

Clocks in kitchen ovens are usually driven by power line oscillations.
AC power line oscillations drift about 10 ppm, which is remarkably stable.
The magnetic field radiating from power lines is strong enough that power
line clocks can work wirelessly. Power line clocks can be synchronized by
matching the observed noisy power line oscillation patterns. Power line
clocks operate with as little as a few ten µW.
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Definition 3.24 (Sunlight Time Synchronization). Sunlight time syn-
chronization is a method of reconstructing global timestamps by correlating
annual solar patterns from light sensors’ length of day measurements.

Sunlight time synchronization is relatively inaccurate. Due to low data
rates from length of day measurements, sunlight time synchronization is
well-suited for long-time measurements with data storage and post-processing,
requiring no communication at the time of measurement. Historically, sun
and lunar observations were the first measurements used for time determi-
nation [4, 5]. Some clock towers still feature sun dials. . . . but today, the
most popular source of time is probably GPS!







4
GPS

“The satellite-based Global Positioning System (GPS) is perhaps
the most significant civil spinoff of the cold war.”

— Bradford W. Parkinson, “Father of GPS” [96]

The Global Positioning System (GPS) is one of several Global Navigation
Satellite Systems (GNSS). GPS has been such a technological breakthrough
that even though it dates back to the 1970s, the new GNSS still use essen-
tially the same techniques, differing mainly in used signal frequencies and
modulations. Therefore, we discuss GPS as an example which will enable
the reader to understand all GNSS. While we only cover the basic concepts
here, the details of the GPS signals, models and system parameters can be
found in the official interface document [91].

Definition 4.1 (Global Positioning System). The Global Positioning
System (GPS) is a Global Navigation Satellite System (GNSS),
consisting of at least 24 satellites orbiting around the Earth, each continu-
ously transmitting its location and time code [38].

Localization is done in space and time! GPS provides location and time
information to receivers anywhere on Earth where at least four satellite sig-
nals can be received. Line of sight (LOS) between satellite and receiver
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is advantageous. GPS works poorly indoors, or with reflections. Besides
the US GPS, three other GNSS exist: the European Galileo, the Russian
GLONASS and the Chinese BeiDou. GPS satellites orbit around Earth ap-
proximately 20,000 km above the surface, circling Earth twice a day. The
signals take between 64 and 89 ms to reach Earth. The orbits are pre-
cisely determined by ground control stations, optimized for a high number
of satellites being concurrently above the horizon at any place on Earth.

4.1 Satellites

Algorithm 4.2 GPS Satellite Data Transmission [56]
The code below is a bit simplified, concentrating on the digital aspects,
ignoring that the data is sent on a carrier frequency of 1575.42 MHz.
Input: Each satellite has a unique 1023 bit (±1, see below) P RN se-
quence, plus some current navigation data D (also ±1).

1: while true do
2: for all bits Di ∈ D do
3: for j = 0 . . . 19 do
4: for k = 0 . . . 1022 [this loop takes exactly 1 ms] do
5: Send bit P RNk · Di

6: end for
7: end for
8: end for
9: end while

Definition 4.3 (PRN). Pseudo-Random Noise (PRN) sequences are
pseudo-random bit strings. Each GPS satellite uses a unique PRN sequence
with a length of 1023 bits for its signal transmissions [56, Sec. 3.2.1.3].

The GPS PRN sequences are so-called Gold codes, which have low cross-
correlation with each other. To simplify our math (abstract from modula-
tion), each PRN bit is either 1 or −1.
Definition 4.4 (Navigation Data). Navigation Data is the data trans-
mitted from satellites, which includes orbit parameters to determine satellite
locations, timestamps of signal transmission, atmospheric delay estimations
and status information of the satellites and GPS as a whole, such as the
accuracy and validity of the data [56, Sec. 3.2.2].

As seen in Algorithm 4.2, each bit is repeated 20 times for better robust-
ness. Thus, the navigation data rate is only 50 bit/s. Due to this limited



4.2. CLASSICAL RECEIVERS 33

data rate, timestamps are sent every 6 seconds, satellite orbit parameters
(function of the satellite location over time) only every 30 seconds. As a
result, the latency of a first location estimate after turning on a receiver,
which is called time to first fix (TTFF), can be high.

4.2 Classical Receivers

Definition 4.5 (Circular Cross-Correlation). The circular cross-correlation
is a similarity measure between two vectors of length N , circularly shifted
by a given displacement d:

cxcorr(a, b, d) =
N−1�

i=0

ai · bi+d mod N

The two vectors are most similar at the displacement d where the sum
(cross-correlation value) is maximum. The vector of cross-correlation values
with all N displacements can efficiently be computed using a fast Fourier
transform (FFT) in O(N log N) instead of O(N 2) time.

Algorithm 4.6 Acquisition [125, Ch. 7]
Input:
Received 1 ms signal s with sampling rate r · 1, 023 kHz
Possible Doppler shifts F , e.g. {-10 kHz, -9.8 kHz, . . . , +10 kHz}

1: Tensor A = 0: satellite × carrier frequency × time
2: for all satellites i do
3: P RN �

i = P RNi stretched with ratio r
4: for all Doppler shifts f ∈ F do
5: Build modulated P RN ��

i with P RN �
i and Doppler frequency f

6: for all delays d ∈ {0, 1, . . . , 1, 023 · r − 1} do
7: Ai(f, d) = |cxcorr(s, P RN ��

i , d)|
8: end for
9: end for

10: Select d∗, f∗ that maximize maxd maxf Ai(f, d)
11: Signal arrival time ri = d∗/(r · 1, 023 kHz)
12: end for

Output: For all i: d∗, f∗

Alternatively, the algorithm may output values only for those satellites
with Ai(f∗, d∗) above some threshold, or it may output only the signal
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arrival times ri for those satellites, or it may output the full tensor A. Mul-
tiple milliseconds of acquisition can be summed up to average out noise and
therefore improve the arrival time detection probability. This is called non-
coherent integration. Meanwhile, in coherent integration PRN sequences
are extended through repetition before doing the acquisition. Thus, the
correlation uses longer signals. Coherent integration results in an improved
signal-to-noise ratio (SNR) compared to non-coherent integration, but only
when navigation bit flips are accounted for and the Doppler frequency is
close enough. Since this means that more fine-grained Doppler shifts have
to be tested and because the correlation has superlinear complexity in the
length of the input sequences, the computational effort of coherent integra-
tion is higher than that of non-coherent integration.

Definition 4.7 (Acquisition). Acquisition is the process in a GPS re-
ceiver that finds the visible satellite signals and detects the delays of the
PRN sequences and the Doppler shifts of the signals.

The relative speed between satellite and receiver introduces a significant
Doppler shift to the carrier frequency. In order to decode the signal, a
frequency search for the Doppler shift is necessary. The nested loops make
acquisition the computationally most intensive part of a GPS receiver.

Algorithm 4.8 Classical GPS Receiver Localization [15]
Input:
h: Unknown receiver handset location
θ: Unknown handset time offset to GPS system time
ri: measured signal arrival time in handset time system
c: signal propagation speed (GPS: speed of light)

1: Perform Acquisition (Algorithm 4.6)
2: Track signals and decode navigation data
3: for all satellites i do
4: Using navigation data, determine signal transmission time si and

location pi

5: Measured satellite ToF di = ri − si

6: end for
7: Solve the following system of equations for h and θ:
8: ||pi − h||/c = di − θ, for all i

Output: h∗ minimizing the sum of the squared residuals

GPS satellites carry precise atomic clocks, but the receiver is not syn-
chronized with the satellites. The arrival times of the signals at the re-
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ceiver are determined in the receiver’s local time. Therefore, even though
the satellite signals include transmission timestamps, the exact distance be-
tween satellites and receiver is unknown. In total, the localization problem
contains four unknown variables, three for the handset’s spatial location
and one for its time offset from the system time. Therefore, signals from
at least four transmitters are needed to find the correct solution. Since the
equations are quadratic (distance), with as many observations as variables,
the system of equations has two solutions in principle. For GPS however,
in practice one of the solutions is far from the Earth surface, so the correct
solution can always be identified without a fifth satellite. More received sig-
nals help reducing the measurement noise and thus improving the accuracy.
Since the localization solution, which is also called location fix, includes the
handset’s time offset Δ, this establishes a global time for all handsets. Thus,
GPS is useful for global time synchronization. For a handset with unknown
location, GPS timing is more accurate than time synchronization with a
single transmitter, like a time signal station (cf. Definition 3.22). With the
latter, the unknown signal ToFs cannot be accounted for.
Definition 4.9 (A-GPS). An Assisted GPS (A-GPS) receiver fetches
the satellite orbit parameters and other navigation data from the Internet,
for instance via a cellular network [127].

A-GPS reduces the data transmission time, and thus the TTFF, from a
maximum of 30 seconds per satellite to a maximum of 6 seconds. Smart-
phones regularly use A-GPS. However, coarse localization is usually done
based on nearby Wi-Fi base stations only, which saves energy compared to
GPS. Another GPS improvement is Differential GPS (DGPS): A receiver
with a fixed location within a few kilometers of a mobile receiver compares
the observed and actual satellite distances. This error is then subtracted at
the mobile receiver. DGPS achieves accuracies in the order of 10 cm.

4.3 Snapshot Receivers

Definition 4.10 (Snapshot GPS Receiver). A snapshot receiver is a
GPS receiver that captures one or a few milliseconds of raw GPS signal for
a location fix [127, Ch. 4].

Snapshot receivers aim at the remaining latency that results from the
transmission of timestamps from the satellites every six seconds. Since time
changes continuously, timestamps cannot be fetched together with the satel-
lite orbit parameters that are valid for two hours. A snapshot receiver can
determine the ranges to the satellites modulo 1 ms, which corresponds to
300 km. An approximate time and location of the receiver is used to resolve
these ambiguities without a timestamp from the satellite signals themselves.
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Definition 4.11 (CTN). Coarse-Time Navigation (CTN) is a snap-
shot receiver localization technique measuring sub-millisecond satellite ranges
from correlation peaks, like classical GPS receivers [127, Ch. 4].

A CTN receiver determines the signal transmission times and satellite
locations from its own approximate location by subtracting the signal ToF
from the receive time. The receiver location and time is not exactly known,
but since signals are transmitted exactly at whole milliseconds, rounding to
the nearest whole millisecond gives the signal transmission time. With only
a few milliseconds of signal, noise cannot be averaged out well and may lead
to wrong signal arrival time estimates. Such wrong measurements usually
render the system of equations unsolvable, making localization infeasible.

Algorithm 4.12 Collective Detection Receiver Localization [11]
Input: A raw 1 ms GPS sample s, a set H of location/time hypotheses
In addition, the receiver learned all navigation and atmospheric data

1: for all hypotheses h ∈ H do
2: Vector r = 0
3: Set V = satellites that should be visible with hypothesis h
4: for all satellites i in V do
5: r = r + ri, where ri is expected signal of satellite i. The data

of vector ri incorporates all available information: distance and atmo-
spheric delay between satellite and receiver, frequency shift because of
Doppler shift due to satellite movement, current navigation data bit of
satellite, etc.

6: end for
7: Probability Ph = cxcorr(s, r, 0)
8: end for

Output: hypothesis h ∈ H maximizing Ph

Definition 4.13 (Collective Detection). Collective detection (CD) is
a maximum likelihood snapshot receiver localization method, which does not
determine an arrival time for each satellite, but rather combine all the avail-
able information and take a decision only at the end of the computation [11].

CD can tolerate a few low quality satellite signals and is thus more robust
than CTN. In essence, CD tests how well location hypotheses match the
received signal. For large location and time uncertainties, the high number
of hypotheses require a lot of computation power. CD can be sped up by
a branch-and-bound approach, which reduces the computation per location
fix to the order of one second even for uncertainties of 100 km and a minute.
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Several people worked on snapshot GPS receivers, but the technique has not
penetrated into commercial receivers yet. Liu et al. [75] presented a practical
CTN receiver and reduced the solution space by eliminating solutions not
lying on the ground. CD receivers are studied since at least 2011 [11] and
have recently been made practically feasible through branch and bound [14].

Another method which considers all satellite signals together, like CD, is
Direct Position Estimation (DPE) [29]. In addition to the signal amplitude,
like CD, DPE also considers the signal phase for the receiver localization.
However, an efficient implementation, like the branch-and-bound technique
for CD, has not been found, yet.





5
Fast and Robust GPS Fix Using One
Millisecond of Data

“In this age of the rule of brute force, it is almost impossible for
anyone to believe that any one else could possibly reject the law of
the final supremacy of brute force.”

— Mahatma Gandhi

Location sensing has proven to be an important prerequisite for many ap-
plications. Examples are navigation, tracking, life-logging, research such as
animal tracking, and rescue services. Many classes of battery powered de-
vices are more useful when location information is available, such as smart-
phones, cameras, fitness trackers, smart watches and sensor nodes. For most
outdoor scenarios, GPS is the localization system of choice, mainly due to
its global coverage and accuracy.

However, continuous GPS receiver operation still consumes too much
energy for mobile devices such as fitness trackers or even smartphones, since
current receivers cannot be efficiently duty-cycled. When the receiver is
switched off for a few minutes to conserve power, it takes a lot of time and
energy to compute a new location fix once it is turned back on again. This
has far-reaching consequences for many application scenarios. For example,
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today’s GPS receivers make us wait for a first fix, which can be annoying
if one wants to navigate an unknown place. Also, geo-tagging photos is not
instant and energy consuming. Due to the energy consumption issues, many
applications, such as long term tracking, are still out of reach.

In this chapter, we present a receiver which requires only a single mil-
lisecond of GPS signal to compute its location. This means that the signal
can be recorded and stored locally for later processing. The signal record-
ing can be sent to a remote server which can perform the energy consuming
location computation. This translates to a reduction in power consumption
as well as an increase in convenience for many applications. For example,
the initial location when navigating with your phone can be found within
a few milliseconds depending on network latency. A smartwatch or fitness
tracker may be able to track its location every few seconds for weeks at a
time. When the duty cycle is further reduced, a tracking device that only
requires one location fix per hour may run for years on a single coin cell
battery. Geo-tagging photos can be simplified to adding a one ms signal
recording to the photo which is stored and the location can be computed
later on.

The GPS signal that reaches the surface of the earth is weak due to
the path loss. To reduce the effects of noise, current receivers track GPS
signals over extended periods of time. Since we want to be able to store the
recorded signals for later processing, this is not a feasible solution for us.
To still increase the noise tolerance of our approach, our solution yields the
location fix that best explains the given signal measurement. This means
that we do not need to detect satellite ranges which easily can throw off
current GPS receivers as well as CTN receivers.

The problem of finding the location that best explains a given signal mea-
surement is non-convex. Hence, the solution cannot be found by iteratively
improving a candidate solution in all cases. If the location is approximately
known, finding the most likely location can be achieved by computing the
likelihoods of all close-by locations and selecting the most likely one. The
more uncertain the initial guess about the location and time, the larger the
search space (location and time) becomes. Computing all the likelihoods
presents a computationally expensive maximization problem in this case.
However, we show how the global maximum can be found efficiently using
a branch-and-bound approach. The runtime of the algorithm is correlated
with signal quality: In good signal conditions, the computational load is
low. The worse the signal conditions become, the higher the computational
burden. However, the best location and time fix is found in any case. The
branch and bound implementation speeds up the acquisition time and hence
also the time to first fix (TTFF).
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We exploit the shape of the likelihood function to achieve higher localiza-
tion accuracy and robustness. As a result, under similar conditions (signal
duration and sampling rate), our method leads to more accurate localiza-
tion compared to previous approaches. Furthermore, we show that there is
a trade-off between the amount of sampled signal used and the accuracy of
the localization solution. If we average over two consecutive location fixes
from one millisecond of data each, the median error is reduced from 25 to
15 meters. Averaging over 30 fixes (0.03 s of signal), the median error is
as low as 6 meters. Tracking a user’s location decreases the computational
complexity of each consecutive fix as the search space (space and time) is
much smaller.

5.1 Related Work

Van Diggelen [127] has introduced the idea of Coarse-Time Navigation
(CTN). Using CTN, a location fix can be found from only a few milliseconds
of data without decoding any data from the GPS signal. The requirement for
this is prior knowledge of the receiver time and location to within a few sec-
onds and 150 kilometers, respectively. Liu et al. [75] showed that since CTN
only requires a few milliseconds of data, the raw signal can be stored and
the computation can be outsourced or postponed until power is available.
This mitigates the problem of high energy consumption for acquisition by
not acquiring the satellites on the receiver, enabling duty cycling. However,
due to the short signal duration, accuracy and robustness is worse than in
classic receiver designs relying on acquisition and tracking stages. Our GPS
receiver design extends this idea and can compute a location from a single
millisecond of signal. Our localization method counteracts the effect of the
short signal duration and improves the localization accuracy compared to
existing work on CTN. Also, we show how accurate location fixes can be
computed from inaccurate time estimates. This allows us to drop the heavy
and power consuming DCF-77 clock receiver required by Liu et al. [75]. As
a result, our receiver can be miniaturized and can function for years even
when there is no clock synchronization except at the very beginning.

A second branch of research is concerned with improving the robustness
of GPS receivers. In classical GPS, the receiver location is determined based
on signal parameters. The most important ones being Doppler shift and
code delay for each satellite. From these parameters, a location in space is
computed. Clearly, signal parameters may be erroneously detected which
leads to unusable location estimates.

Instead of estimating the signal parameters, Closas et al. [28] showed how
the receiver location can be estimated directly and how this can improve the
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robustness of GPS receivers. We refer to the basic idea as collective detec-
tion (CD), but it is also called direct positioning or combined detection in
the literature. Evaluations of CD have been performed in both simulation
and practice [11, 26, 28]. The main concern is the computational complex-
ity introduced by the high-dimensional search space. Also, the likelihood
function is generally non convex, prohibiting standard greedy maximization
methods. Optimizations such as the one proposed by Axelrad et al. [11]
reduce the computational complexity but cannot guarantee that the best
possible location is found. We improve the robustness of our approach by
applying CD. Especially so in multipath environments because CD finds the
globally best solution whereas classical receiver designs depend on correct
pseudorange estimates for each individual satellite. Hence, one bad pseudo-
range estimate can throw off the classical solution whereas the most likely
location (in CD) may still remain unaffected. However, CD is expensive
in terms of computation. To alleviate this drawback of CD we introduce a
branch-and-bound algorithm which yields reduced computational complex-
ity while still guaranteeing that the best possible solution is found.

5.2 GPS Fundamentals

The GPS system conceptually consists of three parts: the control segment,
the space segment and the user segment. The space segment nominally con-
sists of 24 satellites orbiting the Earth [38]. A network of monitor stations
and ground antennas makes up the control segment. It is primarily used
to monitor the satellites’ state and keep track of their ever-changing orbits.
The orbits need to be known accurately for good localization accuracy [38].1

The third – and for our discussion most important – part of GPS are the
receivers, making up the user segment.

5.2.1 GPS Signal

The satellites transmit signals in different frequency bands. These include
at least the so-called L1 and L2 frequency bands at 1.57542 GHz and
1.2276 GHz [38]. The signals are transmitted through a helix array antenna
which right-hand circularly polarizes the signals [38]. This helps suppressing
multipath signals at a receiver because a reflection of the signal polarizes it
in the opposite direction. In order to distinguish the signals from different
satellites and to extract the signals from the background noise, code division
multiple access (CDMA) is used.

1Further information can be found at http://www.gps.gov/systems/gps/control/
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Figure 5.1: The structure and modulation of the GPS Signal. The binary
data and C/A code are mixed with the carrier frequency (L1) using the
BPSK modulation scheme.

Figure 5.1 shows the modulation scheme utilized in GPS. The Coarse/Ac-
quisition code (C/A code) is a sequence of 1023 bits which is unique for each
satellite. Specifically, Gold codes are used to achieve favorable correlation
and cross-correlation properties [127]. Because Gold codes look like random
bit strings, C/A codes are also called pseudo-random noise (PRN) sequences.
The C/A code is transmitted at 10.23 MHz which means it repeats every
millisecond. The data is transmitted at 50 bit

s and hence, each bit contains
20 complete C/A cycles. The data and C/A code are merged using an XOR
before being mixed with the L1 or L2 carrier. Figure 5.1 shows how the GPS
signal is generated. Note that for better readability, the C/A frequency and
the L1 frequency do not have the correct ratio. The data that is broadcast
contains a timestamp (called HOW) which can be used to compute the loca-
tion of the satellite when the packet was transmitted. However, to do this,
the receiver needs accurate orbital information (called ephemeris) about the
satellite which changes over time. While the HOW timestamp is broadcast



44 CHAPTER 5. FAST COLLECTIVE DETECTION

every six seconds, the ephemeris data can only be received if the receiver
can decode at least 30 seconds of signal.

5.2.2 Localization
Classical GPS receivers use three stages when obtaining a location fix.

Acquisition. First, the set of available satellites has to be found. This can
be achieved by correlating the received signal with the known C/A codes
from the satellites. Since the satellites move at considerable speeds, the
signal frequency is affected by a Doppler shift. Hence, receivers usually
correlate the received signal with C/A codes with different Doppler shifts.

Tracking. After a set of satellites has been acquired, the data contained
in the broadcast signal is decoded. Doppler shifts and C/A code phase are
tracked using tracking loops. After the receiver obtained the ephemeris data
and HOW timestamps from at least four satellites, it can start to compute
its location.

Localization. Localization in GPS is achieved using signal time of flight
(ToF) measurements. Specifically, the ToFs are the difference between the
arrival times of the HOW timestamps decoded in the tracking stage of the
receiver and those signal transmission timestamps themselves. Due to miss-
ing time synchronization of GPS receivers with the system time, the corre-
sponding satellite distances contain a common bias and are therefore called
pseudoranges.

Assuming the devices are synchronized, the localization is geometrically
simple: The location of the mobile handset lies at the intersection of the
spheres around the stations with the radii corresponding to the measured
ToFs. But, while the GPS satellites operate on an atomic frequency stan-
dard, the receivers are not synchronized to the GPS time. Therefore, the
local time at a receiver is unknown and the localization is done using the
pseudoranges. That problem formulation just contains one more variable,
which is the receiver time. Hence, measurements from at least four instead
of three satellites are needed for the problem to be well-defined. The receiver
location is usually found through a least-squares optimization.

5.2.3 Assisted GPS
A disadvantage of GPS is the low bit rate of the navigation data encoded
in the signals transmitted by the satellites. The minimal data necessary
to compute a location fix, which includes the ephemerides of the satellites,
repeats only every 30 seconds. In order to decode all that data, the receiver
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has to continuously track and process the satellite signals, which induces
a high energy consumption. Furthermore, upon starting up a receiver, a
location will not be instantly available. To overcome this drawback, receivers
can run continuously, but this consumes even more power.

Assisted GPS (A-GPS) drastically reduces the start-up time by fetching
the navigation data over the Internet, commonly by connecting via a cellular
network. Data transmission over cellular networks is faster than decoding
the GPS signals and normally only takes a few seconds. The ephemeris data
is valid for at least 30 minutes. Using that data, also the acquisition time
can be reduced since the set of available satellites can be estimated along
with their expected Doppler shift. With A-GPS, the receiver still needs to
extract the HOW timestamps from the signal. But since those timestamps
are transmitted every six seconds, that is roughly how much time it takes
an A-GPS receiver to compute a location fix.

5.2.4 Coarse-Time Navigation

Coarse-Time Navigation (CTN) is an A-GPS technique which drops the
requirement to decode the HOW timestamps from the GPS signals. Van
Diggelen [127] describes the concept in detail. The only information used
from the GPS signals are the phases of the C/A code sequences which are
detected using a matched filter. Those C/A code arrival times are directly
related to the sub-millisecond parts of the corresponding ToFs. The number
of whole milliseconds of the signal ToF are resolved with a known approx-
imate location and time. Because the signals travel at the speed of light,
which is about 300 km per millisecond, in order to be able to resolve the
number of whole milliseconds unambiguously, the deviation may at most
be 150 km from the correct values. Here, the deviation is defined as the
time offset multiplied by the speed of light plus the location distance. Since
the PRN sequences repeat every millisecond, without considering navigation
data bit flips in the signal, CTN can in theory compute a location from one
millisecond of the sampled signal. But since bit flips can happen, to make
sure all visible satellites can be used, two milliseconds are necessary. With
such short signal recordings, clearly noise becomes a major issue, because
noise cannot be filtered out as easily as with much longer recordings of sev-
eral seconds. But the advantage of this extremely short recording period
is that the signal processing is fast and power-efficient and thus also the
latency of a first fix. Also, since no metadata has to be extracted from the
GPS signal, CTN may be able to compute a location even if the GPS signal
cannot be decoded anymore due to noise or attenuation.
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5.2.5 Collective Detection
Collective detection builds upon the observation that detecting peaks in the
correlation functions of individual satellites might yield sets of pseudoranges
which are not consistent with the laws of physics. By searching a solution
in space and time directly, this can be avoided. The problem then consists
of finding the most likely location given the received signal. From a given
hypothetical location and time (referred to as hypothesis in the following),
the corresponding ranges of the satellites and therefore the ToFs can be in-
ferred. Figure 5.2 shows how the correlation functions of the received signal
with PRN codes of different satellites on the left. On the right, the same
correlation functions are circularly shifted by the expected ToF at the cor-
rect location. That makes the correlation peaks of all four satellites align.
A receiver can exploit this by combining corresponding correlation values
from all the satellites to compute a likelihood measure. This is essentially
what our receiver does. Erroneous peaks in the correlation function most
likely never align which improves noise resistance. Commonly, the hypothe-
sis pseudo-likelihood is defined as the sum of the satellite pseudo-likelihoods,
but one could also use other measures, for instance the product.

5.3 Localization Method

The basic idea of our method is to asses the quality of many hypothetical
receiver states h = (hp, ht) which consist of the receiver location hp and
time ht. The quality of a hypothesis is determined through a likelihood
function which assigns a pseudo-likelihood to the hypothesis given external
information and the observed signal. This likelihood L(h) is a measure of
how well the observed signal matches the signal expected at a hypothesis h.

5.3.1 Likelihood
Given a hypothesis h, we can use the knowledge about the satellites’ signal
transmission times and orbits (from the navigation data) to compute the
expected signal phase φi(h) arriving at the receiver from the ith satellite.
This is discussed in detail in Section 5.3.2. Hence, for any hypothesis h we
can expect a C/A code with phase φi(h) from satellite i in the arriving signal.
We can check how well the received signal r(t) matches this expectation by
computing a single correlation value with satellite i’s C/A code cai(t).

ci(h) =
1ms�

τ=0

|r(τ) · cai(τ − φi(h))| (5.1)
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(a) Original (not shifted).

(b) Shifted (circularly) according to the distance from the receiver to the
corresponding satellite.

Figure 5.2: Correlation functions for four satellites. Above are the cor-
relations of the received signal with the PRN sequences of four different
satellites. The spikes indicating the beginning of the PRN codes in the re-
ceived signal are marked with arrows. If we shift the correlation vectors
according to the true distance to the satellites, we see below that the peaks
all align.
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If our hypothesis h is correct, we expect large correlation values ci for
satellites whose signal can be received, because the code phase of the C/A
code in the received signal match the expected code phase φi(h). For satel-
lites that are heavily attenuated or reflected, ci will be almost completely
random. We define our likelihood function as the sum of the correlation
values for a given hypothesis over all visible satellites, whose indices are
denoted by the set V .

L(h) =
�

i∈V

ci(h) (5.2)

The receiver location and time are estimated by selecting the hypothesis
h∗ which maximizes the likelihood measure:

h∗ = arg max
h∈F

L(h)

where F is a set of feasible (location, time) tuples.

5.3.2 Computing the C/A Code Phase
To compute the likelihood of a hypothesis h, we need to know the C/A
code phases φi(h) of the visible satellites. In the following, we assume that
the signal ToF di(h) is mainly determined by the distance between receiver
and satellite. Note that the maximum signal ToF to a receiver on Earth is
87 ms [125]. During such a short time, a receiver’s movement does not have
a significant effect on the signal ToF. However, the fast satellite movement
has. Therefore, we compute the ToF at the transmission time ti of a signal
even though the receiver may still travel for an additional 87 ms.

The code phase φi(h) relates to the transmission time ti(h) of the re-
ceived signal as follows:

φi = ti(h) mod 1 ms
The transmission time ti(h) of the received signal at time ht are re-

lated by the ToF di(h) between the hypothetical location and the satellite
location.

ti(h) = ht − di(h) (5.3)
The ToF can be found by dividing the spatial distance between the

hypothetical location hp and the satellite location pi by the speed of light
C:

di(h) = ||hp − pi(ti(h))||
C

(5.4)
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The ToF di(h) depends on the distance between the satellite location pi

at the transmission time ti(h) and the hypothetical location hp. The satellite
location pi(ti(h)) at a given time can be computed from the ephemeris.

So, the ToF di(h) can be found knowing the transmission time ti(h)
which itself can be found knowing the satellite location pi(ti(h)) which in
turn can only be found knowing the transmission time ti(h) for which the
ToF di(h) needs to be known. This circular dependency can be resolved by
a short fixed-point iteration which exploits the difference between the speed
of light and the satellite movement speed.

Namely, the signal ToFs from a satellite to a receiver on Earth range be-
tween 67 and 86 ms [125]. If we compute the signal transmission time using
Equation 5.3 and this crude estimate, we get ti ≈ ht − (67 + 86)/2 ms ≈
ht − 76.5 ms. The estimation error in the transmission time ti(h) is at most
9.5 ms. The maximum satellite speed relative to a receiver on Earth is
929 m/s [125]. This means that our estimate for ti(h) of 9.5 ms leads to a
worst case satellite location estimation error of 9.5 ms · 929 m/s = 8.83 m.
Using this new satellite location error, the second iteration starts with a
new estimate of the transmission time ti(h), based on a satellite location
error which is at most 8.83 m. Hence, the ToF estimation error is at most
8.83 m/C = 19.4 ns. The satellite location estimate that can be achieved
using this ToF estimate already has a negligible error of 19.4 ns ·929 m/s =
18 µm.

5.3.3 Search Region
To guarantee the uniqueness of the solution, we limit the search region in
which the set F of feasible hypotheses is contained. As GPS signals travel
at the speed of light C, the C/A code phase of a satellite are the same for
two hypotheses if their distances to the satellite differ by k ·C ·1ms ≈ 300km
for integer values for k. To avoid this affecting our results, we bound the
search region in which the set F of feasible hypotheses is contained to a
diameter of 300 km. Most likely the correct solution can still be found
in larger areas, especially when more than four satellites are visible. Note
that the correspondence between time error and range error is given by the
maximum relative satellite speed against a receiver, which is less than 1 km

s
on the Earth surface [125]. For instance, a location range of 100 km and
a time range of 50 km / 1 km

s = 50 s are guaranteed to deliver a unique
solution.

For bounding the solution domain, one can use the antenna location
of a cellular network as a reference. When the signal of the satellites is
strong enough, we can also find the approximate receiver location with an
idea presented by Liu et al. [75]. The authors show how the measured
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Doppler shift of a signal limits the receiver location to a cone. The receiver
location is then at the intersection of the cones from each satellite. If we
do not compute an initial fix, we can use the last computed location as an
approximation for the new location.

5.3.4 Visible Satellites

The set V contains the indices of all potentially visible satellites. It is
assumed to be the same for all hypotheses h ∈ F and is determined as all
the satellites with an elevation above the horizon larger than five degrees,
as seen from the center of the search region. In theory, V is a function of a
hypothesis h and the ephemerides, from which the satellite elevation angles
can be computed. However, it is safe to assume V is fixed with respect to all
hypotheses since the elevation angles barely change within the search regions
we consider. Also the Earth’s rotation during the signal transmission can
be neglected when computing the elevation angle of a satellite.

5.3.5 Space Discretization

The computation of the correlation values given in Equation 5.1 shifts the
locally generated C/A code by its expected phase. In our case, the expected
phase is rounded such that we shift by an integer value corresponding to one
sampling interval Ts of the receiver. This helps to simplify the computation
of the likelihood function as no signal interpolation is required. Due to the
rounding, the likelihood of two hypotheses that are close may lead to the
exact same set of C/A code phases φi for all visible satellites.

Ideally, we spread hypotheses in the search range such that no two hy-
potheses correspond to the same set of C/A codes to conserve computation
resources. Also, we would like to have one hypothesis for every set of C/A
code ranges which can be achieved within the search region.

Depending on the sampling interval Ts, we can compute the range dif-
ference that is required to change the value of the rounded C/A code phase
φi. Namely, the corresponding “length” of a sample is λs = cTs, where c is
the speed of light (λs ≈ 37 m for Ts = 1

8MHz ). Thus, for each satellite, the
solution space is sliced into spherical shells with a slice width of λs. Each
hypothesis in such a slice produces the same rounded expected C/A code
phase φi.

With multiple satellites, the space is sliced in several directions as shown
in Figure 5.3. This divides the solution space into volumes in which all the
hypotheses correspond to the same rounded C/A code phase and therefore
equal likelihoods. Figure 5.3 shows a two-dimensional example.
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λs

x

y

Figure 5.3: Two-dimensional search space discretization example. In this
example, three satellites are visible, which cause three groups of parallel
lines slicing the search space. When crossing a line, the expected C/A code
phase φi for the corresponding satellite is rounded to the previous or next
sampling period Ts. All locations inside a bounded area have the same
likelihood. Extremely small regions may exist (indicated by circles).

Since we do not know the exact shape of the division of the search space
in the volumes of equal observations, we sample the space with a regular
grid. Ideally, this grid would be dense enough to “capture” all these volumes.
However, some of these volumes can be infinitely small and thus, with any
fixed grid density, we might not sample some volumes and therefore not
find the most likely hypothesis. This means that we cannot guarantee that
we sample the volume which corresponds to the highest likelihood that is
achievable given the observations.

Luckily, we can make sure that we do not miss the correct solution
completely because no hypothesis is close enough. We do this by selecting
the grid such that neighboring points are λs apart. Like this, each hypothesis
represents a cube of side length λs. Such a cube has a diameter of

√
3λs ≈

1.7λs < 2λs. Since the space is divided into those cubes, an uncovered area
can at most be half a diameter apart from the nearest hypothesis, that is
the distance to the nearest hypothesis is less than λs. Note that a distance
smaller than λs can at most cross one slice boundary for each satellite. This
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means that for an uncovered area and its nearest hypothesis, the expected
code phases φi are at most one sampling interval Ts apart.

The key observation is that our (and also common) GPS receivers over-
sample the GPS signals. For the correlation, this means that the peaks are
not confined to a single sample of length Ts. Rather, their neighboring val-
ues are quite high as well and form a triangle-like pattern. Without noise,
the correlation values at a distance of k samples from the peak have a value
of at least (1 − k · 2 · fPRN/fs) times the value of the peak. fPRN is the rate
of the PRN sequences (1.023 MHz). fPRN/fs is the fraction of the locally
generated PRN sequence which does not match the correct part of the PRN
in the signal. For a sampling rate of 8 MHz (fs = 1

Ts
) for instance, the

directly neighboring values of the peak are at least 74 % as high as the peak
itself, for a sampling rate of 56 MHz at least 96 %. Assuming the used
sampling rate is at least 8 MHz, the found correlation values may at most
be 26 % smaller compared to the largest one. Alternatively, we could filter
the correlation values such that the correlation value at an index contains
the highest correlation values amongst its direct neighbors. In this case, we
are guaranteed to find the highest achievable likelihood, but the likelihood
function is less sharp. The trade-off that we make here is a decrease in the
likelihood at the correct location.

5.3.6 Time Discretization

The hypotheses also have to be spread in the time domain. As in the spatial
discretization above, we have to make sure that we sample densely enough,
such that we do not miss the most likely location. If the hypothetical time
for the correct location hp is off by as few as 10 · Ts, its likelihood will be
completely random (assuming Ts = 8MHz). This follows from the same
argument about the shape of the PRN autocorrelation function above. In
order to allow for more coarse sampling in the time domain, we exploit
the fact that the expected C/A code phase φi(h) is approximately constant
when varying the hypothetical time ht by less than one ms. Hence, we
simplify the computation of the correlation values ci(h) for hypotheses that
are identical up to a difference in time tµ which is smaller than 1 ms.

ci(h, tµ) =
1ms�

τ=0

|r(τ) · cai(τ − φi(h) − tµ)| (5.5)



5.3. LOCALIZATION METHOD 53

We can simplify the computation of ci(h, tµ) for all tµ ∈ [0, Ts, 2 ·
Ts, . . . , 1ms] using the correlation function Ci:

Ci(tµ) =
1ms�

τ=0

|r(τ) · cai(τ − tµ)| (5.6)

Note that the correlation function Ci(tµ) can be computed independent
of the hypothesis. By shifting the correlation function Ci(tµ) of the received
signal with the C/A code according to the expected phase φi(h), we can
simplify the computation of the likelihood as follows:

L(h) = max
tµ

�

i∈V

Ci(tµ − φi) (5.7)

This allows us to choose the time domain to be sampled at up to 1 ms
intervals without leaving a good solution undetected.

In the worst case, an inaccurate time hypothesis shifts the most likely
location by the maximal speed of the satellites relative to the earth’s surface
(1 km

s ). This means that the localization error is expected to increase less
than 1 m if the hypothetical time is off by 1 ms. Hence, we can further
increase the intervals at which the time domain is sampled. This does not
negatively affect the observations about the spatial discretization. We are
still guaranteed to observe hypotheses that are close to the highest achiev-
able likelihood.

5.3.7 Averaging Over Likely Hypotheses
So far, we only discussed choosing the hypothesis with the largest likelihood
as the solution. As described in Section 5.3.5, hypotheses that are near
the correct solution should get a high likelihood as well, because the PRN
is oversampled and therefore its auto-correlation function has a triangular
shape around the peak. To improve localization accuracy, we consider the
set of hypotheses H with the highest likelihoods. The set of most likely
hypotheses is then combined using a weighted average.

h̄p =
�

h∈H

L(h) · hp

This averaging allows estimating locations more fine-grained than the
granularity of the hypotheses grid. Also, the averaging over multiple hy-
potheses should make the localization more robust to measurement noise
because a hypothesis with a slightly higher likelihood than the one at the
correct location will not completely move the final location estimate to that
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Algorithm 5.5 Finding the n most likely points given a search space defined
by a hypothesis h.

1: procedure S = GetMostLikelyPoints(n,h)
2: n: the number of likely points contained in S.
3: h: the initial hypothesis defining the search space.

4: hlmax = maxLikelihood( h )
5: queue.add(h)
6: S = ∅
7: while queue.hasElement() do
8: h = queue.popMostLikely()
9: if hlmax ≤ minn(hlmin ∈ S) then

10: continue
11: end if
12: hlmin = likelihood( h )
13: hlmax = maxLikelihood( h )
14: S.add(h)
15: h[1] . . . h[16] = splitHypothesis( h )
16: for h[i] = h[1] . . . h[16] do
17: h[i]lmax :=hlmax
18: queue.add(h[i])
19: end for
20: end while
21: end procedure

wrong location. In Section 5.4 we discuss the performance impact of the
averaging as opposed to only selecting the most likely hypothesis.

5.3.8 Efficient Implementation with Branch and Bound

Figure 5.4 shows horizontal cuts of example distributions of our likelihood
computed from a one millisecond window of samples in good signal condi-
tions. Our branch-and-bound method exploits this shape of the likelihood
function under clear signal conditions, avoiding the computation of all like-
lihoods in the search space. The search space as discussed in Sections 5.3.3
and 5.3.5 is large as the hypotheses are spread at a distance of 37 m from
each other and the search space spans 200 km × 200 km × 30 km. In ad-
dition to this, the time domain is searched within 10 s at intervals of 40
ms. This means that there are roughly 2 · 1012 hypotheses which need to
be tested. To reduce the number of hypotheses for which we need to com-
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(a) L(h) on a grid of 10 km by 10 km for a fixed time
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(b) L(h) on a grid of 1 km by 1 km for a fixed time

Figure 5.4: In situations with line of sight between receiver and satellites,
the likelihood function is smooth and unambiguous. The figures shown are
a cut through the search space where the time and height of the receiver
have been fixed at the values corresponding to the most likely hypothesis.
The distance between two points in the grid is approximately 37 meters.
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pute the likelihood, we employ a branch-and-bound method as described in
Algorithm 5.5. To do so, we need a method to compute both an upper-
and lower-bound on the achievable likelihood (indicated by hlmax and hlmin)
within an area defined by a hypothesis. Note that in the algorithm, a hy-
pothesis h contains the center location in x,y,z, and t and also the size of
the search space around it in all dimensions (x,y,z,t). The initial hypothesis
covers the entire search space, that is, it extends over 200 km × 200 km ×
30 km × 10 s. We approximate the lower bound of achievable likelihoods
within an area as the likelihood of the hypothesis itself (likelihood( h ) in the
Algorithm). For the upper bound (maxLikelihood( h ) in the Algorithm),
we use the expected code phases φi along with the size of the area covered by
the hypothesis. Note that the larger the area covered by a hypothesis, the
larger the uncertainty about the possible code phases φi. The uncertainty
is given by the diagonal of the area covered divided by the speed of light.
An illustration is shown in Figure 5.6a. For a hypothesis with a diagonal
of 10 km, the uncertainty is roughly 33 microseconds which corresponds to
roughly 270 sample intervals Ts at 8 MHz. This can efficiently be taken
into account when computing the likelihood as described in Equation 5.7.
Instead of utilizing the correlation function as described in Equation 5.6, we
apply a max-filter first.

C�
i(tµ) = max

τ∈R
Ci(tµ) (5.8)

R is the set of possible shifts that can be expected within the region
covered by a hypothesis. In the example above with 10 km diagonal,
R = [−16.5 µs, 16.5 µs]. The likelihood computation stays the same as
in Equation 5.7 but using C �

i(tµ) instead of Ci(tµ). This yields the highest
possible likelihood, as detailed in Figure 5.6b. To further speed up the com-
putation, the max-filtered correlation functions can be pre-computed as it
is the same for all hypotheses covering areas of the same size.

Hypotheses in the queue are processed according to their maximum
achievable likelihood hlmax (popMostLikely()). This is crucial as areas with
great potential are explored first, making it more likely that bad areas are
not further explored. Each processed hypothesis is split in two in all dimen-
sions (x,y,z,t) which leads to 16 new hypotheses, covering a smaller volume
of the search space each. As soon as a hypothesis cannot achieve a higher
likelihood than the n best hypotheses already observed, it is not further split
up and discarded. The method guarantees that the n most likely points are
found as only hypotheses are discarded which cannot possibly achieve a high
enough likelihood.

The performance of the algorithm depends on the quality of the received
signal as the bounds will be more accurate for a smooth likelihood function.
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(a) 2D illustration of the grid cell containing the receiver. The grid is generally not
aligned with the unknown receiver location. Therefore, the solution hypothesis h in
the cell center differs from the receiver’s location marked by ∗. Thus, the distances
ρA and ρB between the satellites and the hypothesis are also different from the
true ranges ρ∗

A and ρ∗
B to the receiver. However, for the grid cell containing the

receiver, those distance differences ΔρA and ΔρB must be smaller than d/2.
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(b) Idealized correlation vectors of two satellites, shifted according to the estimated
satellite distances from the grid cell center. Length d is the diagonal of a grid
cell. The widening of the correlation peak due to the sliding window maximum is
shown in gray. The dashed peaks indicate the shift, or code phase, for the true
receiver location. For the cell containing the true receiver location, even if the
correlation peaks do not exactly align, the sliding window maximum with window
width d ensures that the computed upper likelihood bound is at least as high as
the likelihood at the point where all peaks overlap. (With low enough noise, that
point should be the true receiver location.) Therefore, that correct cell is never
dropped in the branch-and-bound process, as its likelihood (upper bound) must
lie above the highest likelihood of any tested hypothesis so far.

Figure 5.6: A sliding-window maximum over the correlation vectors can
be used to compute an upper bound on the likelihoods of all hypotheses
within a grid cell. For simplicity, this example is given in a two-dimensional
space instead of the actual four dimensions, location and time.
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We analyze the performance degradation as the signal quality deteriorates
in Section 5.4.

5.3.9 Local Oscillator Frequency Bias
In practice, one of the problems we have to deal with is the frequency error
of the local oscillator (LO) in the front end. The LO is not only used for
the generation of the reference frequency for the frequency down-conversion,
but also as the clock of the ADC. Therefore, the LO error influences two
parameters. First, the observed frequencies of the signals from the satellites
change. Second, the effective sampling rate or the time that passes per
sample changes. Akos [1] states that the frequency for the locally generated
C/A code should match the actual frequency with an accuracy better than
250 Hz. Otherwise, correlation peaks are hard to find even under good signal
conditions. To get an SNR close to the optimum possible, the accuracy of
the frequency should be much better.

During the acquisition phase in classical receivers, the Doppler shift of
each satellite is estimated by correlating the received signal with multiple
frequency shifted versions of the C/A code. The frequency shifted C/A code
which matches the received signal the best is used to estimate the ToF and
also gives information about the sum of the LO offset and the Doppler shift.
After the acquisition, the Doppler shift, and hence the LO, is known only
approximately to reduce the computational complexity during acquisition.
This approach could be replicated in our solution to estimate the LO offset.

Similar to the search performed in classic receivers, we could track the
LO offset by computing the C/A code correlation functions for different
frequency offsets. Note that since we do compensate for the Doppler shifts
using our prior knowledge, we only need to estimate the LO offset instead
of the sum of the LO offset and the Doppler shifts of each satellite.

In our test setup described in Section 5.4, we measured the LO offset ini-
tially using the classical GPS approach. We observed that the offset stayed
almost constant even over more than a year. Therefore, careful calibration
of the LO can reduce the impact of its errors to an extent that is acceptable.
Over the course of 1.5 years, all experiments were performed with the same,
constant LO offset (+1.9 ppm).

For an oscillator which does not exhibit such a stable frequency offset
over a long time, it would be possible to regularly update the frequency
error estimate by correlating with a local signal with slightly lower and
higher frequency – similar to the early-late tracking of the code phase in
classical receivers – in situations with good SNR. Since the frequency error
will not change quickly, a low SNR of the received signal can be tolerated
for an extended period of time without significant performance degradation.
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5.4 Evaluation

For the evaluation of our method, we used an Ettus USRP B200 software
radio with a standard GPS patch antenna from Trimble Navigation. Sam-
ples were recorded as 8 bit I/Q samples with 8 MHz sampling frequency.
We made recordings of several minutes and cut out windows with one mil-
lisecond length every 0.999 seconds. We did not choose exactly one second,
since bit flips in the navigation signal, which severely degrade the signal
quality, can occur every 20 milliseconds. To prevent these to always have
an influence on the same satellites’ signal, we chose a slightly shorter inter-
val. Samples with 8 bits were used since this is the lowest number of bits
supported by the board’s driver. However, we expect that the performance
does not significantly vary when only 2 bit samples are used, because using
2 bit samples degrades the SNR by only 0.55 dB [125] (Section 6.12).

We used navigation data originally broadcast from the satellites, which
we downloaded from NASA’s archive of space geodesy data2 [94]. For the
time synchronization, we determined the time of the first sample received
from the RF front-end with the Network Time Protocol (NTP). The start
time of subsequent one millisecond windows was estimated by counting the
number of elapsed samples in the recorded data stream.

To evaluate the accuracy of our algorithm, we placed the receiver antenna
on a survey point located on our university building. The location of this
point is known accurately. We expect errors in its location to affect our
results negatively giving us a lower bound of the performance.

Unless otherwise indicated, experiments were performed under good sig-
nal conditions (direct line of sight to most satellites above the horizon) and
the search space size was 200 km × 200 km × 30 km × 10 s. The reason
for the size of the search in the time dimension is that with a low energy
oscillator with maximum drift of 5 ppm and an initial time error of 50 ms
(easily achievable with NTP), a range of ±5 seconds covers a duty-cycle
interval of more than 11 days. So, ±5 seconds are a large bound on the time
search especially since time inaccuracies can be compensated when a fix is
computed.3

For each processed one millisecond window of signal, we varied the grid of
hypotheses uniformly at random in each dimension, up to half the distance
between two points. This eliminates possible bias from a specific localization

2We used the “Daily GPS Broadcast Ephemeris Files” data set that can be
found at http://cddis.nasa.gov/Data_and_Derived_Products/GNSS/broadcast_ephemeris_
data.html

3We think a more reasonable upper bound on the duty-cycle interval would be one
day, which means that with such a large time search, we could tolerate many failed
localizations between two successful ones, for instance when the receiver is indoor for a
long time period.
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of the grid. For instance, if one hypothesis always matched the correct
receiver location and time exactly, the results might look much better than if
the correct location and time lie in the center between the closest hypotheses
in each dimension.

5.4.1 Averaging Over Likely Hypotheses

First, we evaluate how the accuracy depends on the number of most likely
points used to compute the weighted average as described in Section 5.3.7.
Figure 5.7 shows the cumulative distribution functions of 501 fixes covering
approximately 500 seconds with the duty cycle of 0.999 s. The shown num-
bers of points are {1, . . . , 7} to the power of four. Since the correlation peaks
are triangular due to oversampled C/A codes, we expect the points around
the correct location to have the highest likelihoods. Therefore, our intuitive
idea is that the curves in the plot show the results when averaging over the
hypercubes in four dimensions with side lengths of one to seven hypotheses
around the correct location. This roughly corresponds to averaging over all
points influenced by the given number of samples before and after each peak
in a correlation vector.

The best accuracies are achieved with 81 or 256 points. Since lower
number of points correspond to a higher likelihood threshold to eliminate
regions of hypotheses with low maximum likelihood (see Section 5.3.8), we
use 81 points in the following, as this will save more computation time.

Note that existing CD methods search for the best point only, which
is clearly suboptimal. The median location error with 81 points is 23.5 m,
which is almost twice as good as the solution with the best point only, which
has a median error of 44.3 m. The standard deviation is 17.3 m with 81
points and 27.6 m with the best point only. This shows that our weighted
averaging is a substantial improvement over standard CD, substantially im-
proving accuracy.

5.4.2 Location Averaging over Time

To understand the trade-off between accuracy and the amount of data used,
we tested the influence of averaging multiple locations computed from dif-
ferent one millisecond long windows (sliding window average). The results
– obtained again from 501 windows – are shown in Figure 5.8. With just a
few more milliseconds, we can gain significant accuracy. For instance, with
two milliseconds of data, the median localization error drops from 23.5 m to
17.4 m. With 10 ms, it even drops to 9.2 m. And with 30 ms, all locations
are within 13.9 m.
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Figure 5.7: Accuracy of our method with different numbers of most likely
points used for the weighted averaging. Cumulative distribution functions
of localization error (distance to ground truth).
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Figure 5.8: Comparison of localization accuracy when averaging over dif-
ferent numbers of consecutive fixes.
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5.4.3 Horizontal Localization

To evaluate the accuracy when searching in space only horizontally, we fixed
the altitude for the search to that of the ground truth. This emulates sce-
narios where the receiver is 1) on the Earth surface, so the height can be
determined using an Earth elevation model (for example the United States
Geological Survey (USGS) elevation model4) or 2) the receiver has a barom-
eter, whose measurements can be used together with meteorological data to
determine the altitude. The benefit of such an approach is not only better
accuracy, as can be seen in Figure 5.9, but the search space is reduced by one
dimension, resulting in less hypotheses to test, which translates to faster and
less energy consuming processing. For the localization with fixed height, we
also first determined the best number of points for weighted averaging with
the same procedure as explained in Section 5.4.1, although with numbers to
the power of three, because the search space is three-dimensional. The best
number of points turned out to be 64. Also for this experiment, the number
of one milliseconds windows processed was 501.

The idea of using an Earth elevation model to restrict the possible so-
lutions has also been used by Liu et al. [75]. Because we do not have an
implementation of CTN available, we cannot directly compare our results
to theirs. However, the box plots in their paper show a median error of
approximately 40 m with 2 ms of data used. Our median error when using
2 ms of signal and fixing the height of the solution is 12.1 m. This suggests
that our approach is competitive.

5.4.4 Computation Time

To show how the performance of our method using branch and bound de-
pends on the signal conditions, we conducted two experiments capturing
both good signal conditions (rooftop) as well as bad signal conditions (in-
side a multistory university building). We reduce the search space to 10 km
× 10 km × 1 km × 4 s for this experiment, to also be able to test the brute
force implementation which tests every single hypothesis.

Figure 5.10 shows the cumulative distribution functions in both indoor
and outdoor scenarios as described in the last paragraph. It clearly shows
that the indoor scenario does not allow for a meaningful localization. For
the indoor data, the computation takes 240 s per location, whereas in the
outdoor conditions, it takes only 18.6 s. Note that the indoor test presents
a worst case scenario in both computation time and localization accuracy.

4More information about the USGS elevation model can be found at the “The Na-
tional Map” website: http://nationalmap.gov/elevation.html



5.4. EVALUATION 63

0 10 20 30 40 50 600

0.2

0.4

0.6

0.8

1

x = localization error (m)

Fr
ac

tio
n

of
lo

ca
liz

at
io

ns
w

ith
er

ro
r

≤
x

1 ms, z unknown
2 ms, z unknown
1 ms, z fixed
2 ms, z fixed

Figure 5.9: Localization accuracy with and without fixed height.
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Figure 5.10: Localization accuracy with different signal qualities. Out-
doors the solution is much more accurate than indoors.
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The brute force implementation takes more than two hours to compute the
whole likelihood distribution in any scenario.

This means that even in situations that make it difficult to find a fix, we
find the most likely location in reasonable time compared to a brute force
implementation. For the previous experiments with the larger grid in good
signal conditions, our method takes 31 s of computation time.

The performance corresponds to the execution on a current Intel i7 mo-
bile processor with a single thread. The runtimes are not indicative of an
optimized implementation of our method, since it could easily be parallelized
because the computation of the likelihood is independent for each hypoth-
esis. In all the above experiments about computation time, roughly 2 · 104

hypotheses are evaluated each second. A working CUDA implementation
of the brute force method revealed that on a Nvidia GTX 1080, roughly
2 · 106 hypotheses can be evaluated each second which indicates that the
search can be sped up 100 times. Therefore, an initial fix can be computed
in significantly less than a second under good signal conditions. Note that
tracking a receiver uses less computation because the search space is smaller.

5.4.5 Time Dependence of the Likelihood Function

To test the influence of the time parameter in our likelihood function, we
picked a random one millisecond long window of the sampled signal and
searched the location which maximizes the likelihood given different receiver
times. The results are shown in Figure 5.11, other ms windows exhibit the
same properties as described below. The plot to the left shows that, at least
for signals with good quality, our likelihood function (in blue) is roughly
convex in the time dimension. However, we cannot reconstruct the correct
time precisely because the probability of the best point does not change
significantly when the time is within a second of the correct time (blue
curve in the right hand side plot). However, the localization quality varies
significantly inside this time range (orange curve in the right hand side plot).
This is due to the fact that within the search space, there are points which
still match the received signal well. Judging from the localization error, the
most likely location passes the correct location in a linear fashion as the time
error is varied from negative to positive. This suggests that the likelihood
function is quite flat in the time domain which is one of the reasons why the
averaging over the most likely hypotheses helps to increase the accuracy of
our method. As a side note, this last observation could lead one to think
that the correct hypothesis can also be found at the center of the likelihood
plateau. However, the localization error scales in Figure 5.11 are relatively
large, meaning that the center would have to be found accurately. In fact,
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Figure 5.11: Shape of L(h) for different time errors as well as the corre-
sponding localization error. For each time offset, the values of the hypothesis
h with maximum L(h) are indicated.
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we experimented with fitting different shapes to the likelihood function, but
this yielded results with a large variance.

5.5 Conclusion

We showed how collective detection can be optimized to achieve perfor-
mance that allows for coarse initial guesses for both location and time. Our
branch-and-bound method scales well in both good as well as bad signal
conditions. The localization performance is superior to similar approaches
due to the averaging which greatly reduces the effect of the flatness of the
likelihood function. When utilizing more than one millisecond of signal,
the performance is competitive even with classical GPS receivers consuming
much more energy.

Our method allows for a snapshot GPS receiver design, which only sam-
ples one millisecond of signal per fix and can run on a low power 5 ppm
oscillator. Therefore, the energy per fix will be extremely low - since the
computation can be done in the cloud - and the receiver can also support
small duty cycles, for instance 10 ms per fix once every hour. This gives our
method an advantage in terms of energy usage over the classical approach,
which samples the signal continuously. Note that such a snapshot receiver
does also not need a large and heavy radio time signal antenna like the
design presented by Liu et al. [75].







6
Spoof-Proof GPS

“Most people stop looking when they find the proverbial needle in
the haystack. I would continue looking to see if there were other
needles.”

— Albert Einstein

Today, many applications rely on the Global Positioning System (GPS). This
makes GPS interesting for attacks which spoof a receiver’s perceived location
or time. Wrong information in time or space can have severe consequences,
as we highlight in the following examples.

Aircraft Navigation Air traffic control is partially transitioning from
radar to a scheme in which aircraft transmit their current location twice per
second, through so-called ADS-B messages. This system is already manda-
tory for most airliners in Europe and will become so in the US starting
in the year 2020 [30, 49]. The aircraft determine their own location using
GPS. If a wrong location is estimated by the on-board GPS receiver, for
instance due to signal spoofing, this may have fatal consequences. For in-
stance, wrong routing instructions might be given due to a wrong reported
aircraft location, leading to aircraft collisions.

69
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Ship Navigation Like aircraft, ships may have little reference points to
localize themselves apart from GPS. Trusting a wrong location indication
can strand a ship or alter its course. A GPS spoofing incident in 2017,
when several ships were placed inland although they were actually on the
Black Sea, shows that spoofing attacks against ships already happen in the
wild [22].

Car/Truck Navigation Drivers rely more and more on GPS navigation
alone rather than orienting themselves. Too often, directions given by car
navigation systems are not validated at all and followed blindly. This emerg-
ing dependence on GPS is dangerous: Even without spoofers being present,
people get stuck in remote places. This may be due to errors in the given
directions or simply because of typing errors. In the worst cases, conse-
quences are fatal [88]. Attackers can use this combined weakness of GPS
and car drivers to reroute cars and cause a traffic chaos, for instance.

Train Routing and Control Emerging train control systems such as
the ETCS may employ GPS localization for each train instead of placing a
large number of balises along tracks [92]. Wrong train location estimations
could wreak havoc: Collisions between trains might not be anticipated early
enough or barriers may not be lowered in time. Also track switches could
be triggered while a train is passing through.

Cellular Network Synchronization While the examples above are in
the domain of location spoofing, an attacker can also try to change the per-
ceived time of a GPS receiver. Cellular networks rely on accurate time syn-
chronization for exchanging communication data packets between ground
antennas and mobile handsets in the same network cell. Also, all neigh-
boring cells of the network need to be time-synchronized for seamless call
handoffs of handsets switching cells and for coordinating data transmissions
in overlapping coverage areas [6,58]. Because most cellular ground stations
get their timing information from GPS, a signal-spoofing attacker could de-
couple cells from the common network time. Overlapping cells might then
send data at the same time and frequencies, leading to message collisions
and losses [6]. Failing communication networks can disrupt emergency ser-
vices, as people in need of help lose the means of requesting assistance.
Also, many businesses relying on mobile phones to coordinate their work
with customers, like taxi services and transport companies, could not carry
out their work.
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Stock Market Synchronization Audit rules mandate that financial mar-
kets record trading activities with accurate timestamps [31]. Such timing
is often accomplished through GPS receivers set up on the roof of those
market places [79]. Accurate timestamps help revealing illegal trading ac-
tivities, which can sometimes be detected by trading discontinuities, arising
for instance when market orders are not executed immediately. Also, with
too coarse timestamps, it is possible to observe new market orders and then
place own orders “at the same time”, so that the latter might be executed
before the former orders [77].

Power Grid Synchronization The operation of power grid assets is co-
ordinated with GPS-based precision timing. Also, grid operators use GPS-
synchronized observations for disturbance monitoring and fault localization,
to maintain grid stability [44]. For many nations, a power grid outage is one
of the worst imaginable scenarios. Problems include water pumps that stop
working and food and medicines which cannot be delivered due to failing
communication.

6.0.1 Spoofing

The threats and weaknesses above show that large damages can be caused
by transmitting forged GPS signals. Such signals can nowadays be gener-
ated with only a few hundred dollars worth of hardware. While stock market
manipulation might cause monetary damages only, GPS signal spoofing at-
tacks targeting air traffic control endanger numerous lives. These threats are
well acknowledged. In 2013, a US government study concluded that critical
infrastructures rely on GPS, but are not prepared for signal disruptions [48].

A GPS receiver computing its location wrongly or even fail to estimate
any location at all can have different causes. Wrong localization solutions
come from (i) a low signal-to-noise ratio (SNR) of the signal, for instance
when inside a building, below trees or in urban canyons, (ii) reflected signals
in multipath scenarios or (iii) deliberately spoofed signals. The first two
cases are challenging, but various ideas help mitigating their effects: For low
SNR (i), it is possible to use a longer recorded signal in order to increase the
total received signal energy. There are some challenges associated with that,
for instance phase changes in the signal due to data modulation on top of the
carrier signal. Also, the latency of the localization solution increases because
the amount of signal used can be on the order of minutes. Multipath signals
(ii) can often be discarded by selecting only the strongest signals and those
which are consistent in the sense that the localization solution fits well with
all the chosen signals. Signal spoofing (iii) is the most difficult case, since
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an attacker can freely choose the signal power and delays for each satellite
individually.

In this work, we not only detect spoofing attacks, but also mitigate them.
We present a robust spoofing mitigation algorithm based on the collective
detection maximum likelihood localization approach. Our method can dif-
ferentiate closer distances between correct and spoofed locations than pre-
viously known approaches. While information about the internals of com-
mercial receivers is scarce, to the best of our knowledge, consumer products
currently have at most simple spoofing mitigation integrated [113]. Military
receivers use symmetrically encrypted GPS signals which are not available
to the public. Like this, the signals are unknown to attackers in advance.
Still, an attacker could replay even these encrypted signals with a small
delay to confuse receivers. Academically, some anti-spoofing methods have
been studied, but the spatial resolution of those methods is hundreds of
meters, which means that attacks spoofing a closer location cannot be de-
tected. Details are given in the next section. Our method achieves median
errors under 19 m on the TEXBAT dataset, which is the de facto reference
dataset for testing GPS anti-spoofing algorithms [104,130].

Apart from spoofing fake signals, an attacker can simply jam the fre-
quency band of the GPS signals with strong random signals, increasing the
noise level at receivers. Jamming is the least sophisticated kind of attack
and has a result equivalent to Challenge (i) above: a low SNR at the receiver.
Therefore, using longer signal recordings also helps against jamming. Apart
from taking measures against special types of jamming attacks, like using
directional antennas to exclude ground-based jammers, one cannot do much
against jamming [100]. Like jammers, spoofers sending strong signals can be
detected by measuring the received signal power and also decrease the SNR.
And weak spoofing signals do not have much of an influence on a receiver’s
location estimation, as the stronger authentic signals can be detected with-
out any problem. We focus on the toughest type of GPS spoofing attack
which consists of spoofed signals with power levels similar to the authentic
signals.

A specialty of our method is that it uses only a few milliseconds worth of
raw GPS signals, so-called snapshots, for each location fix. This enables of-
floading the computation into the cloud, which allows combining knowledge
of observed attacks. Measurements from enough receivers may even permit
finding spoofers’ locations. Cloud offloading also makes our technique suit-
able for energy-constrained sensors. Existing spoofing mitigation methods
require a constant stream of the GPS signals and track those signals over
time. Generally, spoofing mitigation is computationally more demanding
than normal localization, since fake signals have to be detected, removed
or different solutions compared. Therefore, spoofing mitigation is even a
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computational challenge on smartphones, which nowadays have reasonably
large batteries.

6.1 Related Work

Three tracks of research are most relevant to our work, maximum likelihood
GPS localization, GPS spoofing mitigation algorithms and successive signal
interference cancellation.

6.1.1 Maximum Likelihood Localization
Our work is based on collective detection (CD), which is a maximum like-
lihood GPS localization technique. Maximum likelihood GPS localization
was already proposed in 1996 [118], but was computationally infeasible at
that time. Collective detection has first been implemented by Axelrad et
al. in 2011 [11]. Due to search spaces containing millions or more location
hypotheses that have to be searched through, subsequent work focused on
improving the computational burden through various heuristics [26,60]. Re-
cently, a branch-and-bound algorithm has been proposed that finds the op-
timal solution within some ten seconds running on a single CPU thread [14].
Our method is an adaptation of this branch-and-bound algorithm to miti-
gate GPS signal spoofing attacks. Another maximum likelihood approach
by Closas et al. models the signal observations as a function of the receiver
state [28]. Due to a high-dimensional and non-linear cost function, it re-
mains unclear how the optimal receiver location can efficiently be computed
in that framework.

6.1.2 Spoofing Mitigation
GPS spoofing defenses have intensively been studied. However, while most
research focuses on detecting spoofing attacks, there is a lack of ideas for
spoofing mitigation and recovering from successful attacks by finding and
authenticating the correct signals [101]. Our work helps in this area, as the
technique presented in this chapter inherently mitigates spoofing attacks.

A lot of research focuses on tracking multiple signals per satellite instead
of at most one [23, 104]. This is a useful approach for detecting spoofing
attacks. However, given multiple signals per satellite, it is a challenge to
select the correct signal from each satellite. Another method for detecting
spoofing attacks is hypothesis testing [136].

Whether sophisticated spoofing attacks are practical is subject to de-
bate [113]. Still, spoofing hardware performing a relatively sophisticated
seamless satellite-lock takeover attack has already been built, although it
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has only been tested in a lab environment [53]. Challenges associated with
spoofing are for instance matching the spoofed and authentic signals’ ampli-
tudes at the receiver, which might not be in line of sight and moving [110].
Despite that, it is even practically feasible for a spoofer to erase the au-
thentic signals with signals at a 180° phase offset [101]. This is one of the
strongest attacks and can only be detected with multiple receiver antennas
or by a moving receiver [101]. Thus, a cooperative victim, like a convicted
criminal with an ankle monitor, could use this technique to deceive au-
thorities [101, 110]. For signal erasure to be feasible, the spoofer needs to
know the receiver location more accurately than the GPS L1 wavelength,
which is 19 cm. Receivers with only a single antenna cannot withstand
such an erasure attack. Our method targets single-antenna receivers and
we therefore do not deal with signal erasure. In basically all other types of
spoofing attacks (cf. Section 6.3), including signal replay and even spoofers
with multiple transmission antennas, the original signals are still present
and our algorithm remains robust.

Due to the limitations of receivers with a single antenna, some research
focuses on receivers with multiple antennas or even multiple receivers com-
bining their information [76]. Coordinated spoofing attacks with multiple
antennas can circumvent some defenses using multiple receiver antennas
like detecting signal timing inconsistencies [124]. Also, size requirements
and a high price sensitivity for consumer GPS receivers make multi-antenna
receivers impractical for many applications. Single-antenna receivers can-
not differentiate between spoofing signals sent from one or more locations.
Our algorithm is aimed at those single-antenna receivers and is therefore
indifferent to multi-antenna attackers.

One approach against erasing spoofers with a single transmitting antenna
focuses on moving receivers [19]. Signals are classified into spoofed and non-
spoofed signals by moving the receiver around and observing the spatial
correlation of signals sent from a single source. The method does not cover
stationary applications like the introductory time synchronization examples
and time periods during which a mobile receiver is not moving.

The GPS anti-spoofing work most relevant to this chapter is that based
on joint processing of satellite signals and maximum likelihood localization.
One method is able to mitigate a limited number of spoofed signals by vec-
tor tracking of all satellite signals [59]. A similar technique is shown to
be relatively robust against jamming and signal replay [93]. Another idea
is to combine all satellite signals in a Bayesian estimation algorithm [66].
Compared to our snapshot receiver, this technique uses a continuous stream
of received signals for the sequential parameter estimation. Extensions of
aforesaid maximum likelihood method by Closas [28] for countering spoof-
ing have also been proposed. One assumes a spoofer which sends unsyn-
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chronized spoofing signals that do not consistently point to a spoofed loca-
tion [128] and the other tries to solve the global convergence problem with
an initial grid search and subsequent iterative refinement [133]. Our method
can tolerate consistent spoofing signals, even in case the spoofing signal is
already present when the receiver starts.

We could not find any anti-spoofing methods for GPS snapshot receivers.
Since our method yields robust location fixes from signal snapshots, there
is no need for recovery like in classical receivers. The latter may lock onto
spoofed signals without noticing a drift from the authentic satellite signals
over time.

Interestingly, in contrast to the vast research on GPS spoofing, there is
a lack of commercial, civil receivers with anti-spoofing capabilities.

6.1.3 Successive Interference Cancellation
Our iterative signal dampening technique to deal with spoofing signals
is similar to successive interference cancellation (SIC). SIC removes the
strongest received signals one by one in order to find weaker signals and
has been used with GPS signals before [80, 82]. That work is based on a
classical receiver architecture which only keeps a signal’s timing, amplitude
and phase. Our receiver is based on CD, which directly operates in the local-
ization domain and does not identify individual signals in an intermediate
stage. As it is impossible to differentiate between authentic and spoofed
signals a priori, we do not remove signals from the received sampled data.
Otherwise, the localization algorithm might lose the information from au-
thentic signals. Instead, we dampen strong signals in order to reveal weaker
signals. This can reveal localization solutions with lower CD likelihood.

6.2 GPS Localization

The Global Positioning System (GPS) is a Global Navigation Satellite Sys-
tem (GNSS) operated by the United States Air Force. It provides location
and time information to receivers anywhere on Earth where signals from
at least four satellites can be received. The GPS satellites are located in a
non-stationary medium Earth orbit and circle the Earth about twice a day.

GPS satellites transmit multiple signals in different frequency bands.
Some of the signals are encrypted and reserved for military use. We focus
on the signal most commonly used in civilian receivers, which is located in
the L1 frequency band at 1.57542 GHz. To distinguish the satellites, code
division multiple access (CDMA) is used. The employed Gold codes, one
for each satellite, with 1023 bits length, achieve good correlation and cross-
correlation properties [91]. Those signals are also called pseudo-random
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noise (PRN) sequences due to their noise-like nature. Sent with a data
rate of 1.023 MHz, the codes repeat every millisecond. The satellites fur-
ther transmit navigation data. The navigation data contains satellite orbit
information, called ephemeris, and transmission timestamps, which allow
calculating the exact location of the satellites at the time of signal transmis-
sion. The data is modulo-2 added to the Gold codes at a rate of 50 bit/s.
Hence, each data bit is transmitted through 20 subsequent Gold codes. The
generated signal is sent with binary phase shift keying (BPSK) on the L1
frequency band.

6.2.1 Localization
For localization, GPS receivers measure times of flight of received satellite
signals. Using an orbit model whose parameters are received with the nav-
igation messages of the previous step, the location of the satellites at the
time of signal transmission is determined. Unlike the satellites, the receiver
does not carry an atomic clock and is thus not synchronized with the satel-
lites. Therefore, the localization problem has four unknowns, namely three
spatial coordinates and the receiver’s time offset from the GPS system time.
The classical way of computing a solution to the localization problem, a so-
called fix, consists of setting up a system of equations from the measured
satellite distances and solving it in a least-squares sense.

Classical GPS receivers consist of three stages, acquisition of the satellite
signals, decoding of the satellite data and finally, calculation of a location
solution based on the received data.

The acquisition finds the visible satellites and detects the code phase of
the Gold codes and the Doppler shifts of the signals. A strong correlation
marks the code phase of the Gold code for a given satellite. An example
can be seen in Figure 6.1. The code phase is determined by the time of
flight of the signal between the satellite and the receiver and therefore by
their distance. The relative speed between satellite and receiver introduces
a significant Doppler shift to the carrier frequency. This Doppler shift has
to be found during acquisition to allow decoding of the signal.

Classical receivers use the information gathered during acquisition and
start using a feedback loop to track the satellite signals to decode the con-
tained navigation message. After a receiver obtains that information from
at least four satellites, the receiver can compute its location.

6.2.2 Snapshot Receivers
Assisted GPS (A-GPS) addresses a weakness of the basic GPS system: Due
to a limited data rate, arising from the large satellite distance and therefore
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Figure 6.1: Acquisition result for a satellite signal with average SNR.
The correlation peak indicates the signal’s receive time. The length of the
correlation vector with 25,000 samples corresponds to 1 ms of signal.
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Figure 6.2: Acquisition result for a satellite signal with good SNR but two
matching signals. The two peaks are 24 samples apart, which corresponds
to a measured distance difference of 288 m. Two possible interpretations
are that the first signal is the authentic signal and the second is a signal
reflection (multipath) or that one of the signals is spoofed. Only the relevant
part of the acquisition vector is shown. The full vector is 25,000 samples or
1 ms long.
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weak received signal power, satellite orbit parameters are only transmitted
every 30 seconds. Thus, the latency of a first fix after turning on a receiver,
the so-called time to first fix (TTFF), can be high. With A-GPS instead,
these orbit parameters are fetched over the Internet, for instance via a cellu-
lar network, which reduces the data transmission time, and thus the TTFF,
drastically [127].

While the satellite orbit parameters are usually valid for two hours, clas-
sical receivers also need to receive a current timestamp. Timestamps are
transmitted from satellites every six seconds. Threrefore, receiving times-
tamps still causes a relatively high latency and high energy consumption
in GPS receivers. Snapshot GPS receiver techniques such as Coarse-Time
Navigation (CTN) or collective detection (CD) allow computing the receiver
location even if no timestamp is received. GPS signals repeat every millisec-
ond and the signals propagate 300 km during that time. Therefore, only the
remainder of the satellite distances modulo 300 km can be measured without
receiving a timestamp. If the initial estimate of the receiver’s location and
time is equivalent to less than 150 km, the measurement’s full-millisecond
ambiguity vanishes. For this purpose, an offset of one second is approxi-
mately equivalent to an error of 1 km since the satellites’ relative speed to
an observer on the Earth surface is about 1 km/s. With such an approxi-
mate initial receiver state, one can estimate the satellite locations and signal
times of flight and the localization can be executed [127]. With longer code
periods, such as Galileo’s 4 ms long signals, the receiver state estimate’s
required accuracy can be relaxed proportionately.

With this insight, snapshot receivers are able to compute a location fix
from as little as one millisecond of data if the signal quality is good. How-
ever, the influence of noise is often too large to make localization viable
from one millisecond of signal only. Combining several milliseconds of sig-
nal is more robust [75]. Due to only a few milliseconds activation to receive
enough signal power for a fix, snapshot receivers use low power. Therefore,
snapshot receivers are suitable for multi-year tracking of battery-powered or
even energy-harvesting sensors [40]. In comparison, classical GPS receivers
drain a smartphone battery in a few hours. Therefore, it can be expected
that snapshot receiver will be deployed extensively in the future. However,
snapshot receivers cannot be protected by existing GPS anti-spoofing meth-
ods that track signals over time. Our present work is designed for signal
snapshots and therefore helps protecting snapshot GPS receivers.

6.2.3 Collective Detection
In recent years, maximum likelihood (ML) localization methods have been
proposed, promising more robust localization solutions. That is, ML meth-
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ods are more tolerant to low SNR, multipath effects and spoofing than the
classical least-squares localization methods. Since the arrival time of a satel-
lite signal cannot always be determined with certainty, a wrong signal time
of flight might be estimated. This renders the system of equations unsolv-
able. The information from the rest of the satellites could still be enough to
compute the location fix, but eliminating “bad” measurements is not always
easy. Maximum likelihood methods [28] and in particular collective detec-
tion (CD) [11,14,26,60] do not pick an arrival time for each satellite signal,
but rather combine all the available information and take a decision only at
the end of the computation. This uses more computation power, but is less
prone to errors than solving a system of equations in the least-squares sense
like in CTN and classical GPS localization.

Since the GPS localization scheme is based on satellite signal time of
flight measurements, the main challenge is determining the signal arrival
times despite low received signal power. In the methods presented so far,
the arrival times are detected based on the amplitude in the correlation with
the corresponding satellite’s PRN. This requires the presence of a clear peak
in the correlation vector. With bad signal conditions, for instance under a
tree, in an urban canyon or even indoors, there may be several or no such
correlation peaks. The problem is particularly pronounced when only a few
milliseconds of signal are used as in CTN, because the received signal power
is less than with multiple seconds of signal.

To mitigate this problem, CD does not only “accumulate” the captured
signal over time, but also over all available satellites. Combined, the signal
energy of multiple satellites gives a higher chance to detect the signal arrival
times correctly. The gain in the signal-to-noise ratio (SNR) of CD compared
to CTN means that CD is more robust to noise. Therefore, CD is suited for
bad signal conditions such as in spoofing scenarios.

Our method in this paper is based on an efficient implementation of
CD [14]. A given four-dimensional (location and time) search space is dis-
cretized as a regular grid of solution hypotheses. The expected distance
between satellite and receiver and therefore the expected code phase of the
received signal is calculated for each grid point. The satellite acquisition
results are aligned by the expected code phase and a pseudo-likelihood of
the point is calculated. By searching over all possible solutions in the grid,
the algorithm is guaranteed to deliver the most likely location given the
observed signals. A branch-and-bound implementation delivers the same
result with reduced computational effort.
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6.3 GPS Signal Attacks

The easiest way to prevent a receiver from finding a GPS location is jamming
the GPS frequency band. GPS signals are weak and require sophisticated
processing to be found. Satellite signal jamming considerably worsens the
signal-to-noise ratio (SNR) of the satellite signal acquisition results. CD
algorithms achieve a better SNR than classical receivers and are thus able
to tolerate more noise or stronger jamming [11].

A jammed receiver is also less likely to detect spoofing, since the original
signals cannot be found any more. The receiver tries to acquire any satellite
signals it can find. Thus, the attacker only needs to send a set of valid GPS
satellite signals stronger than the noise floor, without any synchronization
with the authentic signals.

As jamming is detectable by observing the noise floor, in-band power
level and loss of satellite signal lock, a more subtle attack may be performed.
The spoofer can send the set of satellite signals with adjusted power levels
and synchronized to the authentic signals to successfully spoof the receiver.

Seamless Satellite-Lock Takeover The most powerful attack is a seam-
less satellite-lock takeover. In such an attack, the original and counterfeit
signals are nearly identical with respect to the satellite code, navigation
data, code phase, transmission frequency and received power. This requires
the attacker to know the location of the spoofed device precisely, so that
time of flight and power losses over distance can be factored in. After match-
ing the spoofed signals with the authentic ones, the spoofer can send its own
signals with a small power advantage to trick the receiver into tracking those
instead of the authentic signals. A classical receiver without spoofing coun-
termeasures, like tracking multiple peaks, is unable to mitigate or detect this
attack, as there is no indicative interruption of the receiver’s signal tracking.

Navigation Data Modification An attacker basically has two attack
vectors: modifying the signal’s code phase or altering the navigation data.
Misaligning the code phase leads to changes in the signal arrival time mea-
surements, which results in different localization results. And by changing
the navigation data, the attacker displaces the perceived satellite locations
and therefore also influences the calculated receiver location. In comparison
to classical receivers, assisted or snapshot GPS receivers like CTN and CD
are not vulnerable to navigation data changes in the satellite signals as they
fetch that information from other sources like the Internet. An attacker
could tamper with such data sources, but this shall not be our concern in
this chapter. Rather, we deal with modified, wireless GPS signals.
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6.4 Algorithm Design

Our method is aimed at single-antenna receivers. Therefore, we do deal with
signal erasure attacks (cf. Section 6.1.2). Instead, given a combination of
authentic and spoofed signals observed at a receiver, our goal is to identify
all likely localization solutions. Based on external knowledge, the receiver
can then decide which of these solutions must be the correct one. For
instance, using sensor data from an accelerometer, a motion model can be
matched with the sequences of likely localization solutions. Or only smooth
receiver paths can be accepted, based on the receiver’s maximum de- and
acceleration. Further, the location hypotheses can be reconciled with a map,
for instance eliminating all locations not on a road.

Our GPS spoofing mitigation algorithm is based on collective detection
(CD). CD is a good choice for several reasons: 1) CD has improved noise
tolerance compared to classical receivers, 2) CD is not susceptible to navi-
gation data modifications, 3) CD is suitable for snapshot receivers, and 4)
CD computes a location likelihood distribution which can reveal all likely
receiver locations including the actual location, independent of the number
of spoofed and multipath signals. Related to the last point, spoofing and
multipath signals are actually similar from a receiver’s perspective. Both
result in several observed signals from the same satellite. The difference is
that multipath signals have a delay dependent on the environment while
spoofing signals can be crafted to yield a consistent localization solution
at the receiver. In order to detect spoofing and multipath signals, classi-
cal GPS receivers can be modified to track an arbitrary number of signals
per satellite, instead of only one [104]. In such a receiver, the set of au-
thentic signals—one signal from each satellite—would have to be correctly
identified. Any selection of signals can be checked for consistency by veri-
fying that the resulting residual error of the localization algorithm is small
enough. Consistent solutions are either the actual receiver location or a
spoofed one. However, already finding sets of signals which are consistent
for one receiver location, is combinatorially difficult. For n satellites and m
transmitted sets of spoofed signals, there are (m+1)n possibilities for the re-
ceiver to select a set of signals. Only m+1 of those will result in a consistent
localization solution, namely the actual location and m spoofed locations.
Even if running a least-squares optimization for each signal combination
may be feasible, in practice one additionally needs to identify and exclude
multipath signals, which further enlarges the search. Therefore, tracking
multiple signals per satellite helps detecting spoofing and multipath events
by raising a warning if multiple signals per satellite are received, but it is
impractical to mitigate spoofing. CD avoids this signal selection problem by
joining and transforming all signals into a location likelihood distribution.
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CD only shows consistent signals, since just few signals “overlapping” for
some location hypothesis do not accumulate a significant likelihood. In the
CD likelihood measure, all plausible receiver locations—given the observed
signals—have high likelihoods. However, finding those likely locations effi-
ciently is challenging. The basic version of CD computes a likelihood for
all localization hypotheses in a given bounded and discretized search re-
gion. Since the search is usually performed in four dimensions, space and
time, the basic CD is computationally expensive. We discuss computation
performance subsequently, in Subsection 6.4.1.

First, let us investigate how spoofing mitigation is possible based on the
basic CD algorithm. Among all location hypotheses, the basic CD algorithm
simply selects the most likely location. However, this may be a spoofed lo-
cation, so it is necessary to also consider less likely locations to be sure that
the true receiver location is included in the results. A straightforward idea
is to select all points with a likelihood above some threshold. To understand
why this does not work well, we have to dig into the definition of the like-
lihood measure. The (pseudo-)likelihood of a point is computed by shifting
and adding signal correlation vectors and selecting the maximum value of
the resulting summed vector as the likelihood. For close points, the corre-
lation vectors being added are shifted by only a few entries. There are two
reasons, why such small shifts result in only marginally lower likelihoods:
1) the correlation peaks form triangular shapes due to usual oversampling
of the received signal, and 2) small timing estimation errors between signals
from different satellites may misalign the correlation vectors by a few entries.
Therefore, locations close to local maxima all have high likelihoods. Thus,
there will be a large number of points above some threshold likelihood, clus-
tered around points with local likelihood maxima. Pursuing this insight, we
would like to pick only such local maxima as potential localization solutions.
This can for instance be done with some clustering or by simply excluding
points in some radius around a local maximum. We also strive to find local
likelihood maxima, but at the same time improve the runtime performance
of the algorithm. We see next that our proposed, faster branch-and-bound
approach iteratively searches such local maxima.

6.4.1 Branch and Bound
To reduce the computational load compared to exhaustively enumerating
all the location hypotheses in the search space, like the basic CD does, we
rely on a fast CD algorithm leveraging branch and bound [14]. Branch and
bound CD does not compute the whole location likelihood distribution. In-
stead, it finds the most likely location orders of magnitude faster. However,
the most likely point may be the spoofer-induced localization solution, not
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the actual receiver location. Therefore, as discussed above, we want to find
all locations with a likelihood above some threshold and being a local max-
imum, since we assume that the receiver also observes the authentic signals.
To achieve this, we run the branch and bound algorithm repeatedly. Our
idea is to find the next likely location in each iteration. The most likely lo-
cation must be formed by some high peaks in the individual satellite signal
correlation vectors. In order to remove the most likely location, one could
therefore try removing the highest correlation peak for each satellite before
proceeding to the next iteration. This is similar to the classical receivers
tracking multiple peaks, as described above. The classical receivers select
some number of highest peaks, which is equivalent to iteratively removing
the highest peak before each subsequent peak selection [104]. However, it
need not be the, but only some, of the highest correlation peaks forming the
most likely locations. For instance, for some satellites, the highest peak may
result from an authentic signal, while for other satellites the highest peak
may be from a spoofed signal. This might for instance be the case when
the attacker sends the spoofed signals with different power levels in order to
thwart our strategy. In such a case, it can happen that the most likely loca-
tion is a spoofed location or a location getting a high likelihood as a result
of a combination of authentic and spoofed signals. If the highest peaks are
removed, also some authentic signals are removed and the actual receiver
location may not be found in any later algorithm iteration. In essence, this
is the same problem that classical receivers face: If multiple peaks per satel-
lite are present, it is unclear a priori, which peaks belong together, that
is, yield a consistent localization solution. Instead of completely removing
the highest correlation peaks for each satellite, we exploit the advantage
of CD that we do not need to take a hard decision whether the strongest
acquisition peak is authentic or not. Instead, in every algorithm iteration,
we attenuate the strongest peak of each satellite by some factor. Like this,
that peak has less influence on the next iteration, but it can still aggregate
with signals from other satellites. For instance, if the peak is formed by
an authentic signal, it can still reinforce the likelihood of a somewhat weak
correct localization solution. Also, not completely removing signals prevents
a collapse of the problem in the sense that the solution becomes underde-
termined due to too little signals being available. Generally, signals from
at least four satellites are needed to resolve the location and time of the
receiver. (For simplicity, we just write location in this chapter, but actually
mean location and time.) In the end, the dampening of peaks emulates the
selection of local maxima in the complete location likelihood distribution, as
outlined above. By dampening the strongest peaks iteratively, the strongest
local maxima are eventually dampened as well, letting other local maxima
stand out and be found in subsequent iterations. This iterative dampening
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process is repeated until the likelihood of the found, most likely local max-
imum has a likelihood below some threshold. For example, this threshold
can be selected as a multiple of the noise floor. The “noise floor” can be
determined as the median or average likelihood of random locations.

6.5 Implementation

Our implementation follows a branch-and-bound algorithm for collective
detection (CD) [14] with our modifications to find several likely points in
iterations, as described in the previous section. In this section, we describe
the settings and optimizations of the algorithm that we used to obtain the
results presented hereinafter.

Generally, the employed data types should be carefully selected. While
calculations like the computation of the signal time of flight require dou-
ble precision floating point numbers, smaller data types are used wherever
possible for best performance and memory consumption. For instance, due
to the large search space of the algorithm, 16-bit indices for the localiza-
tion solution hypotheses grid enable more hypotheses to be cached, yielding
faster computation speeds. Next, we account for atmospheric delays of the
received signals to improve the localization accuracy. Further, though not
strictly necessary for the function of the algorithm, we found that more
consistent results can be achieved when scaling raw input data and satellite
signal acquisition results to the value range [−1, 1].

6.5.1 Acquisition

Through testing with low SNR recordings, we found that an optimized satel-
lite signal acquisition implementation can improve the results significantly.
For the Doppler shift search, a bin width of 500 to 667 Hz suffices for most
applications [47]. Since the runtime impact of the acquisition is negligible
in our implementation, we reduced our frequency search bin width to a finer
resolution of 200 Hz. The correlation length is the most important factor
in tuning the acquisition. At least one millisecond is required to fit a whole
code period. Longer correlations can significantly increase the SNR. Un-
fortunately, we cannot choose an arbitrarily long correlation: Every 20 ms
a navigation bit flip can happen, which reduces the correlation, yielding
worse results than with shorter a correlation. To make sure that at least
one millisecond of data without a bit flip is available for each satellite, CTN
receivers capture at least two consecutive milliseconds of signals [75]. In
our experiments (cf. Sec. 6.6), a correlation length of 3 milliseconds often
provides the best results.
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The resulting correlation vectors are combined to form one vector with
one millisecond length. We add the vectors within one frequency bin point-
wise to form a one millisecond long vector and then combine all frequency
bins by selecting the maximum value at each array location. We found that
this yields consistent results with good SNR.

6.5.2 Receiver Implementation
The most significant change to the receiver is the elimination or dampen-
ing of the strongest satellite signals prior to running subsequent iterations.
Typically, the satellite signal is reconstructed and then subtracted from the
raw signal before running a new acquisition. Because the datasets we pri-
marily used for testing offered good signal quality and clearly visible signals,
we opted for removing or dampening the signals directly in the acquisition
vectors.

In the acquisition stage of a GPS receiver, the received signal is correlated
with C/A codes. The highest correlation is (theoretically) achieved when
the C/A code in the received signal is aligned with the reference C/A code.
Due to the pseudo-random nature of the C/A codes, a shift larger than one
code chip from the correct location result in a low correlation value. Since
one C/A code chip has a duration of 1/1023 ms, the the width of the peaks
found in the acquisition vector is less than 2 ‰ of the total vector size. We
reduce the maximum peak by 60 % in each vector. A detection for partially
overlapping peaks prevents changes to those peaks. While it is possible to
remove the signals completely, this has a negative impact on the resulting
localization accuracy. For example during a seamless satellite-lock takeover,
it is impossible to detect two separate signals, which means that both signals
would be removed at once. Only reducing the signal level instead has no or
little negative impact on accuracy in general, while it improves accuracy in
such cases.

Before using these vectors for the next iteration of the algorithm, the
acquisition result vectors are normalized again. For improved computation
performance, subsequent iterations can be run with a reduced search space
based on the results of the first iteration.

6.6 Experiments

In 2012, Humphreys et al. [52] presented TEXBAT , the first public database
of scenarios with spoofing attacks. So far, it has been the de facto standard
for any GPS spoofing research. TEXBAT contains a total of 8 different
spoofing scenario recordings and two “clean” recordings without any spoof-
ing. All scenarios are constructed based on the clean recordings. The first
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Table 6.3: Median, average and maximum errors and the variance of the
localization solutions to all TEXBAT scenarios computed with our algorithm
in two iterations. Units are in meters and for the variance in m2. Location-
push scenarios are marked in bold.

Scenario med 1 avg 1 max 1 var 1 med 2 avg 2 max 2 var 2
1 4 5 32 14 10 13 182 165
2 3 3 9 3 3 4 25 12
3 5 8 78 104 19 51 552 5135
4 9 23 214 911 155 190 572 28443
5 7 21 348 1659 7 14 156 548
6 405 385 559 21142 19 34 222 1315
7 3 4 10 4 15 46 438 5138
8 4 5 45 30 19 63 630 10596

clean recording is in a stationary setting with an antenna placed on top of
the university building. The second clean recording is a dynamic recording
from an antenna mounted on a car driving across the city. The spoofing
scenarios are produced by replaying one of the clean datasets and adding
counterfeit signals from a signal generator. Those combined signals are
recorded using signal capture hardware. The counterfeit signals are gener-
ated with appropriate characteristics to be as representative as possible for
all currently known attack techniques.

Scenarios 1 to 4, as well as Scenarios 7 and 8, are derived from the static
dataset, while Scenarios 5 and 6 are derived from the dynamic dataset.
Scenarios 5 and 6 are most difficult, as no ground truth is available and
environmental effects like multipath signals can affect the recording. Such
effects could modify authentic signals in a way that they might be mistaken
for spoofed signals. Another difference between the scenarios is the dimen-
sion in which the spoofing attack is happening. While in Scenarios 4 and 6
a location error of approximately 600 meters to the north is introduced, all
other scenarios introduce a time error of approximately 2 microseconds.

For our experiments, we extract snapshots from the TEXBAT scenarios.
For every second of a recording, five windows of 9 ms length are extracted
and the localization results are averaged over those five windows. So, each
localization uses a total of 45 ms of signal data. Average, median, and
maximum errors as well as the variance of the location estimates, compared
to the respective clean scenarios, are summarized in Table 6.3. As the
TEXBAT dataset contains at most one set of authentic satellite signals and
at most one set of spoofed signals, we show the results of two algorithm
iterations. The first iteration is equivalent to a run of the basic branch-and-
bound CD algorithm. The second iteration uses the modified signals with
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the dampened high-power signal components. So, since at most two sets
of signals are present, either our first or second algorithm iteration should
find the correct receiver location. Which iteration that is, depends on the
relative signal power of the authentic versus the spoofed signals. The first
iteration finds the location pertaining to the stronger set of signals.

6.6.1 TEXBAT Time-Push Scenarios
Scenario 1 contains a switch attack in which the original signals are switched
for counterfeit signals. In this scenario, while it might be possible to detect
whether spoofing is happening or not by analyzing the raw data, it is impos-
sible to recover the original signals as they are not present once the spoofing
starts. Scenario 2 contains an overpowered attack in which the adversary
adds the spoofing signals with a 10 dB power advantage over the authen-
tic signals. Scenarios 5 is similar to Scenario 2, but based on the dynamic
dataset. While in Scenario 2, the spoofing can be detected by the in-band
power increase, Scenario 3 represents a case in which the spoofer attempts
to match the authentic signals’ power. Scenario 3 contains a matched-power
attack in which the adversary signals have 1.3 dB power advantage. The
spoofer also locks the spoofed signals at some fixed phase angle to the au-
thentic signals, which makes detection more difficult. Scenario 7 contains a
matched-power attack comparable to Scenario 3, but aligns the carrier phase
between the spoofing and authentic signals. Scenario 8 is identical to Sce-
nario 7 except that received navigation data is treated as an unpredictable
low-rate security code that is guessed by the spoofer with a delay of some
tens of microseconds.

The time push scenarios from the TEXBAT dataset are of limited use
for testing our algorithm. The time resolution of our algorithm for the
TEXBAT dataset is around 10 ms and therefore does not detect the induced
time errors of 2 ms. We can however see that the algorithm produces stable
results and finds the correct location with high accuracy. The average and
median errors for the static time-push scenarios stay below 7.6 m, which is
even better than the results achieved with the branch-and-bound algorithm
for benign scenarios [14].

The second iteration of the algorithm produces worse results and espe-
cially the maximum error increases significantly. This is probably due to
the decreased signal-to-noise ratio in the second iteration.

An interesting outlier is Scenario 5, in which the second iteration’s result
is better. As can be seen in Figure 6.5b, both iterations show almost iden-
tical results apart from one section at the beginning of the last third of the
track. In the clean dataset it seems like the car has stopped multiple times
to wait for example at a red light in traffic. One possible explanation is the
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Figure 6.4: Results for the TEXBAT Scenario 4. Static matched-power
location-push scenario with 0.4 dB spoofing power advantage. At 200 to
300 s, the takeover attack has a negative impact on the accuracy. After-
wards, the first iteration finds the authentic location with little error. In
this scenario, the second iteration tracks the spoofed location as the spoofer
only has a temporary power advantage.
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Figure 6.5: Results for the TEXBAT Scenario 5. Dynamic overpowered
time-push scenario similar to Scenario 2. The moving receiver makes defense
more difficult as signals can be misinterpreted as environmental influences
and multipath signals. The higher error at around 250 to 300 seconds likely
comes from a traffic light stop where noise is induced by nearby cars. The
second iteration shows a limited induced error.
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Figure 6.6: Results for the TEXBAT Scenario 6. Dynamic matched-power
location-push scenario comparable to Scenario 4 but with 0.8 dB spoofing
power advantage and based on the dynamic dataset. Iteration 1 tracks the
spoofed location while iteration 2 tracks the authentic location. The high
error at 99 seconds is likely a data artifact from the TEXBAT dataset and
vanishes with other correlation lengths.
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presence of multipath signals or environmental impacts which influence the
signal.

6.6.2 TEXBAT Location-Push Scenarios
As collective detection algorithm such as ours are indifferent to small time
offsets, the location-push scenarios are more interesting. Only two TEXBAT
scenarios contain location spoofing. Scenario 4 contains a matched-power
attack with a spoofing power advantage of 0.4 dB and frequency locking
of the spoofed to the authentic signals. Scenario 6 is similar, but based
on the dynamic dataset. For the first 100 s in case of the static datasets
and 180 s in case of the dynamic datasets, no spoofing signals are present.
This allows classical receivers to acquire a location first. With these benign
signals, the location estimates of our algorithm are accurate as can be seen
in Figures 6.4 and 6.6.

When the spoofer starts to introduce the location error, the correlation
peaks of the satellite signal acquisition get broader which increases location
error and variance. This happens approximately in between 180 s and 280 s
for Scenario 4 (Figure 6.4) and in between 150 s and 250 s for Scenario 6
(Figure 6.6).

When the spoofed and authentic location differ enough and the spoofed
and authentic satellite signals become visible individually, the algorithm
is able to distinguish between the authentic and counterfeit signals and
the location estimations start to diverge. One location starts to track the
spoofer signals while the other location recovers the original location. Due
to the increased signal-to-noise ratio, the original location is not recovered
perfectly, but the error remains small.

The average, maximum and median error, as well as variance for both
location estimations compared to the clean recordings can be found in Ta-
ble 6.3. A maximum location error of 222.4 m and a median error of 18.8 m
are not exceeded. The best anti-spoofing work that we are aware of can only
detect spoofing attacks, but may not find the actual receiver location and
has a maximum location offset without detection greater than 1.5 km [104].

It can be observed that the results from the first iteration of our algo-
rithm achieves far better results for Scenario 4. A spoofer with constant
power advantage should lead to worse results for the first iteration com-
pared to the second, since the spoofed location is found first. Figure 19
of [52] shows indeed that the spoofer has a power advantage only during the
beginning of the spoofing attack and looses it within a couple of seconds.
A classical receiver whose tracking loops have already been acquired by the
spoofer would continue to track the spoofed signal whereas our algorithm
falls back to the stronger signals which in this case are the authentic sig-
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nals. Scenario 6 has no such behaviour as the spoofer has a continuous
power advantage.

6.6.3 Correlation Length
For the presented results, a correlation length of 3 ms length is used. Fig-
ure 6.7 shows the average, median and maximum error of Scenario 6 for dif-
ferent correlation lengths. The best results are achieved with a correlation
length of 3 ms, which is the length used during our algorithm development
and testing. Foucras et al. present that 5 milliseconds should be the ideal
trade-off between long correlation length for high SNR and low probability
of bit flips [45]. In our case, the accuracy is similar with 3 and 5 ms. One
reason for the good performance of 3 vs. 5 ms might be that longer corre-
lation lengths increase the absolute SNR advantage of the spoofed signals,
because those are slightly stronger than the authentic signals. This could
worsen the results for the authentic location found in the second iteration
of our algorithm. Also, some parameter tuning, like post-processing of the
acquisition results, may change the results somewhat.

6.6.4 Computation Time
Currently, the algorithm is optimized for robustness rather than speed.
However, depending on the required update rate it is possible to use the
algorithm in real-time applications. Computation speed is mainly depen-
dent on the size of the search grid, number of visible satellites in the signal,
the SNR and sampling rate of the recording.

Currently, two limitations impact the performance directly. Computing
the likelihood of each point is bounded by memory speed. This means that
doubling the sampling frequency, and thus the amount of data, also doubles
the computation time. Currently, at least half of the computation time
is used for computing the likelihoods. The second performance limitation
is the calculation of grid points and code phases. This accounts for about
one third of the computation time. Experiments with pre-calculated satellite
orbits show that this could be reduced significantly. Sorting and filtering the
points consumes the remaining computation time. Calculating the satellite
acquisition results is negligible.

A tracking feature which feeds back the location and time information
of the previous location estimation allows the receiver to reduce the search
space significantly. But due to branch and bound, the computation time
is reduced by only 30 % in the tested scenarios, while the search space is
two magnitudes smaller. This allows us to compute a location estimation
in around 1.0 seconds. As our algorithm computes two location estimations
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Figure 6.7: Average, median and maximum error for different correlation
lengths in Scenario 6. The algorithm shows best results with 3 ms correlation
length. Good results are also achieved with 4 and 5 ms correlation length.
Note that the maximum error is shown at a different scale.
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Figure 6.8: Two-dimensional likelihood distribution computed from a sig-
nal snapshot of a spoofing scenario. Higher values indicate higher likelihood
of the point being the receiver location. The actual receiver location in the
middle is invisible while the spoofed location slightly northwest dominates
the likelihood distribution. This means that the first iteration of our algo-
rithm would find this spoofed location. Other points with high likelihood
result from a combination of spoofed and authentic signals.
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per point it takes 2.0 seconds per point to calculate. We calculated 2349
points for the static scenarios and 2090 points for the dynamic scenarios
taking roughly 80 minutes and 70 minutes respectively.

6.7 Conclusion

GPS spoofing is a broad topic and many methods have been proposed to
detect and mitigate spoofing. Most research focuses on the detection of
spoofing attacks. Methods for spoofing mitigation are often specialized or
only work for certain scenarios.

Our implementation and evaluation shows that with some modifications,
the robustness of collective detection can be exploited to mitigate spoofing
attacks. We show that multiple locations, including the actual one, can be
recovered from scenarios in which several signals are present. Experiments
based on the TEXBAT dataset show that a wide variety of attacks can be
mitigated. In the TEXBAT scenarios, an attacker can introduce a maximum
error of 222 m and a median error under 19 m. This is less than a sixth of
the maximum unnoticed location offset reported in previous work that only
detects spoofing attacks [104].

Since our method does not track signals, but works with signal snapshots,
our spoofing mitigation method is suitable for snapshot receivers, which are
a new class of low-power GPS receivers [40,75].







7
Snapshot GPS Hardware

“Energy and persistence conquers all things.”
— Benjamin Franklin, 6th President of Pennsylvania

Global localization is a driver for so many applications that it is often con-
sidered to be a key technology of our time. However, all GPS receivers
today have a high energy consumption. Mobile phones and smart watches
can run days or even weeks on a single battery charge, but with GPS en-
abled, they barely make it through a single day. While personal devices
such as smartphones can be recharged regularly, GPS trackers cannot.

Applications for GPS tracking include animal tracking, both wildlife and
domestic animals. In addition, one may like to track personal items such
as wallets or keys. More generally, we believe that the availability of a
low energy GPS receiver will open up a unforeseen number of surprising
applications, in tracking and beyond. Many of these applications also need
a small footprint in terms of size and weight.

Current commercial GPS receivers include a lot of signal processing hard-
ware, mostly so-called correlators, which are used to find and track satellite
signals. These correlators collectively consume much power and the hard-
ware is active continuously, because receivers constantly decode timing and
satellite orbit information from the satellite signals.
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In this chapter, we present a novel GPS tracker hardware design. Our
design is a snapshot GPS receiver which captures only a few milliseconds of
satellite signals for each location computation. The active time of snapshot
receivers for a single location request is three orders of magnitude lower
than that of classical receivers. The latter require about six or even 30
seconds of data at startup, depending on available prior satellite orbit in-
formation. Snapshot receivers can be designed either with a storage or a
wireless communication component. We choose the first option, as it con-
sumes less power and space. Loggers such as our device can be used for
applications which do not need real-time localization, like wildlife tracking,
collecting workout statistics or geotagging photographs.

Besides the hardware design, we present a corresponding prototype im-
plementation using a suitable selection of components. An evaluation of the
actual energy consumption shows that such a tracker, powered from a single
coin cell, is not limited by the energy consumption, but rather by the size
of the storage for the recorded signals. The used 2 Gb flash storage can
hold 65600 signal snapshots of one millisecond length. This corresponds to
a lifetime of 683 days with quarter-hourly localization. Our prototype GPS
tracker weighs a mere 1.3 grams and its dimensions are 23 x 14 mm. This
makes it suitable for weight-constrained applications like bird tracking and
enables it to be concealed for instance in valuable belongings like wallets,
handbags or bicycles.

With our hardware receiver design and the insights we gained when
designing and testing our receiver, we want to provide the GPS research
community with a platform to test and build snapshot receiver algorithms.
Furthermore, our receiver design is a step towards a practically usable hard-
ware building block, which can be integrated into a real product, like for
instance a low-power, long-term animal tracking device.

7.0.1 Related Work
Commercially, no GPS hardware is available to implement snapshot re-
ceivers. One way to test snapshot GPS is to use a software defined radio
(SDR). SDRs are relatively large, heavy and consume orders of magnitude
more power than a dedicated GPS receiver. Therefore, SDRs are most use-
ful for static testing, but not for mobile scenarios. The same holds for the
only alternative, which is using a SiGe GN3S1 USB GPS sampling dongle
together with a laptop. This is a problem for the GPS tracking research
community, because snapshot receiver algorithms cannot be tested in their
intended application environment. So far, mostly simulations or data cut

1The product is not available any more: https://www.sparkfun.com/products/
retired/10981
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out from longer recorded signal sequences have been used to show the per-
formance of these methods [11,14,74].

In research, snapshot GPS receivers are known for several years [11, 14,
74]. They drastically reduce the power consumption of a GPS receiver, be-
cause signal processing can be offloaded to a web service [74]. This simplifies
the hardware design and moves the most energy consuming part of the re-
ceiver into the cloud. However, most proposals focus on the software of such
a receiver. While Liu et al. [74] propose a snapshot receiver hardware design,
their first version used additional, large hardware for time synchronization.
We use the same MAX2769 GPS front-end chip. However, our prototype
implementation is almost 12 times smaller than Liu et al.’s second version,
CLEON, that drops the time synchronization hardware. Also, our hardware
draws a standby power of 9.6 µW instead of 9.25 mW [74], effectively in-
creasing its lifetime for long duty cycles by a factor of almost 1000. And our
receiver’s active energy during a signal capture is reduced by a factor of 84,
from 62 mW s [74] to 0.74 mW s, while capturing only 10 times less data,
namely one millisecond instead of 10, and while improving the localization
accuracy.

7.0.2 Applications
We give two example applications which can directly benefit from the avail-
ability of snapshot GPS receivers and do not require real-time localization.
One has to keep in mind that due to the drastic improvements in size,
weight and power consumption, snapshot receivers may spark a variety of
unexpected applications.

Bird Tracking Ornithologists use tracking devices to study bird behavior.
Large birds like geese or birds of prey can be equipped with classical GPS
tracking devices. Due to weight constraints, batteries can only be small and
will thus last for a short time only, limiting the usefulness of such trackers.
Small songbirds can only carry additional weights of less than two grams [17],
which is not enough for a classical GPS receiver and a battery. A current
technique is to equip such small birds with small and low-power light-level
sensors and a real-time clock. Reading the light levels and matching them
with timestamps from the clock allows determining the length of the day
at a bird’s location and thus determining its latitude approximately. Errors
are on the order of 200 km or more [17]. This allows for a limited set
of studies like observing approximate migratory bird movements and their
timing. Our receiver, which weighs 1.3 grams only, fits into the weight
budget for equipping such small birds with GPS, while providing several
months long observation times. Due to our receiver’s accuracy in the range
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of tens of meters (see Section 7.3.3), our hardware enables more detailed
studies on bird behavior.

Holiday Logging Many travelers like to tag their holiday photographs
with the location where those were taken. Due to the high energy consump-
tion and the multi-second latency from activating a receiver to getting the
first location estimate, many cameras do not include a GPS receiver. There-
fore, some people buy stand-alone GPS trackers which run a day or two on
a single charge and whose computed locations can be combined with the
holiday pictures afterwards on a computer. Our receiver eliminates recharg-
ing. After initial setup, our tracker can be forgotten about, even for a world
tour! In the end, one can extract all locations with 15 minute resolution
and has a log of the complete holiday journey.

Summarizing, our work lays the foundation for inexpensive, accurate and
low-power GPS localization. It enables a new range of objects and animals
to be equipped with global localization.

7.1 Hardware Design

A snapshot GPS receiver samples a few milliseconds of GPS signal and stores
or transmits this data for computing the receiver location from it. Raw data
is needed, meaning I/Q or real samples of the signal and not processed data
that commercial GPS chips provide.

The goals of our snapshot receiver design are:

• Capture raw GPS signal samples

• Store them on the device

• Keep track of the current time

• Allow simple configuration and data transfer

• While consuming minimum power

Our design addresses all of these goals and allows for large duty cycles
with minimum sleep power.
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7.1.1 Sampling
The frequency of the L1 GPS code modulation is 1.023 MHz. Therefore, by
the Nyquist-Shannon sampling theorem, a sufficient minimum sampling rate
with a single channel (real) receiver is 2.046 MHz and half of that for a dual
channel (I/Q) receiver. Using a higher sampling frequency will usually yield
a better quality of the received signal. But more importantly, the Galileo
GNSS is also transmitting ranging signals at the L1 frequency, but with a
sub-carrier rate of 6.138 MHz. Therefore, it is beneficial if a sampling rate
of at least 6.138 MHz (I/Q) or 12.276 (real) is used. In our design, we settle
for a real receiver and a sampling frequency of 16.368 MHz, which allows for
the simultaneous reception of GPS and Galileo signals, increasing accuracy
and robustness.

As seen in Table 7.1, most GPS front ends use 2-bit quantization lev-
els. Using such low sampling precision degrades the signal-to-noise ratio by
only 0.55 to 0.72 dB [125, Section 6.12], while the reduced data size allows
capturing more snapshots with the same energy and storage space.

7.1.2 Component Selection
The main parts required for our hardware design are:

• GPS Front End

• Microcontroller

• Flash Storage

• Battery

• Power Converters

GPS Front End The front end is the circuit converting the received RF
signals into digital samples. Although we spent quite some time searching
GPS front-end chips, there seem to be only a dozen manufacturers produc-
ing standalone chips. All the models we could find are listed in Table 7.1.
Note that the reason for this short list is probably due to the fact that
most GPS receivers in commercial products integrate the location compu-
tation and are not designed to output the raw signal samples. Even though
some commercial receivers seem to offer “raw” data output, they actually
only report computed values like pseudoranges to all satellites or navigation
data is provided, which is insufficient for our application, which requires raw
GPS signal samples. For the front end we selected the Maxim MAX2769
GPS front end as it allows testing a wide range of RF, data format and
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filter settings. The raw GPS signals are output at 16.368 MHz with two
bit precision. Both active and passive antennas can be connected. It uses
less than 59.4 mW. Unfortunately, shutdown power is about 54 µW which
requires using an external switch to not exhaust our power budget. An al-
ternative would be the SE4150L GPS front end, which requires less external
components and therefore is easier to integrate. It also has fewer necessary
settings and slightly lower power consumption.

Microcontroller The microcontroller needs to fulfill two important con-
straints: 1) It must read incoming samples, two bits at a time, at the de-
signed rate of 16 MHz and 2) it should have a low standby power con-
sumption to allow for long tracking periods with large duty cycles. During
inactive times of the receiver without signal sampling, the microcontroller
needs to keep track of the current time while all other receiver components
can be cut off from the power source to save energy. Thus, the microcon-
troller’s standby power consumption is one of the factors limiting the battery
longevity. For our design, we select the Atmel SAM4L, as it offers a parallel
input capture interface (PARC), which reads up to 8 bits concurrently at
a maximum rate of 24 MHz. The PARC is a perfect interface for reading
the data of the GPS front end. At less than 5.6 µW, the SAM4L offers low
standby power consumption with activated real-time clock (RTC).

Flash Storage The flash storage must offer large storage size while con-
suming little power during write operations. The NAND flash memory
MT29F2G01 offers 2 Gb storage and a maximum power during data write
operations of 45 mW. At our sampling rate of 16.368 MHz, the flash memory
size allows collecting one GPS signal snapshot every fifteen minutes during
683 days. Combined GPS and Galileo snapshots could be captured hourly
during the same time period.

Battery Many batteries are heavy (cylindrical batteries) or have signifi-
cant self discharge (LiPo cells, supercapacitors), making them unsuitable for
our purpose. Coin cells offer high power density, low weight and are cheap,
which makes them ideal for our requirements. We use the CR2032 [41] which
has an energy capacity of 653 mW h. With a target run time of 2 years,
an average power consumption of 37.2 µW cannot be exceeded. Accounting
for battery degradation, the power consumption has to be restricted to sig-
nificantly lower values. Real-world evaluations of coin cells show that high
peak currents or low quality can lower a coin cell’s actual capacity to only
half their rated capacity [123]. To ensure stable operation even with tem-
perature variations, bad coin cell quality or high peak currents, the average
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power consumption of our receiver should therefore remain below 18.6 µW.
Our average power consumption of 9.6 µW (cf. Section 7.3) is well within
this soft limit and our tracker requires only a quarter of the coin cell’s rated
capacity for a two year run time.

Power Converter The coin cell offers an initial voltage of 3 V, which
will drop to 2 V during high load or towards the end of the cell’s lifetime.
We use two controlled power domains. One domain with 1.8 V for the
microcontroller and one domain for the GPS front end with at least 2.7 V.
While it would be possible to design the entire system for 2.7 V, 1.8 V
reduces the external components required for the processor and minimizes
standby power consumption because an efficient step-down converter can be
used. The TPS63743 step-down converter powers the 1.8 V domain and its
quiescent power is only 1.1 µW, which allows it to be active continuously.
The TPS61098 provides 2.7 V to the GPS front end even when the coin cell
voltage drops.

Standby Power Consumption Both the flash memory and GPS front
end consume a couple of µW during shutdown. While this might be negli-
gible in most applications, the shutdown power consumption of these chips
combined will empty the coin cell in less than our targeted two years life-
time. Using a controlled high-side load switch like the ADP199, the power
consumption during shutdown can be reduced to below 300 nW.

Ceramic capacitors can have leakage powers in the range of nanowatts
to a few milliwatts. Therefore, it is crucial to remove and minimize all
capacitors wherever possible, to stay within our power budget. Resistors
have to be planned carefully, too, to not waste any energy. An alternative is
to use different switched power domains, decoupled by the aforementioned
load switch, for example.

7.2 Implementation

An overview of the final architecture can be seen in Figure 7.2. The mi-
crocontroller is powered continuously by the step-down converter. To save
energy, the NAND flash is connected through a load switch to the power
domain of the microcontroller. The switch is controlled by the microcon-
troller and only enabled when the flash is necessary. Communication with
the flash is performed via the Serial Peripheral Interface (SPI) at data rates
of up to 24 Mbps. The GPS data is transferred in parallel with 16.368 MHz
to the capture interface of the microcontroller, where it is first cached in
RAM and then written to memory.
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Step-Up Converter
TPS61098
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Processor
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Figure 7.2: Overview of the main components in the system. Arrows
indicate the energy and data “flows”.

7.2.1 PCB Design

To minimize PCB size and allow using small parts, the board is designed
with four layers and a minimum design width of 100 µm. To reduce PCB
cost, only vias through the whole stack are used, but no blind or buried vias.
Passive components are reduced to the smallest size available, often 01005
(0.4 mm × 0.2 mm). The resulting board is only 23 mm × 14 mm big and
weighs 1.3 g. Figure 7.3 shows a close-up view and a size comparison with a
wristwatch is shown in Figure 7.4. GPS front end, power management and
microcontroller are mounted on the (visible) top side of the board while the
flash chip and USB connector are mounted on the bottom side.

Two challenges are matching the impedance of the antenna connection
and reducing the electromagnetic interference of digital signals with the RF
signals. The antenna RF connector is mounted on the bottom through an
impedance-controlled via buildup. The GPS front end is prepared for a
shielding enclosure and RF traces are shielded by surrounding grounded
vias and ground layers.
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Figure 7.3: Close-up view of our GPS tracking hardware.

Figure 7.4: Size comparison of our GPS tracking hardware with a wrist-
watch.
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Figure 7.5: Total standby power consumption of the GPS tracking device.
The processor is in deep-sleep mode with only the real-time clock (RTC)
running, the step-up converter for the GPS front end disabled and the flash
disconnected by the load switch. The variability of the current is a char-
acteristic of the switching voltage converter powering the microcontroller.
The average current is 3.2 µA which corresponds to a power of 9.6 µW.

7.3 Evaluation

This section gives an evaluation of the power consumption and signal recep-
tion. Power measurements are difficult to obtain due to the high dynamic
range between the active and standby currents. Even attached debugging
circuits can have much higher leakage currents than our device’s standby
power consumption. Special care was taken during the hardware develop-
ment to make all debugging circuits detachable for measuring the power
consumption. Furthermore, the GPS data is analyzed to verify proper op-
eration of the receiver.

7.3.1 Standby Power Consumption

During standby, only the microcontroller is powered. The boost converter
is in low-power mode and the flash memory switched off, which should
consume less than 3 µW combined. The microcontroller is powered by the
TPS62743 and should consume less than 10.5 µW combined. Therefore, a
total standby power consumption of under 13.5 µW can be expected which
is well below our maximum power budget of 18.6 µW.

Our measurements (Figure 7.5) show that the current during standby
varies between -125 and 300 µA over time due to the switching voltage con-
verter powering the processor. The average current measured with multi-
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Figure 7.6: Current consumption of the flash device. After initialization
for the first 1.7 ms, four blocks of data are transferred and written. Data
writing is clearly visible as peaks in the power consumption.

meters and power analyzers ranges from 2.9 up to 5.1 µA. That corresponds
to a power of 8.7 to 15.3 µW and is within the expected range.

7.3.2 Active Power Consumption
The active time can be split into multiple parts. After wakeup, the pro-
cessor initializes the GPS front end and starts sampling the received data
through the parallel interface. Then, the GPS front end is disabled and the
processor formats the data for storing it. The final step is to power up the
flash memory, transfer and write the data to the flash memory. The power
profile of the flash chip during this procedure is shown in Figure 7.6. The full
process takes around 13.5 milliseconds to complete. To estimate the power
consumption, the maximum values from the data sheets are used. At full
speed and with the required peripherals activated, the microcontroller con-
sumes approximately 60 mW. This does not account for low-power modes
or lower clock rates that could be used to reduce power consumption. The
GPS front end and crystal oscillator consume at most 75 mW. During write,
the flash memory will consume at most 75 mW. Depending on the efficiency
of the power converters and other peripherals, these values can vary.

Our measurements (Figure 7.7) reveal that the power consumption of
the flash and microcontroller are in the expected range, while the power
consumption of the GPS front end is higher than expected, leading to an
initial peak power of 60 mA. This probably originates from the initial
charging of the stabilizing capacitors and setup of the GPS front end.

The average power consumption for the 13.5 ms active time is 54.9 mW.
Our initial example of storing one GPS signal snapshot per hour corresponds



7.3. EVALUATION 109

0 2 4 6 8 10 12 14
0

20

40

60

80

Time (ms)

C
ur

re
nt

(m
A

)

Processor
GPS
Total

Figure 7.7: Active power consumption measured before the power con-
verters by a power analyzer. The processing phases are visible. After the
processor has run initial setup, the step-up converter is enabled and pow-
ers the GPS front end. After a short settling time the processor reads raw
GPS data for one millisecond. Starting at 4 ms the processor prepares the
data for transfer to the flash. At 5.5 ms to 13 ms the data is transferred
in 4 blocks to the flash memory. The peaks in power consumption indicate
when the data is written. After the last write has finished, the processor
disables all peripherals and returns to sleep mode.

to a duty cycle of 13.5 ms/3600 s = 3.75e−6. The contribution of the power
during the active time to the average power consumption is 54.9∗3.75e−6 =
205.9 nW. In case of snapshots every 15 minutes, the contribution increases
to 823.5 nW. Both values are negligible compared to the standby power.

7.3.3 GPS Data Analysis

In a field test, our receiver is located on top of a university building. Recorded
snapshots with one millisecond of data are evaluated with a branch-and-
bound collective detection implementation [14]. All calculated locations are
within 25 meters to the true receiver location. Although we did not do
an extensive evaluation of the localization accuracy, this is an encouraging
preliminary finding. In comparison, Liu et al. evaluated the snapshot lo-
calization accuracy with a GPS sampling dongle instead of their presented
snapshot receiver and used 10 milliseconds of data instead of one. Still,
they achieved less than 25 m error only in about 80 % of all cases and
observed a maximum localization error of 725 m [74]. Our improved local-
ization accuracy conveys the impression that collective detection more than
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compensates the expected accuracy degradation from the lower signal en-
ergy contained in the shorter snapshots. This result suggests that collective
detection indeed improves localization robustness [14]. However, a larger
set of experiments is needed to assess this hypothesis.

7.4 Conclusion

Our hardware design, implementation and evaluation show that low-power
GPS receivers, which offload the location computation to the cloud, are a
viable concept. Our receiver periodically takes snapshots of GPS signals and
stores them locally. In some applications, our receiver may be retrieved after
the data collection, in order to download the sampled data, from which the
locations can be computed. Alternatively, the receiver can be connected to
some communication module which transfers the data to the cloud regularly
or even in real time. In the latter case, the flash chip could be omitted. The
mean power consumption our receiver is about 10.4 µW with a 15 min
duty cycle, allowing the receiver to run for two years on a single coin cell.
This enables new applications that were impossible to date, for instance
long-term tracking of small animals such as migratory birds. Our design
exhibits a thousandfold improvement in standby power consumption and a
hundredfold improvement in active power consumption over previous work.

A possible future research question is whether the coin cell could be re-
placed with some energy-harvesting device. For instance, a bird’s movement
or body temperature could be leveraged to produce the necessary energy for
GPS tracking. As for bird tracking, the energy generation rate will be low, a
low-decay supercapacitor might be used to accumulate energy until enough
energy is available for a position snapshot. Using a capacitor which can
store enough energy for a complete position snapshot would actually also
be useful when powering our device with a coin cell. The power draw of our
device exhibits some spikes, which are detrimental to coin cells, reducing
their lifetime. Therefore, one could charge a capacitor slowly from the coin
cell before taking a position snapshot powered by the charged capacitor.







8
Indoor Localization with Aircraft
Signals

“I have not the smallest molecule of faith in aerial navigation other
than ballooning, or of the expectation of good results from any of
the trials we heard of. So you will understand that I would not care
to be a member of the Aeronautical Society.”

— Lord Kelvin

The British Science Association has called GPS technology the #1 invention
“that changed the world”.1 Originally developed by the US military, GPS is
now used in a majority of mobile devices. GPS has enabled a multitude of
applications, which 50 years ago must have sounded like magic. However,
GPS also has a major drawback — its satellite signals can hardly be received
indoors.2

1Richard Gray. Top 10 ‘inventions’ that changed the world. The Daily Tele-
graph. March 13th 2009. http://www.telegraph.co.uk/news/science/4981964/Top-10-
inventions-that-changed-the-world.html

2Also, multipath effects are detrimental for GPS signal reception and localization
accuracy. The official GPS website by the US government has a list of causes for
inaccurate location estimates, which includes the “urban canyon” effect in inner cities
and also less frequent causes: http://www.gps.gov/systems/gps/performance/accuracy/
#problems

113
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The problem is intrinsic. GPS satellites have an effective signal trans-
mission power of 283-458 W [127, Section 2.2]. With an altitude of about
20,200 km, this relatively weak signal barely makes it to earth. Already the
free-space path loss is about 182 dB. If only GPS satellites flew lower and
had more power!

In contrast, airplanes and other aircraft are flying at an altitude below
13.7 km. The ADS-B standard prescribes a minimum transmission power
including antenna gain between 116 and 331 W, depending on the type of
aircraft [108]. With a free-space path loss of about 139 dB for an aircraft
at a distance of 200 km, the aircraft signals are therefore received on the
Earth surface with approximately 5,300-15,000 times higher power than GPS
signals. More details concerning the GPS and ADS-B received signal powers
are given in Section 8.2.2.

For safety reasons, airplanes and helicopters repeatedly transmit their
location, pretty much like GPS satellites. These so-called ADS-B signals are
strong enough to be received indoors, even with cheap hardware. But are
these air traffic control signals precise enough to not only locate the aircraft
but any mobile device?

As air traffic control signals have not been designed for indoor localiza-
tion, we have to deal with three challenges:

1. Aircraft do not fly on an orbit; aircraft do not have accurate predeter-
mined flight paths and unexpected changes to their route are always
possible, for instance due to a holding pattern when approaching a
crowded airport.

2. Aircraft are not uniformly distributed in the sky. This is in stark
contrast to GPS satellites, which cover the sky in a regular pattern in
order to maximize user localization performance.

3. Aircraft location signals are not precise: an aircraft has an unpre-
dictable delay between learning its location from the GPS satellites
and retransmitting this location;3 unlike GPS satellites with their
atomic clocks, aircraft transmissions do not include time information;
some aircraft in fact do not even include location information.

But there are good features as well. Although aircraft do not fly on an
orbit (1), passengers and crew certainly do not appreciate abrupt flight path
changes. Also, even though the aircraft locations are not optimized for the
localization of users on ground (2), but rather for air traffic safety, at least

3Uncompensated latency of up to 0.6 s: https://www.law.cornell.edu/cfr/text/14/
91.227#e
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in urban areas there are more aircraft available than satellites.4 A large
number of received signals hopefully reduces the statistical uncertainty of
the location estimation from noisy measurements (3).

So, do these good news compensate for the bad news above? It turns out,
we cannot simply use the aircraft signals. Instead, we propose to install a
few receivers in known locations. Not many receivers are needed, in principle
already a single receiver is enough to serve a large metropolitan area or even
a small country. These receivers will calibrate the received aircraft messages,
so that any mobile receiver can deduce its location without any additional
infrastructure. More formally, our localization system consists of

• a network of receivers with known locations, which we call ground
stations

• a receiver whose location should be determined – we refer to this
receiver as the handset

• a server, which connects the ground stations and the handset

The ground stations receive aircraft signals, decode messages and pre-
cisely determine their arrival times. The messages and corresponding times-
tamps are aggregated to batches in a JSON file. Every three seconds, the
latest file is sent to the server over the Internet using an HTTPS POST
request. Given enough records for the same message, the server can then
determine the message’s transmission location and time. In practice, most
aircraft in Europe and a growing number of aircraft in other countries al-
ready broadcast their location [20, 36]. So, the only unknown is the trans-
mission time, in which case one ground station is sufficient.

To localize a handset, its received messages are sent to the server like
the messages received at the ground stations. The server then matches the
handset messages with the corresponding messages from the ground stations
for which the transmission location and time are known. Using the signal
arrival times measured by the handset — whose time is biased compared
to the system time — the localization solution, consisting of the handset’s
location and time, is computed.

We use receivers which consist of a 7 cm long antenna, a USB software-
defined radio receiver dongle and a Raspberry Pi 3 board. The total cost of

4At night, the frequency of received aircraft signals is substantially lower than during
daytime. Still, some long-haul flights may be passing even at night and some airports
operate 24 hours per day, ensuring regular traffic around them. So, enough aircraft for
localization can be available at night, but the localization accuracy may be degraded.
While most people are sleeping and do not need any localization service, for instance
emergency situations also arise at night. Even inaccurate localization helps emergency
services finding patients quickly.
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such a receiver is less than $100. In the future, such a receiver design could
easily be integrated into a smartphone. A 7 cm antenna is small enough to
fit inside the casing, and current smartphones have more processing power
than the Raspberry Pi 3.5 Our signal reception and decoding software is a
modified version of the open source project dump1090,6 which we enhanced
with more accurate time resolution. With these cheap receivers, messages
sent from aircraft as far as 250 km away can be received.

The GPS Performance Standard [38] by the US government currently
lists a worst-case horizontal GPS accuracy better than 17 meters in 95 %
of all cases. Depending on the quality of the receiver and whether different
advanced correction methods are available, the horizontal accuracy can be
substantially better, in the order of 3-7 meters. Usually, indoor localization
methods attempt to be even more accurate, for instance to minimize the
path length of a vacuum cleaning robot. And optical motion capture systems
achieve localization accuracies better than one millimeter [10].

In terms of accuracy, our method cannot compete with these indoor
localization techniques, and does not even achieve the typical GPS outdoor
accuracy. Our prototype implementation has a median error of about 25
meters. On the plus side, it works both indoors and outdoors!

Even though 25 meter accuracy is not exciting, 25 meters is still better
than nothing at all, and various applications do not need a precise location.
For instance, our method may tell you in which building you took some
photograph. Also, our method can help you catch the next bus from your
current location, since no precise location is necessary to determine the
closest bus stop and look up the corresponding timetable. Moreover, one
can automatically log the working time of employees by just knowing an
approximate indoor location. Due to the higher received signal power of
the aircraft signals, our system also works in urban canyons, where GPS
receivers may not be able to detect the signals from the GPS satellites,
because urban canyons behave similar to indoor environments. Generally,
our system would be of value for applications which cover both indoor and
outdoor locations, or when dedicated indoor localization infrastructure is
too costly to deploy. Finally, and probably most importantly, our method
may offer a more accurate initial guess for Assisted GPS (A-GPS) than

5OpenBenchmarking.org, which is one of the standard benchmark sites for Linux
systems, shows benchmark results comparing the Raspberry Pi 3 to the ODROID-C2
development board, which features an ARM Cortex-A53 SoC, also found on current low-
cost phones: https://openbenchmarking.org/result/1603051-GA-ODROIDPI362. Even this
low-cost SoC, which is the core of the Qualcomm Snapdragon 410, 610 and 615 [115,116]
beats the Raspberry Pi’s performance in all tested workloads.

6https://github.com/mutability/dump1090
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currently provided by cellular networks.7 Having a better estimate of the
receiver location and time can speed up the initial GPS fix, especially when
a maximum likelihood method like collective detection [11,14] is applied.

Another upside of our method is that, apart from sparsely distributed
ground stations and a server, it is pretty much independent from additional
infrastructure. For real-time tracking, only an Internet connection is neces-
sary to synchronize information with the ground stations. It is also possible
to post-process data, in which case no infrastructure is needed at all. The
latter approach has for instance been successfully applied to GPS localiza-
tion [75].

Since our method and implementation presented in this chapter are a
proof of concept, future improvements might yield more accurate localiza-
tion using the same aircraft signals and could thus allow such a localization
system to be used for even more indoor applications.

Our method is one of the first basically infrastructure-free indoor local-
ization methods. As discussed in Chapter 8.1, the accuracy of our method is
comparable to LTE localization, which is a competitor to infrastructure-free
indoor localization due to the wide availability of cellular networks. These
networks are designed for communication purposes and therefore cover an
area with at least one antenna, but often not more, in order to save costs.
Moreover, cellular networks use transmission antennas located close to the
ground. For localization, it is therefore often not possible to receive signals
from a sufficient number of antennas. In contrast, aircraft are high up in
the sky and can thus provide a better area coverage for instance in cities,
forests and mountains.

First, in Section 8.2 we give an introduction to air traffic surveillance
systems and the localization technique. Then, we dive into the details of
our method in Section 8.3. We present our implementation in Section 8.4,
followed by results in Section 8.5. To the best of our knowledge, there is
no closely related prior work to our approach. We discuss various other
existing indoor localization methods and air traffic surveillance systems in
Section 8.1.

8.1 Related Work

Our method employs aircraft messages for the purpose of indoor localiza-
tion. To the best of our knowledge, only Faragher et al. have used aircraft
signals for self-localization before [42]. Unlike our method, which is based on
time-of-flight (ToF) measurements, Faragher et al. employ angle-of-arrival

7Still, our system might use cellular networks for mobile receivers to communicate
with the server.
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(AoA) measurements. Because reflected signals, for instance at walls, result
in wrong AoA measurements, their method is not well-suited for indoor and
urban environments, but rather for situations with line of sight between
aircraft and receiver. Their receiver needs two antennas which should be
separated by a considerable distance to achieve useful localization accuracy.
With antenna distances of 1.6 m and 14 cm, they get bearing measurements
with standard deviations of around 1°–2°and 7°–15°, respectively. Using
messages from aircraft closer than 100 km, collected over 100 s for each
position fix, they get a localization accuracy of 1,200 m and 200 m with the
1.6 m and 14 cm antenna baselines, respectively. The long message collec-
tion duration might be necessary because of the restricted aircraft distance.
However, using messages from more distant aircraft will deteriorate the lo-
calization accuracy, because the bearing error amplifies with the distance. In
comparison, our receivers use a single, roughly 7 cm long, monopole antenna,
which makes them suitable for handheld devices. Depending on the receiver
location, messages from aircraft at distances up 250 km can be received.
We aggregate 30 s of data for each position fix and the median localization
accuracy is approximately 25 m. Further, Faragher et al.’s method is sensi-
tive to multiple parameters which have to be calibrated. Those parameters
are the antenna baseline, the antenna orientation and the phase between
the antenna channels. The sensitivity is extreme, as for instance an antenna
baseline error of only 1 cm results in a localization error of many kilometers.
Since the antenna orientation may change in a mobile receiver, the use cases
of their localization method may be limited. Also, they state that the phase
between the channels changes for each recording, which may make duty
cycling of the receiver impractical, because the sensitive, three-dimensional
parameter calibration routine has to be rerun. And the authors propose that
the calibration may use the help of GPS localization, which – again in the
case of duty cycling – would make the ensuing localization through aircraft
signals superfluous. Concerning the receiver hardware, Faragher et al. use
custom-made antennas and a software-defined radio (SDR) which costs over
$ 1,000, while our receiver design consists only of commercial off-the-shelf
components and costs less than $ 100 in total.

In the following, we discuss other existing work in the two independent
fields of indoor localization (Section 8.1.1) and air traffic surveillance and
control (Section 8.1.2).

8.1.1 Indoor Localization
Much of the research on indoor localization focuses on providing accurate
localization, for instance room-level or even sub-meter accuracy. The cost
factors to get so accurate are
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(I) the installation of dedicated Infrastructure, for instance one beacon in
each building up to several in each room;

(T) a Training or initialization phase to gather data which is necessary
for the subsequent localization;

(E) the usage of Expensive user equipment.

Most methods do not have all three of these drawbacks, but at least one. In
contrast, our method is almost infrastructure-free, does not need training
and receivers are cheap. Simply adding a small antenna can turn a cheap
smartphone into a user handset. Our method requires only one or a few
ground stations for a region, which can be hundreds of kilometers in diame-
ter. Therefore, our method is suitable to be used on a global scale, wherever
aircraft are present. In contrast to GPS, which is also a global localization
system, our method also works indoors. To get rid of all the cost factors
listed above, we give up some accuracy. As outlined in the introduction,
various applications exist for which localization precision is not essential. In
other words, our method fills the void between cheap, global and easy to
use outdoor localization such as GPS and precise, but local or expensive,
indoor localization.

A plethora of indoor localization methods exist and different classifica-
tions are possible. For instance, Seco et al. [111] classify the methods into
four categories: geometry-based, minimization of a cost function, finger-
printing and Bayesian. Another classification can be made based on the
type of employed signals. For indoor localization, ultrasound and signals
in basically the whole range of the electromagnetic spectrum up to light
have been used [68,70,85]. A third possibility is to distinguish the methods
by their kind of fundamental measurements, which include received signal
power (also called received signal strength (RSS)), time of arrival (ToA),
time difference of arrival (TDoA) or angle of arrival (AoA). An overview of
these localization techniques is given by Liu et al. [73]. Our method uses a
ToF technique, which uses ToAs measured by a handset with a time bias
compared to the system time.

Here, we will discuss different indoor localization systems based on the
employed signals’ type. For each category, we indicate in parentheses which
drawbacks the method has, using the letters from the list above.

WiFi (T) WiFi signals are popular for indoor localization, because WiFi
hotspots are already widely in use. Therefore, no specific infrastructure, like
beacons, is necessary for WiFi localization methods. In a survey by Liu et
al. [73], many types of wireless indoor localization methods are compared
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and WiFi-based approaches are shown to generally have an accuracy of a
few meters. This finding is confirmed by more recent results from the annual
Microsoft Indoor Localization Competition.8 WiFi localization methods re-
quire a training phase in which either the locations of WiFi access points are
determined or fingerprints at different locations are gathered. Furthermore,
infrastructure changes have to be detected and the database needs to be
updated accordingly.

Ultrasound (I) In contrast to WiFi-based localization, which is infrastructure-
free, ultrasound-based methods require dedicated hardware. However, ul-
trasound systems are relatively inexpensive and have proven to be accu-
rate compared to many other indoor localization methods. For instance the
SmartLOCUS [18] and SpiderBat [95] systems achieve centimeter-level accu-
racy. Still, ultrasound systems need high signal power to traverse distances
more than a few meters and are prone to ambient noise, like for instance
jingling keys. Also, ultrasound systems raise concerns about animal health
compatibility – mostly pets like dogs and cats [70, Section 6.3].

Light (T,E) The most accurate results in the Microsoft Indoor Localiza-
tion Competition are achieved by laser- and camera-based methods [81].
The best system achieves an accuracy of 5 cm using two lasers and multiple
high-end cameras [81]. However, this system costs a quarter million dollars.
Still, even cheap cameras today have a high number of pixels, resulting in a
fine spatial resolution. For instance, smartphones featuring Google’s Project
Tango hardware9 can achieve a localization accuracy as low as 2–5 % of the
absolute distance to the object, which is less than 5 cm for objects closer
than one meter [51]. However, the relative error of several percent is rather
large. Also, because the maximum range of those phones’ localization sys-
tems is limited to 4 m,10 and because the compute requirements are high,
mapping of large rooms or even a whole building takes a long time. After
mapping a building, users can be localized by matching locally detected
image features with the pre-constructed building model. Thereby, the local
coordinate frame of the phone is linked to the coordinate system used when
mapping the building. Like this, users can for instance learn in which room
of a building they are.

The widespread use of light emitting diodes (LED) and the miniatur-
ization of processors has opened a new field of visible light communication

8https://www.microsoft.com/en-us/research/event/microsoft-indoor-localization-
competition-ipsn-2014/#official-results

9Currently, the Lenovo Phab 2 Pro and the Asus ZenFone AR are available.
10Google’s Tango developer guide lists a range of 0.5 to 4 m: https://developers.

google.com/tango/overview/depth-perception#usability_tips



8.1. RELATED WORK 121

and localization techniques. Pathak et al. [97] give an extensive overview
of current methods. Among the advantages of visible light indoor localiza-
tion, they list the large installation base of LEDs in buildings, which helps
averaging out measurement noise. For visible light localization, approaches
based on received signal power [72] and signal angle of arrival (AOA) [68]
have been used. Signal power based approaches with light can achieve sub-
meter accuracy [72] and therefore are one order of magnitude more accurate
compared to WiFi signal power techniques [27]. Analyzing a camera image
to perform AOA localization is even more accurate and can yield a local-
ization error of 10 cm [68]. Sub-centimeter visible light localization has also
been demonstrated, by using multiple receivers [134]. Similar to methods
leveraging WiFi base stations, also LED transmitters’ locations need to be
learned in a training phase. In contrast to WiFi signals, light does not
penetrate walls, which can be a benefit or a downside. On the one hand, in-
terfering multipath signals from neighboring rooms, which introduce errors,
are eliminated, but on the other hand, multiple LEDs have to be installed
in every room.

Bluetooth (T,I) Another type of signal used for indoor localization is
Bluetooth. Bluetooth is similar to WiFi in that both systems share the
2.4 GHz frequency band. Compared to WiFi, which can take tens of sec-
onds for identifying base stations, faster response times can be achieved
with Bluetooth [24, 83]. This is important, because at walking speed, the
set of visible beacons can change quickly. Not being able to use signals
from intermittently visible transmitters is detrimental for the localization
accuracy.

Due to the protocol specifications, Bluetooth devices have to be paired
before user data can be exchanged. However, it has been shown that only us-
ing publicly announced device names and received signal power of Bluetooth
beacons is enough to achieve a localization error of less than 3 meters [62].

While most Bluetooth signal power based localization approaches achieve
an accuracy of multiple meters, more elaborate approaches, for instance ones
using neural networks can achieve sub-meter accuracy [3]. Accuracy using
ToF measurements can be even better with an error less than 0.5 m [102].

RFID (I) There exists also work on localization with RFID tags. RFID
tags come in two flavors: Active tags have an internal battery and passive
tags do not. The latter therefore have limited capabilities. Since even active
tags only have limited energy, RFID tags can only communicate over short
distances and are mostly useful to identify the proximity of objects. Still,
various more elaborate RFID localization schemes exists, measuring received
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signal power or signal arrival times. Bouet and Dos Santos [16] provide an
overview of the work on RFID localization. RFID tags are cheap, but due
to the short range, many tags have to be deployed for a localization system
serving a whole building.

Sensor Fusion (not stand-alone) Sensor assisted localization methods
are particularly favored in smartphone applications, because basically all
of these devices feature an inertial measurement unit (IMU) comprising an
accelerometer, a gyroscope and a compass. For instance, the accelerometer
can be used to estimate the movement speed and the compass can provide
the orientation of the device. Based on this principle and by counting steps
of a person, pedestrian localization systems have been developed [61]. Al-
though using the sensor data alone over long time periods is not accurate
due to accumulating errors, the sensors can bridge gaps in the operation of
another localization system. This technique is called dead reckoning. For
example, cars driving into a tunnel will lose signals from GPS satellites,
but based on measurements of the current driving speed, their location can
be estimated until the tunnel ends [114]. Although IMUs are cheap and
require no infrastructure, they are not suitable as stand-alone localization
and navigation systems due to the drift of the estimated location. There-
fore, continuous recalibration using a second localization system is necessary.
Nevertheless, by relaxing the requirements from absolute three-dimensional
localization to only detecting floor level changes, Ye et al. demonstrate that
IMUs alone can provide the basis for sufficiently accurate results over mul-
tiple hours [135].

Cellular (T) Cellular networks, supporting protocols such as GSM or
LTE, can also be leveraged for localization purposes. Promisingly, sig-
nals sent by cellular network antennas can be received over distances up
to 35 km [25]. Therefore, in theory, few antennas can provide localization
for large areas. However, because the available frequency spectrum is lim-
ited, the number of simultaneous users per cell is bounded. Thus, in order
to serve more users, the signal power of practically all cellular antennas is
intentionally set lower than the maximum. With this measure, also cells at
distances closer than 35 km can reuse the same frequency spectrum. Nor-
mally, cells have a diameter of only a few kilometers [103]. Aircraft signals
can be received over distances of up to 400 km, limited by the curvature
of the Earth, which is an increase of two orders of magnitude compared to
those practical cell sizes. And the covered area increases quadratically with
the diameter. This means that our method needs far less ground stations
than cellular network based localization.
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The accuracy of GSM localization is 50 to 150 m outdoors [65], which
is a factor of 2 to 6 less accurate than our method. Methods leveraging
the wider band LTE should be able to achieve better accuracy than GSM-
based methods. Cells sizes are designed for only small overlaps between
neighboring cells, in order to allow handing off moving receivers between cells
while allowing frequency reuse for a maximal number of cells. However, this
can be a problem for localization, as signals from less than the required four
antennas may be available. In such cases, no location can be determined.

An advantage of cellular localization methods is that they do not need
additional infrastructure, as cellular antennas are already widely available
all around the globe. Dense deployments exist in urban areas, which is ben-
eficial for indoor localization, because indoor localization is most required
in such areas. However, the cellular antenna coordinates are often not pub-
licly available with sufficient accuracy, limiting the usefulness of cellular
localization.

8.1.2 Air Traffic Surveillance and Guidance
Aircraft can be localized and tracked using time-of-flight (ToF) measure-
ments of received messages, such as ADS-B messages. This technique is em-
ployed at airports around the world as a cheaper alternative to radar [8]. Us-
ing a network of ground stations, which are time-synchronized using GPS re-
ceivers, a median aircraft localization error of 128 m has been achieved [112].
Another test series has shown a horizontal localization error of 127 m 95 %
of the time [35]. In simulation, it has been shown that the horizontal aircraft
localization error could be as low as 11 meters if the geographic distribution
of the ground stations is good [64].

Our system also employs a network of ground stations which determine
the time and optionally the location of message transmissions by aircraft,
but our ground stations do not need to be time-synchronized. However, we
do not stop here, but use the determined message transmission locations and
times to perform localization of a handset. To the best of our knowledge,
only Faragher et al. have used aircraft messages for self-localization before
(cf. Section 8.1) [42].

Aircraft Signal Receiver Networks

Aircraft tracking systems only need a relatively sparse network of ground
stations Nevertheless, setting up a global ground station infrastructure is a
practical challenge. At least two companies have taken part in this endeavor
by leveraging the participation of hobbyists. However, those companies do
not localize users.
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FlightAware11 is a large system of aircraft signal receivers organized by
a company with the same name. The network mostly consists of ground sta-
tions installed in private homes, sending their data to a FlightAware server.
The company provides online instructions, software and hardware to set up
a ground station.12 The ground stations decode aircraft messages and send
them together with a timestamp to the company’s servers. The aircraft
locations are shown on an online map13 or can be accessed through an API
by registered users who contribute data. For tracking aircraft which do
not send their location, the servers apparently localize the aircraft based on
the timestamps associated with the received messages. However, the exact
method is not disclosed to the best of our knowledge and therefore the accu-
racy is unknown. Based on the fact that the timestamps sent by the ground
stations are less accurate than those in our method, we are relatively certain
that the accuracy is not good. As we show in Section 8.5.9, even with our
accurate timestamps from upsampled signals, determining aircraft locations
accurately is difficult. For the purpose of displaying aircraft locations on a
map, the locations do not need to be determined accurately. Therefore, for
FlightAware’s business case, this data is good enough. However, the more
stringent accuracy requirements of user localization ask for more accurate
aircraft locations. The advantage of FlightAware is their large user base,
which gives their network good coverage of many regions. But compared to
our method, FlightAware does not localize users.

Flightradar2414 is another provider of a website displaying current air-
craft locations on a map. This website integrates a bunch of additional in-
formation about aircraft, such as the aircraft model and technical data, and
for commercial aircraft additionally the flight number, origin, destination
and the current delay. Flightradar24 also collects data from ground sta-
tions installed by hobbyists, but the company also has an active program,
in the course of which receivers are sent out to those interested persons,
which increase their regional coverage the most.15 The receivers, which are
distributed by the company are expensive and feature a GPS receiver for
accurate timing of received messages. Therefore, those receivers have more
accurate timestamps than our proposed hardware, at the trade-off of much
higher costs. Although we could not find data on the accuracy of the aircraft
localization using these receivers, due to the synchronized clocks, the results

11https://flightaware.com/
12USB SDR ADS-B receiver dongles: http://flightaware.com/adsb/prostick/. Pi-

Aware ADS-B ground station software setup guide: http://flightaware.com/adsb/
piaware/build

13Live map of aircraft currently in the sky: https://flightaware.com/live/
14https://www.flightradar24.com/
15Flightradar24.com – Apply for receiver: https://www.flightradar24.com/apply-for-

receiver
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should be good. However, not all of the ground stations in the Flightradar24
network are such expensive receivers. Also, Flightradar24 does not localize
users.

Although we are not able to use ground station networks as dense and
large as those of FlightAware and Flightradar24, we can still test our method
well with a low number of receivers, because aircraft signals can be received
over several hundred kilometers. Also, as mentioned in Section 8.2, many
aircraft send their location and one ground station receiving a message is
enough, because the message transmission time is the only variable.

While FlightAware and Flightradar24 do not provide historical data,
OpenSky [109] is an effort to do so, mainly for research purposes. This
project also relies on volunteers deploying ground stations and sharing the
gathered data. One problem of OpenSky is that the necessary hardware
costs about € 700, which is a significant entry barrier. In contrast, our
ground stations cost less than $ 100. The project website claims that the
network comprises “hundreds of receivers”.16

8.2 Background

8.2.1 Air Traffic Surveillance
Primary Radar

Air traffic surveillance has emerged as a fundamental requirement for air
traffic control. The classic method for localizing aircraft is radar technology.
Radar systems send out powerful pulses of electromagnetic signals. When
those pulses are reflected at an object, the back-scattered energy can be
detected. Given the angle of arrival and the round trip time, the location
of that object can be determined. Because the energy of the reflected signal
is much weaker than the pulse transmitted from the radar installation, the
energy of the radar pulse needs to be high in order to be able to detect
the reflected signal. Due to the resulting high energy consumption, radar
antennas are tied to the ground as fixed facilities. Today, this classic radar
technique is termed the primary surveillance system.

Secondary Surveillance

The messages we employ for our method are part of the secondary surveil-
lance system for air traffic control. Unlike the primary radar, aircraft ac-
tively send messages in the secondary surveillance system. Two types of
secondary surveillance techniques exists: Aircraft can be “interrogated” by

16The OpenSky Network – Services: https://opensky-network.org/services
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ground stations and respond appropriately, or they simply transmit mes-
sages periodically. The former is denominated Secondary Surveillance Radar
and the latter is called ADS-B. Messages may or may not include various
types of information, for instance the current location or velocity of the
aircraft.

In contrast to the primary radar, the received power of the secondary
surveillance signals is higher, because the signals are actively sent by the
aircraft. Therefore, the secondary surveillance system can operate at an
extended range with the same transmission power. Another advantage of
the secondary surveillance system is that not only ground control stations
are aware of aircraft and their location in the sky, but all aircraft in the sky
can receive the messages sent by other aircraft. This latter functionality is
supported by having two separate transmitters on the bottom and the top
of the aircraft hull [54, Paragraph 3.1.2.10.4].

Secondary Surveillance Radar The secondary surveillance radar (SSR)
is an established secondary surveillance system, which detects and identi-
fies aircraft and receives barometric pressure measurement data, from which
the flight level of aircraft can be determined. The radio signal uplink from
the ground to the aircraft uses a carrier frequency of 1030 MHz and the
downlink is at 1090 MHz. The SSR has multiple interrogation modes with
different message formats. The most important modes are A, C and S. To
Mode A interrogations, aircraft reply with their identity. Mode C is used to
gather aircraft altitude calculated from the barometric pressure and Mode
S supports different message formats, including ADS-B messages [126].

ADS-B A modern secondary surveillance technology is the Automatic De-
pendent Surveillance – Broadcast (ADS-B). In contrast to the secondary
surveillance radar, aircraft with ADS-B transponders send out messages
periodically, that is without interrogation. ADS-B is a dependent surveil-
lance system because ground stations depend on the aircraft sending out
data. ADS-B messages can contain a variety of information. For our sys-
tem, mainly the location and the velocity of the aircraft are of interest. The
location data is always derived from a GPS receiver in the aircraft. Also
information used for collision avoidance is transmitted over ADS-B.

ADS-B signals can be sent over different physical links, but the most
commonly used is the 1090 MHz channel, because many aircraft already
have a transponder for Mode C installed, which operates at this frequency.
Mode S comprises a so-called Extended Squitter message format, which al-
lows including ADS-B messages in Mode S packets. At the moment, most
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airliners in Europe and a growing number in North America are equipped
with an ADS-B transponder [20,36].

The data is transmitted at 1 Mbit/s with pulse position modulation.
Each packet starts with a preamble of 8 bits followed by 56 or 112 bits of
data. The data contains the message type, aircraft address, the actual in-
formation (depending on the type) and parity bits for error correction [121].
ADS-B messages are sent in response to an interrogation by a ground surveil-
lance station and are additionally also transmitted approximately every
second, by choosing a random time interval between 0.8 and 1.2 seconds
between two transmissions [54, Paragraph 3.1.2.8.5.2].

8.2.2 Localization
Localization based on ToF measurements is an established technique and
used in radio navigation systems such as GPS and LORAN-C. At a hand-
set, signal arrival times from multiple broadcasting transmitters at known
locations are determined. Often, the handset is not synchronized with the
transmitters which results in a common time bias of all measurements. With
signals sent at known times from at least four transmitters, the handset’s
location (in 3D) and time can be calculated. The system of equations is
normally solved using a least-squares approach. But other methods can be
used. For instance collective detection (CD) can tolerate more noise than
the least-squares method and has been successfully applied to the GPS lo-
calization problem [14].

Signal Power Compared to GPS, our method employs signals transmit-
ted from aircraft instead of satellites. Since aircraft travel at an altitude of
around 10 km instead of over 20,000 km of the GPS satellites, the trans-
mitters of aircraft are much closer to the user on the ground and result in
received signals with higher power. Therefore, our method is more suitable
for indoor localization than GPS.

Let us compute the energy advantage of ADS-B signals versus GPS sig-
nals. Assuming receivers with equal antenna gain and internal losses, the
received signal energy depends on the signal transmission power, the trans-
mission loss and the symbol duration, during which the signal’s energy is
accumulated in the receiver. With line of sight between transmitter and
receiver, the transmission loss is the free-space path loss lF S given by the
formula

lF S =
�4πd

λ

�2

where λ is the signal wavelength and d is the distance between the trans-
mitter and receiver antennas.
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GPS satellites have an effective signal transmission power of 283-458 W [127,
Section 2.2]. With an altitude of about 20,200 km and a signal frequency
of 1575.42 MHz, the free-space path loss from a GPS satellite to the Earth
surface is about 182 dB, according to the formula above. This amounts
to a received GPS signal power on the Earth surface between -127 and
-125 dBmW.

In contrast, airplanes and other aircraft are flying at an altitude below
13.7 km. The ADS-B standard prescribes a minimum transmission power
between 70 and 200 W, depending on the type of aircraft [108, Tables 2-3 and
2-4]. Further, an antenna gain at least equivalent to a quarter-wave resonant
antenna minus 3 dB is required [108, Sections 2.2.13.1 and 3.3.1], which we
assume means at least 2.19 dB. This results in an effective transmission
power of 116—331 W. Due to the curvature of the Earth, aircraft can be
in line of sight up to distances of about 400 km, but the ADS-B standard
requires only receiving ranges up to 120 nautical miles, which is 222 km [108,
Table 3-2]. The ADS-B transmission frequency is 1090 MHz. The free-space
path loss is therefore 140 dB at 222 km and 145 dB at 400 km. So, the
received ADS-B signal power on the Earth surface is at least -94 dBmW, even
if the transmitting aircraft is 400 km away and if it transmits at the lowest
specified power of any aircraft type. As an intermediate finding, we can
therefore conclude that on the Earth surface, ADS-B signals have a received
power advantage over GPS signals of at least 31 dB, which corresponds to a
factor of 1,259! At a distance of 100 km with a transmission power of 331 W,
the received ADS-B signal power increases to -78 dBmW. The corresponding
power advantage over GPS is 47 dB or a factor of 50,119!

GPS is designed with relatively long symbol durations to mitigate this
drawback. Effectively, on the Earth surface, each GPS symbol with one mil-
lisecond duration has an energy of about −126 dBmW·1 ms = −156 dBmWs,
while each ADS-B pulse lasting half a microsecond has an energy between
−94 dBmW·0.5 µs = −157 dBmWs and −78 dBmW·0.5 µs = −141 dBmWs.
So, each ADS-B symbol has at least comparable energy to a GPS symbol
and can be for instance 15 dB or 32 times stronger at an aircraft distance
of 100 km. Given that the attenuation of a one foot thick concrete wall is
about 14 dB at the ADS-B frequency [122, Table 4], signals from aircraft
closer than 100 km may therefore be received in many buildings.

But we can even go a step further: While GPS correlates 1,023 code
bits per symbol, ADS-B pulses are usually decoded individually. However,
given an ADS-B message decoded by a ground station with good signal
reception, another ADS-B receiver could also correlate with all 120 pulses
of a message, similar to GPS receivers. Accordingly, that would increase
the ADS-B energy by the factor 120 or 21 dB, allowing the penetration of a
second concrete wall! While we do not correlate with whole ADS-B messages
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in this work, that technique should be a straightforward enhancement of our
system.

Timing For the ToF method, the transmission time of the messages has
to be known. Normally, for instance in GPS, this is achieved with time-
synchronized transmitters which include their current time in the messages.
None of the SSR or ADS-B messages contain a timestamp. Since the mes-
sages travel at the speed of light, even if an aircraft is 300 km away, the
propagation time will only introduce a delay of one millisecond. Assuming
the delay in the aircraft from the generation of the location to the location
transmission is small or compensated, the location of the aircraft will have
changed by only a few meters by the time the signal arrives at the ground.
For Mode C messages, the height will probably still be the same to within
the measurement error. Therefore, for air traffic control, send timestamps
are not necessary. But this timing is not good enough for localizing a user,
since every millisecond of time error also alters the measured distance to the
aircraft by 300 kilometers. Therefore, we use a ground station with known
location to determine the transmission time of messages. Multiple ground
stations can be used to increase the range of the system. The details of our
method are explained in the next section.

8.3 Method

In this section, we show how the challenges explained in the beginning can
be addressed. The main idea of our method is to replace GPS satellites
with aircraft in order to receive stronger signals, which are more suited for
indoor reception than GPS signals. As aircraft messages do not include
a timestamp, we also solve a time synchronization problem using a small
number of ground stations with known locations. A significant fraction of
aircraft transmit their location – which might or might not be accurate. For
aircraft with legacy systems (SSR modes A and C), which do not provide
their location, our infrastructure also determines the transmission locations
of the aircraft messages. In the end, the system we present provides users
with a system similar to GPS, but with aircraft instead of satellites. The
user localization is done using time-of-flight (ToF) measurements like in
GPS.

Figure 8.1 shows the concept of our system. The ground stations and the
handset send the recorded ADS-B messages with the corresponding times-
tamps to a server. The server collects the messages and matches the mes-
sages from the handset to those from the ground stations and computes send
times of the messages and the location of the handset by solving least-squares



130 CHAPTER 8. LOCALIZATION WITH AIRCRAFT SIGNALS

Figure 8.1: System consisting of a server, ground stations at known lo-
cations, a handset at unknown location and aircraft. The ground stations
and handsets determine the receive time of messages from aircraft to then
calculate the send time of the messages and the location of the handset.

problems using the relative timing of these messages and their transmission
location. The localization method can be partitioned into two steps:

• Calculation of message send times and aircraft locations (if not given in
messages): Matching messages received at multiple receivers are used
to calculate the clock offset and drift of the receivers, the message send
times and optionally the aircraft locations.

• User localization: The ToFs of the messages are computed from the
arrival times and the (now) known send times. The ToFs yield a
system of equations which allows finding the handset location.

These individual steps are explained in detail in the next sections.
As explained in the introduction, our localization system consists of three

hardware components: unsynchronized ground stations that receive ADS-B
or SSR messages from aircraft, a user handset and a server that collects all
the received messages.

With this proposed system, the messages from the aircraft can be used
for localization without large infrastructure costs. The ground stations
and handsets do not need synchronized clocks and work with inexpensive
software-defined radios (SDRs). Each receiver only needs little processing
power to decode the messages and forward them to the server.
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Figure 8.2: Handset localization: Messages received by the handset from
multiple aircraft are used for the localization.

8.3.1 User Localization
Let us first discuss the handset localization assuming that the transmission
position and time of the received messages are known.

The calculation of the handset location is similar to the localization in
global navigation satellite systems, for instance GPS. Instead of satellites
with known signal transmission location and time, we use aircraft trans-
mitting ADS-B messages. Figure 8.2 shows the concept. For each received
message, we can create a pseudorange equation

�PH − Pj�2 + cΔtH
!= c(tr

j,H − wj,H − tt
j)

where Pj is the location from where the message was sent, tt
j the send time,

PH the handset location, ΔtH the clock offset of the handset to the ground
stations and tr

j,H the receive time of the message at the handset with the
noise wj,H . The handset location and clock offset can be found by solving
a least-squares problem.

ej(PH, ΔtH) = 1
c

�PH − Pj�2 + ΔtH + tt
j − tr

j,H + wj,H

( �PH, �ΔtH) = arg min
(PH,ΔtH )

�

j

ej(PH, ΔtH)2

This cost function is minimized using a non-linear least-squares solver.
At least four points Pj are needed to estimate the handset location and
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time offset. We used the Levenberg–Marquardt algorithm which combines
the Gauss-Newton method with gradient descent [46].

Dilution of Precision (DOP) is a concept originating from GPS, but it
can also be applied to our problem. When doing localization using ToF
measurements, the geometric distribution of the used points (for instance
GPS satellites or aircraft and the handset) influences the quality of the
location estimation. The location estimation error is the product of the
signal arrival time measurement error and the DOP value. A rule of thumb is
that the larger the volume spanned by the aircraft, the better the localization
precision [69]. And the receiver should be close to the aircraft. We can
leverage other advantages of aircraft signals, like higher received signal power
or a higher number of available aircraft to reduce the measurement errors
and get good localization accuracy.

Due to the aircraft geometry, the vertical localization uncertainty is often
larger than the horizontal uncertainty, because most aircraft are at a low
elevation angle from the perspective of a receiver on earth. Therefore, a
vertical receiver location change results in a smaller change in the measured
distance to the aircraft than a horizontal movement. Thus, it is useful to
determine the handset height using a different method, for instance with
a barometric pressure sensor. This can increase the localization accuracy
significantly, as shown in Section 8.5.6. Indoor pressure usually does not
differ from outdoor pressure by more than 40 Pa [71,119]. This corresponds
to a vertical localization error of about 8 m according to the barometric
formula near the earth surface.

8.3.2 Transmission Time and Location

To calculate the location of the user, the transmission time tt
j of the message

j at the aircraft has to be known. By using a ground station with a fixed
location, the time of flight from the aircraft to the ground station can be
calculated to then compute the transmission time.

To reduce the error of the timestamps and increase the covered area,
multiple ground stations can be used, as depicted in Figure 8.3. But the
message timestamps at the different ground stations are not synchronized.
Moreover, due to small deviations of the receiver oscillators, the sampling
rate is varying and not equal at different ground stations. In order to use
the time-stamped messages from the different ground stations for the user
localization, we have to compensate the clock offsets and drifts.

The receive timestamp tr
j,Bi

consists of the message send time at the
aircraft (in global time) tt

j plus the clock offset ΔtBi and clock drift DBi of
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Figure 8.3: Calculation of message send time and aircraft location: Multi-
ple ground stations receive the messages from the aircraft and can calculate
the send time of the messages and optionally the location of the aircraft.

the ground station relative to station 1 plus the time of flight of the signal
from location Pj to PBi .

tr
j,Bi

− wj,Bi − 1
c

�PBi − Pj�2 = tt
j + ΔtBi + DBi (tt

j − tt
1) (8.1)

This system of equations can be solved using a linear least-squares solver
to compute the transmission times tt

j of the messages in the synchronized
time.

As the clock drift rate and offset may change over time, the synchro-
nization has to be repeated regularly. When a few messages have been
received at multiple ground stations, Equation (8.1) is solved. Additionally
new clock offsets and drifts for the ground stations are calculated. Now,
only the handset has a clock offset which is the same to all ground stations.

Not all messages sent by the aircraft contain the location. To be able to
also use those messages in the localization of the handset, we can determine
the aircraft location Pj at the time when the message was sent. In this case,
Equation (8.1) is non-linear due to the distance term. To calculate Pj, we
therefore use a non-linear least-squares solver.

Ground Station Requirement Before going on, let us discuss the ground
station requirement. By the end of the year 2019, all aircraft will be required
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to support ADS-B [20] and therefore send their location in their messages,
and many aircraft already do it today, as mentioned in Section 8.2.1. Since
signals can be received several hundred kilometers from an aircraft, in prin-
ciple one ground station is enough to cover a large urban area or a small
country. Using multiple ground stations has several benefits:

• Measurement errors can be reduced.

• In mountainous regions, a ground station should either be deployed
on the highest mountain in order to receive aircraft signals from all
directions or several receivers can be used, which all see a part of the
sky. Note that the different parts need to have some overlap in order
to be able to synchronize the ground stations’ times.

• Fewer messages are lost and therefore a larger number of the messages
of a handset can be matched by the server with a message from a
ground station. This increases the number of measurements per time
and thus allows tolerating faster moving receivers because a sufficient
number of messages for localization can be collected at the handset
during a shorter time.

The number of ground stations for a full deployment of our system is
orders of magnitude less than for other localization techniques, like for in-
stance cellular network or WiFi-based localization. One ADS-B receiver
can cover an area with a radius of several hundred kilometers while cellular
network antennas usually transmit over distances up to several kilometers
only and WiFi signals can only be received up to a few ten meters from a
base station. By leveraging already existing ADS-B receiver network com-
munities (cf. Section 8.1.2), deploying a receiver network for our proposed
method might be possible by simply providing updated software for these
receivers.

Lastly, note that handsets do not need to be in line of sight of any ground
station since the time synchronization of aircraft messages and the location
computation of a handset are decoupled.

8.4 Implementation

8.4.1 Receiver
To receive the messages from the aircraft, we use software-defined radios
(SDRs). For this project, USB dongles based on the RTL2832U chipset are
used, which were originally designed to be DVB-T TV tuners. Therefore,
the SDRs are inexpensive. In a second iteration we used FlightAware Pro
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Figure 8.4: Hardware of ground station: Raspberry Pi 3 with FlightAware
Pro Stick Plus and antenna. The Raspberry Pi decodes the messages and
sends them to the server via LAN or WLAN.

Stick Plus, which is a USB dongle based on the same chipset and has been
optimized for the reception of ADS-B. It contains a band-pass filter and an
amplifier. These SDRs provide a stream of complex samples (I/Q samples)
at a rate of 2.4 MHz. The power consumption of the SDR is at most 1.5 W.17

For the processing of the data, each SDR is connected via USB to a
Raspberry Pi 3 model B, a single-board computer. The operating system
is Raspbian, which is based on Debian. The Raspberry Pi consumes a
maximum of 6.7 W under stress.18

The detection of the messages is done with dump1090-mutability.19 It is
able to run on the Raspberry Pi 3 without dropping samples. This software
generates timestamps with a resolution of 83.3 ns. In order to improve the
timestamp precision further, we add 25-fold local upsampling of the mes-
sages. The GPU_FFT20 library is used to speed up the message correlation
using the GPU.

After detecting the messages, the program sends the detected messages
with the corresponding timestamps to the server where they get collected
and the localization is performed.

17http://de.flightaware.com/adsb/prostick/
18https://www.raspberrypi.org/help/faqs/#powerReqs
19https://github.com/mutability/dump1090
20textttGPU_FFT is an FFT implementation for the BCM2835 SoC GPU found in

Raspberry Pis. URL: http://www.aholme.co.uk/GPU_FFT/Main.htm
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Figure 8.5: Server application: The server receives the messages from
the ground stations and handsets, matches the messages from the different
receivers. Then the clock offset and drift between the ground stations is
computed with messages from different receivers. In the last stage, the
localization of the handsets is performed.

Currently the ground stations and the handset are based on identical
hardware configurations. A picture of the hardware is shown in Figure 8.4.

Barometric Pressure Sensor

Since the ground stations and the handsets have a similar altitude and
the aircraft are close to the horizon, the vertical dilution of precision is
much higher than the horizontal dilution of precision. A solution is to
equip the handset with a barometric pressure sensor. The altitude value
provided by the sensor can be used to perform two-dimensional localization
which reduces the number of needed aircraft by one. The sensor has to
be calibrated with the barometric pressure on sea level (QFF) which is
weather-dependent. This value can be obtained from a weather API or can
be calculated at a point with known altitude.

8.4.2 Server

Figure 8.5 shows the overview of the server application. The server consists
of four different threads that are connected via message queues.
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The collector thread accepts TCP-connections from the receivers and
parses the received messages.

The planetracker thread determines the transmission location of mes-
sages that do not contain the location of the aircraft as described in Sec-
tion 8.3.2. Furthermore, all messages are Kalman filtered using a constant
velocity model. The model is updated with the received velocity and lo-
cation messages and the locations calculated for all other messages. The
hash of the messages and the message timestamps are then used to match
the messages received at different ground stations and at the handset. The
messages then get forwarded to the synchronizer thread.

The synchronizer thread performs the time synchronization of the ground
stations. It looks for corresponding messages that have been received at mul-
tiple ground stations and uses them to calculate the time offset and clock
drift of the ground stations and the transmission timestamps of the mes-
sages. When the transmission time of a message, that has also been received
at the handset, has been calculated, it gets forwarded to the localizer thread.

The localizer thread calculates the handset location using the messages
with the calculated transmission timestamp. For each handset, the messages
are accumulated in a queue. As soon as it contains enough messages (at least
four different aircraft), the localization of the handset is performed. Hand-
sets with known altitude can be located in two dimensions and therefore
only need three received messages.

8.5 Results

To evaluate our method, we deployed six ground stations like that shown
in Figure 8.4 in a region approximately 110 km in diameter. The locations
of the ground stations and the handset can be seen in Figure 8.6. Placing
ground stations outdoors, for instance on the roofs of buildings or on hills,
would be beneficial in order to maximize received signal energy, number of
received messages and observed unique aircraft, as well as to reduce multi-
path errors. However, building weatherproof cases was outside of the scope
of this work. Therefore, the ground stations for our evaluation are placed
inside buildings. Note that our preliminary test setup uses ground stations
with known, but inaccurate locations, which have been estimated manually
by locating the receivers on a map, therefore introducing several meters of
error.

In our setup, the received signal is sampled at 2.4 MHz and upsampled by
a factor of 25 at the ground stations and the handset. The handset’s height
is determined using a barometric pressure sensor, so only the latitude and



138 CHAPTER 8. LOCALIZATION WITH AIRCRAFT SIGNALS

50 km

Figure 8.6: Locations of the ground stations (black) and a handset (check-
ered) for the evaluation. The ground stations span over a region approxi-
mately 100 km in diameter. The three international airports in the region
are marked with an aircraft icon.

longitude of the handset are computed based on the data decoded from the
aircraft signals.

Our evaluation should be considered as a mostly qualitative analysis,
since we could not yet test our system performance extensively. Doing so
would require measurements spanning a long time, maybe even a year, due
to the variability of air traffic. Not only is there a daily cycle of flight
patterns and air traffic density, but for instance different wind directions in-
fluence the routing of aircraft on different days and there are even seasonal
differences, as during holidays, the number of passenger flights increases sig-
nificantly. Also, aircraft geometry depends on the flight routes assigned in
different regions of the world and is not mostly uniform, like for instance
the GPS satellites with their nicely distributed orbits. Furthermore, the
landscape around the receiver also influences the reception of aircraft sig-
nals, for instance by blocking the line of sight between a handset and some
aircraft. Further variable parameters, like the geographic distribution of the
ground stations, also influence the performance of our system. Finally, note
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Figure 8.7: Cumulative distribution function of the localization errors
of an outdoor handset using data from six ground stations. The handset
altitude is known and the horizontal coordinates are determined using the
aircraft signal measurements from the ground stations.

that all these parameters are not independent, which makes it challenging
to evaluate our system thoroughly.

8.5.1 Reception Quality

The maximum range within which aircraft signals can be received, depends
on the antenna characteristics and placement. Our ground stations, which
are all located indoors, receive messages from up to approximately 190 km
away. When placing the antenna on a roof, the range increases to about
250 km. Comparing the indoor and outdoor cases, we observe that indoors
the number of unique aircraft from which signals are received decreases by a
quarter. Note that our ground stations have cheap passive antennas. With
more expensive active antennas, ideally mounted on a roof, the received
signal energy should be higher, resulting in increased signal reception range
and more received messages.
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Figure 8.8: Distribution of localization errors in latitude and longitude
direction. The handset altitude is known. The results are obtained using
six ground stations and a handset outdoors. As expected, for instance with
normally distributed errors, the plot is roughly circularly symmetric around
a point close to the true location and the density of the location estimates
is higher in the middle and fading outwards.

8.5.2 Localization Accuracy

Figure 8.7 shows the localization accuracy of our method using our six de-
ployed ground stations and a handset outdoors. The median error between
the computed locations and the ground truth is 25.3 meters and the maxi-
mum error is 118.6 meters. The ground truth was estimated using Google
Maps,21 the error of the ground truth should be less than 3 meters.

The results of our measurements are approximately normally distributed.
An example distribution of the computed locations around the ground truth
can be seen in Figure 8.8.

21https://maps.google.com
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Figure 8.9: Absolute localization error outdoors for different numbers of
ground stations. As expected we do not see large differences of the localiza-
tion error since one ground station is sufficient to calculate the send time of
an aircraft message.

8.5.3 Indoor vs. Outdoor Accuracy

We conducted experiments to evaluate the accuracy of our method indoors.
Surprisingly, the accuracy indoors is close to the accuracy outdoors. The
median error is only 5.6 % larger indoors, and the standard deviation in-
creases by 14.7 % compared to the outdoor case. The cumulative distribu-
tion function looks almost identical to the outdoor case. This implies that
localization errors are not dominated by noise, but rather other error sources
such as inaccurate signal transmission locations, multipath environments or
inexact signal ToF estimates.

8.5.4 Number of Ground Stations

To test the influence of different parameters, we conducted additional ex-
periments. First, we tested the accuracy using different numbers of ground
stations. The results are shown in Figure 8.9. We do not see a large increase
in the localization accuracy when more ground stations are used. This is
what we expected, since one ground station is sufficient to calculate the send
time of a message from an aircraft. One reason for the slightly better results
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Figure 8.10: Absolute localization error for different numbers of used
aircraft. The localization error does not decrease with more aircraft used.
We assume that the synchronization error increases with more used aircraft
because messages from longer time periods have to be combined for that.

with 5 and 6 ground stations might be that errors in the calculated clock
offsets and drifts of the ground stations are averaged out.

8.5.5 Number of Observed Aircraft
Further, we tested the influence of the number of unique aircraft used for
a localization solution. Figure 8.10 shows the results from this experiment.
When using different numbers of aircraft, the localization error does not
change. As in GPS with more satellites, we expected the localization error
to decrease with more aircraft. However, when not many aircraft are within
range of the handset and the receivers, messages from a longer time period
might have to be combined. This can lead to a larger synchronization error
between the ground stations.

An alternative hypothesis is that there could be systematic errors in the
transmitted aircraft locations. Irrespective of the number of aircraft, this
might result in imprecise localization due to considerable residuals in the
system of equations solved for the localization. However, since aircraft are
usually traveling in different directions, such systematic errors would have
to be not relative to an aircraft, but fixed with respect to the Earth, that
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Figure 8.11: Localization error with known handset altitude (horizon-
tal localization) compared to unknown handset altitude (3D localization).
These results are from a preliminary experiment with a version of our im-
plementation that did not include all the improvements present in the final
version.

is, independent of the aircraft orientation. Otherwise, the errors should
approximately cancel out when solving the localization problem. So, for
instance slight delays in the aircraft transmitting their locations cannot
be the reason for the localization error not decreasing with the number of
aircraft.

8.5.6 Known vs. Unknown Altitude
Another interesting experiment evaluates the benefit of using a barometer
for the receiver’s height estimation. Figure 8.11 shows that the 3D local-
ization error is much higher than the horizontal one with known receiver
height. However, an increased error is expected due to an added degree of
freedom of the solution. Also, most aircraft are at a low elevation angle
from the receiver location. This results in a badly conditioned problem for
the height estimation. The problem is that a height change of the handset
does not influence the arrival time measurements as much as a horizontal
movement. Since we conducted this test early in the development of our
method, some improvements present in the final system described in this
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chapter were still missing. Therefore, the horizontal localization accuracy
is also worse than the results shown before. The conclusion of this experi-
ment is that a barometer is a useful feature of a handset localization method
based on aircraft signals. Adding the barometer reduces the median error
by 52 %.

8.5.7 Upsampling

As mentioned in Section 8.4.1, we upsample the received signal by a factor
of 25. Figure 8.12 shows the achieved localization accuracy compared to
that which results when using the timestamps of the standard dump1090
software, which determines the phase of the messages by correlating with
five fixed patterns. As we understand from analyzing the source code, those
patterns used in dump1090 correspond to the expected sample values when
shifting the signal by multiples of a fifth of a sample duration. Therefore,
the accuracy should be the same as for a five times upsampled signal. How-
ever, we observe that the five possible phases do not appear equally likely,
which we interpret as an implementation error. Therefore, the results us-
ing the dump1090 timestamps might be somewhat worse than theoretically
achievable using an optimal phase estimation technique. Note that like in
the previous experiment, also the localization results of this test are less ac-
curate than possible with our current implementation, because the results
were derived using a preliminary implementation. Figure 8.12 demonstrates
that the localization error decreases when the received signal is upsampled.
However, the necessary computation power increases substantially. Due to
performance limitations of our prototype ground stations featuring a Rasp-
berry Pi 3, we were not able to continuously use 50-fold upsampling. In
fact, even when upsampling by a factor of 25, on average it happens every
few hours that the processor is overloaded. This manifests itself in dropped
samples, because buffers are emptied slower than samples are recorded. The
reason why this happens infrequently and unpredictably is that the number
of received messages depends on the number of aircraft in the range of the
receiver and therefore varies considerably. When the processor has a lot of
load, it overheats and at 80°C, the clock rate of the CPU is automatically
reduced. The result is that the processor is even less able to cope with all the
incoming messages. This problem could probably be resolved by installing
a heat sink on the processor. However, if regions are covered by multiple
ground stations, short outages of one ground station for a few seconds or
minutes can easily be tolerated. If this is not the case and only one ground
station is available, its upsampling factor can also be reduced a bit, without
resulting in a large increase in localization error, as Figure 8.12 shows.
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Figure 8.12: Localization error based on 25-fold and 50-fold upsampled
timestamps, as well as the default timestamps output by dump1090. These
results were obtained using two ground stations and also an old version of
our implementation, like the results from the barometer experiment.

8.5.8 Error Sources

Multiple possible error sources of the localization exist. An overview is
given in Table 8.13. The multipath effect caused by signal reflections from
buildings and ground has a big impact, since the ground stations are placed
in offices and residential buildings and do not have direct line of sight in all
directions. Next, accurate timestamps are essential for the localization. As
shown in Section 8.5.7, the timestamps can be improved using upsampling.
Since the ground stations do not have synchronized clocks, the estimation of
the clock offset and drift has to be repeated regularly. If there are only few
aircraft in the sky, to get enough messages for a localization, messages have
to be collected over a longer period of time during which the synchronization
error accumulates and the timestamps become less accurate. Note that the
opposite case, when many aircraft send messages, which then collide and
therefore cannot be decoded, is not a problem. In that case, due to the
large number of aircraft, also many messages can successfully be decoded.
The extreme case in which basically all messages are lost should not occur
in practice, since this would also be a threat to air traffic surveillance and
guidance. In practice, less than 60 % of all messages are lost on average at
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Table 8.13: Localization error sources

• multipath effect

• timestamps

• ground station synchronization

• ground station locations

• geometry (dilution of precision)

• message transmission delays (outdated locations)

• uncompensated distance between GPS and ADS-B antennas on air-
craft

any time of the day [120, Figure 3b]. The timestamps are more precise if the
signal-to-noise ratio (SNR) is high, in which case the correlation contains
an easily distinguishable peak indicating the message arrival time. But this
correlation can also deteriorate because of the frequency shift caused by the
Doppler effect. Small errors are also introduced by imprecise ground station
locations. Depending on the location of the aircraft and the handset, a bad
dilution of precision can occur which increases the localization error. An
additional error is introduced by the uncompensated latency in the aircraft
between the reception of the GPS location and the transmission of the ADS-
B message. Also, depending on the aircraft model, the GPS receiver and the
ADS-B transponder have a location offset, which may be uncompensated.

8.5.9 Using Messages from Trilaterated Aircraft
As described in Section 8.3.2, the system can also compute the location of
aircraft that do not transmit their location. Especially smaller aircraft are
not equipped with ADS-B transponders. According to the OpenSky Report
2016 [109], about 70 % of transponders support ADS-B messages. ADS-B
will be mandatory by 2020. In that report, it is also mentioned that 26 % of
received Mode S messages are ADS-B messages. The most frequent types
are altitude replies, which account for 35 % of all messages. As a result, only
2D localization has to be performed, since the altitude is already known.

Figure 8.14 shows the accuracy of the aircraft localization performed
with six ground stations. For the evaluation of the location accuracy, the
localization is performed on messages from aircraft that also transmit their
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Figure 8.14: Distribution of aircraft localization errors using six ground
stations. Errors are computed as the difference between the determined
locations and the locations reported by the aircraft themselves in the trans-
mitted messages.

location in other messages. The localization accuracy is evaluated against
those reported locations. Therefore, part of the localization error is due to
unknown errors in the transmitted aircraft locations. The calculated loca-
tions have a median error of approximately 300 m. With a median handset
localization error of 25 m when using the aircraft with known locations, the
calculated aircraft locations can not be used to get more accurate handset
locations. But in cases with too few ADS-B equipped aircraft in range,
the aircraft localization could still be used to get a rough handset location
estimate.

We did not reach a conclusion yet, why these errors are larger than the
handset localization errors. Different additional error sources are possible.
Among them are:

• Large dilution of precision due to bad geographical distribution of the
ground stations.

• Inaccurate ground truth of the location received from the aircraft:
unpredictable delay from receiving location to transmitting it and
unknown location offset between the GPS antenna and the aircraft
transponder.

• Accumulation of synchronization errors between the ground stations.
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8.6 Conclusion

We have shown that using aircraft signals to localize users is a viable ap-
proach, even when the receiver is indoors. Our method fills a gap between
globally available outdoor localization and accurate but expensive or cum-
bersome indoor localization. A few ground stations are enough to serve
a region several hundred kilometers in diameter, which makes our method
basically infrastructure free.

To better understand the possibilities and limitations of localization us-
ing aircraft signals, a thorough evaluation of the influence of various pa-
rameters on the performance, as outlined in Section 8.5, is necessary. For
instance, the time of day influences the density of air traffic, and it would
be interesting to determine the effects on the area coverage, since even a low
number of aircraft can be sufficient for localization.

Plenty of accuracy improvements to our prototype system are possible:

• Using more advanced signal processing to more precisely detect signal
arrival times and detect more signals per time.

• Improvements to the RF chain, such as employing antennas designed
for ADS-B.

• Applying enhancements to the location estimation, such as selecting
only “good” measurements for the least-squares computation, comput-
ing a weighted least-squares solution, applying multipath mitigation
techniques or using a different localization algorithm such as a maxi-
mum likelihood approach.

• Precisely localizing ground station locations.

• Choosing an optimal placement of the ground stations, to reduce error
sources such as multipath and to maximize received signal energy,
number of received messages and observed unique aircraft.

In the future, a larger number of aircraft will be equipped with ADS-B
transponders due to regulatory requirements and growing air traffic, which
will increase the availability of our proposed localization method and also
improve its accuracy due to more possibilities for error correction.

The presented handset design shows that our method could be integrated
in a smartphone. The only additional hardware required in a smartphone
is a small antenna, which easily fits into such a form factor, and a few
components for the RF front end. Given the usual level of system-on-chip
integration, this should be an inexpensive addition.







9
Conclusion

“The vain presumption of understanding everything can have no
other basis than never having understood anything. For anyone
who had ever experienced just once the perfect understanding of one
single thing, and had truly tasted how knowledge is accomplished,
would recognize that of the infinity of other truths he understands
nothing.”

— Galileo Galilei, “Father of Science”

Due to its wide availability and meter-level accuracy, GPS is the current
standard for global localization. Other GNSS exist or are in development,
increasing the number of available satellites and extending the area cover-
age for GNSS localization. Also, more visible satellites improve the total
received signal energy. Still, GNSS receivers draw relatively much power
and work poorly indoors or between obstacles such as houses, mountains or
even trees.

The collective detection (CD) method presented in this book mitigates
both the energy consumption and the signal multipath problem. Multipath
effects from reflected, and therefore delayed, signals are reduced by com-
bining the signal power from all satellites. Only signals with equal delay in
addition to the expected direct path delay align in the maximum likelihood
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formulation. This makes the GNSS localization robust, since in most en-
vironments, the direct signals outnumber similarly delayed reflections. On
the energy side, CD enables computing a receiver’s location from as little as
one millisecond of recorded signals, compared to at least several seconds for
classical receivers. Since those short signals generate only a few kilobytes
of data, such signal snapshots can be stored for later processing. Saving
the location computation hardware, which is the most energy-consuming
part of a classical GPS receiver, greatly reduces the energy consumption of
a snapshot receiver. Combined, the effects of shorter signals and offload-
ing the location computation to an external device, such as a server in the
cloud, reduces the GNSS receiver’s energy consumption by three orders of
magnitude.

Using a branch-and-bound algorithm to compute the localization solu-
tion makes CD viable for large search areas and high numbers of localization
requests. The location probability distribution underlying CD receivers does
not only help in the presence of multipath signals. The location likelihood
function also reveals malicious signals from attackers trying to spoof the
receiver. Over time, simultaneously present legitimate and fake signals can
be discerned using external information such as accelerometer readings or a
map. With more and more GNSS spoofing attacks becoming public, such
as in Russia [37], GNSS spoofing mitigation techniques are rising in impor-
tance. The spoofing problem is only aggravated by the world’s infrastructure
increasingly depending on GNSS, as we have seen in Chapter 1.

GNSS snapshot receiver hardware can be built small, even if not designed
as an ASIC (application-specific integrated circuit). Our hand-soldered,
PCB-based snapshot GPS receiver has an area of 23 mm×14 mm and weighs
only 1.3 g without the coin cell battery. The flash chip with 2 Gb storage
space allows capturing 65600 snapshots with a length of one millisecond
each. With quarter-hourly localization, this allows for a lifetime of 683 days.
During these almost two years, the tracker will consume approximately a
quarter of a CR2032 coin cell battery’s capacity, leaving plenty of margin
for self-discharge.

Although the robustness improvements of CD over classical least-squares
localization are impressive, indoor localization with GNSS is still inadequate.
Depending on the required accuracy for a certain application, it may be suf-
ficient to use the last location before the receiver entered a building, for
instance. If better accuracy is needed, one approach is to equip buildings
with extra localization infrastructure, such as Bluetooth beacons. How-
ever, a common approach to save installation and maintenance costs is to
use so-called signals of opportunity, whose main purpose is not localization,
but which are already present. For instance, smartphones rely on match-
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ing observed Wi-Fi signals to known Wi-Fi hotspot locations to localize
themselves.

An alternative localization method using ADS-B signals sent from most
aircraft opens up the possibility for better area coverage than using only
short-range signals such as Wi-Fi signals. A small number of ground sta-
tions are needed for each region with a diameter of a few hundred kilometers,
in order to determine the transmisstion timestamps of the aircraft messages.
With this information, receivers can be localized using the same principle
employed by GNSS. Our preliminary experiments show localization accu-
racies of some tens to hundreds of meters. Although this suffices for some
applications, further system improvements should increase the number of
application scenarios substantially. For instance, the time resolution of the
signal sampling can be improved for better message discovery probability.
Also, a maximum likelihood method, such as CD, would help rejecting mul-
tipath signals. Apart from the algorithmic improvements, more ground
stations can be deployed for large scale testing and a thorough indoor eval-
uation should be done to characterize the advantages of this localization
system.

Apart from a commercial adoption of the presented localization systems,
a vision for the future is a combination of multiple systems in a single re-
ceiver. In the industry, signals from all GNSS are already being joined for
more accurate and robust localization. Replacing the least-squares localiza-
tion algorithms with CD could further enhance the solution quality.

Moreover, the general form of the location probability distribution in CD
allows for an easy integration of different localization systems and sensor
data. Combining several systems to compute a single maximum likelihood
solution should ensure smooth transitions between indoor and outdoor lo-
calization and a fail-safe handling of system outages, such as a loss of GNSS
signals between buildings, apart from improved accuracy and robustness.
GNSS observations could be combined with measurements of signals of op-
portunity, including Wi-Fi, Bluetooth, ADS-B, cellular, digital TV (DVB-T)
and digital radio (DAB) signals, and with sensors like barometers and in-
ertial measurement units (IMUs), consisting of accelerometers, gyroscopes
and magnetometers. Working towards this goal, each signal type poses in-
dividual challenges. For instance, the exact locations of cellular ground
stations are usually unknown and have to be determined first. Possibly, this
could be achieved through crowdsourcing time-of-flight measurements from
GPS-localized handsets. And DVB-T antennas all send exactly the same
signal, which makes it difficult to assign received signals to their originat-
ing antenna. Using some prior knowledge about the coarse location of the
receiver can help in this case. Generally, a fusion of localization systems
should be suited for a variety of situations.
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From a broad perspective, there is currently no single best localization
system. Rather, the choice depends on the application. The Holy Grail of
localization would be a system which is cheap, produces accurate, robust,
fast and secure localization everywhere on Earth and whose receivers con-
sume little energy. One could try to build a localization system with many,
but cheap, transmitters. However, unless the deployment and maintenance
of these transmitters can be automated, such a system will be costly. It
seems more realizable to use a system with long-range signals, in order to
cover large areas with little infrastructure, such that the cost can be amor-
tized over many users. However, due to the inverse-square law, there is a
trade-off between large area coverage and indoor penetration of the signals.
While one GNSS satellite covers a large part of the Earth surface, its sig-
nals can barely be received indoors. Meanwhile, cellular signals only cover
distances from a few hundred meters to some tens of kilometers, but are
usually not blocked by buildings. While ADS-B signals from aircraft have
a slightly longer range of multiple hundred kilometers, ADS-B signals still
seem to reach indoor environments. Therefore, aircraft signals might be the
sweet spot in the coverage versus indoor reception trade-off.

Let us recapitulate the state of the art in global localization, consid-
ering the goals above. GNSS is cheap and accurate. Snapshot receivers
can determine their location fast with only a few milliseconds of signal –
therefore being low-power – and CD makes the localization robust and rel-
atively secure, especially in combination with other sensors. By offloading
the location computation, snapshot receivers also enable low-power GNSS
localization. The missing piece is the ubiquitous availability, with indoor
and other obstructed environments being insufficiently covered by GNSS.
ADS-B localization seems to be a fitting complement: The most and largest
buildings are situated in urban areas, which usually have airports close-by.
In those regions, the availability of aircraft for ADS-B localization should
therefore be good. While our prototype ADS-B localization system uses
commercial-off-the-shelf (COTS) hardware and elementary software, an op-
timized implementation should also bring us closer to the other goals. The
receiver price is low and accuracy and robustness improvements are out-
lined above. With thousands of messages being received per second at our
deployed ground stations, even a snapshot receiver approach, enabling local-
ization from less than a second of recorded signals, should be feasible. That
may require using signals which do not contain their transmission location.
With at least four ground stations receiving the same signal, the transmis-
sion location can however be reconstructed. The same localization technique
also helps identifying and eliminating spoofed signals, contributing to the
security aspect of the localization. Hence, there is hope that a close-to-ideal
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localization system may emerge in the future, using a combination of GNSS
and ADS-B signals, or some other signals of opportunity.
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