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Abstract. The dramatic increase in the availability of large collections
of time series requires new approaches for scalable time series analysis.
Correlation analysis for all pairs of time series is a fundamental first step
of analysis of such data but is particularly hard for large collections of
time series due to its quadratic complexity. State-of-the-art approaches
focus on efficiently approximating correlations larger than a hard thresh-
old or compressing fully computed correlation matrices in hindsight. In
contrast, we aim at estimates for the full pairwise correlation structure
without computing and storing all pairwise correlations. We introduce
the novel problem of low redundancy estimation for correlation matrices
to capture the complete correlation structure with as few parameters
and correlation computations as possible. We propose a novel estimation
algorithm that is very efficient and comes with formal approximation
guarantees. Our algorithm avoids the computation of redundant blocks
in the correlation matrix to drastically reduce time and space complexity
of estimation. We perform an extensive empirical evaluation of our ap-
proach and show that we obtain high-quality estimates with drastically
reduced space requirements on a large variety of datasets.

1 Introduction

The monitoring of earth, society and personal life through various sensors has
led to a ubiquity of large-scale collections of time series. Correlation analysis for
all pairs of time series is often the first step of analysis of such data. In the past
decade, many works have used estimates of the full pairwise correlation matrix
among time series, e.g., to infer functional brain networks [17], for portfolio
selection in empirical finance [9], to detect periods of financial crisis [19] and to
better understand the climate system [20]. Since the time and space complexity
for computing the full pairwise correlation matrix is quadratic in the number of
time series, analyses that rely on exact computation of the full matrix do not
scale with the increasing size of time series collections. For this reason, there is
a need for approaches that estimate all pairwise correlations without computing
and storing the entire matrix.

We introduce the novel problem of low redundancy estimation for correlation
matrices. A low redundancy estimate describes the complete correlation matrix



Fig. 1. Example correlation matrix R (left) and low redundancy estimate R (right).

R of a time series collection using a smaller representation R and without com-
puting all pairwise correlations. Our estimation approach COREQ (CORrelation
EQuivalence) is driven by the observation that many time series collections show
inherent group structure that leads to blocks of redundant entries in the corre-
lation matrix. We exploit this structure by computing equivalence classes of
highly correlated time series and pooling the redundant correlation estimates
into a single class estimate. The resulting estimate is visualized in Fig. 1. We
describe an algorithm to obtain the estimate R on the right directly from the
data after computing only a small fraction of the actual correlations in R. The
computational problem lies in finding—with as few correlation computations as
possible—a suitable partition of the time series collection into equivalence classes
that allows correlation estimation with bounded loss.

Our contributions are as follows. We formalize low redundancy estimation as
an approximation problem and formally derive low redundancy estimates with
error guarantees. Furthermore, we propose a greedy approximation algorithm
and two powerful heuristics to obtain high-quality estimates with few correlation
computations. We carefully evaluate our algorithm on 85 time series collections
from the UCR Time Series Classification Archive [1] and a large satellite image
time series dataset from the geoscientific domain as a real-life use case.

2 Related work

There are two challenges for efficient correlation estimation for large time series
collections. The first challenge is the increasing number of time series that are
jointly analyzed, while the second challenge is the increasing velocity of newly
arriving observations in streaming time series.

COREQ addresses the first challenge. Most work in the field has been done on
rapidly retrieving all pairs of highly correlated time series [25, 23, 16] and avoid-
ing the computation of weak correlations. Conceptually, all these approaches
discard information about weak correlations. In contrast, our COREQ algorithm
provides estimates for the complete correlation structure, including weak corre-
lations. Low-rank approximations to a correlation matrix remove redundancies
for a more space efficient representation of the full correlation structure, but ex-
isting methods [24, 7] take fully estimated correlation matrices as inputs for their
approximations. In contrast, we aim at low redundancy estimates without com-
puting all pairwise correlations first. Mueen et al. [11] propose two algorithms



to approximate all entries in the correlation matrix that are larger than some
threshold τ . By design, they lose information about correlations below the hard
threshold τ , while we provide accurate estimates for all correlations. We briefly
describe their algorithms in Section 5 and evaluate COREQ against them.

Methodologically, COREQ exploits structure in time series collections by
computing equivalence classes of time series that behave similarly under correla-
tion. There is extensive literature on clustering time series with similar behavior
for generic subsequent processing [10, 14, 18]. In contrast to these works, COREQ
has theoretical quality guarantees for the resulting correlation estimates.

Orthogonal to our approach, works on streaming time series have focused on
efficient updating schemes for correlation monitoring [25, 4, 12], robust correla-
tion tracking [13], detection of lag correlations [15, 21, 22] and correlated win-
dows [2, 5, 6] in streaming time series. We assume for now that our time series
collections are static and defer streaming versions to future work.

3 Low redundancy estimation

3.1 Preliminaries

Let X = {X1, ..., XN} be a collection of N univariate time series of length T
with Xi = (Xi1, ..., XiT ). We assume that the time series are equi-length and
temporally aligned as in many use cases from the geosciences, neuroimaging,
finance and other domains. The Pearson correlation coefficient between time se-
ries Xi and Xj (at lag 0) is given by ρij = 1

T

∑T
t=1

Xit−µi

σi
· Xjt−µj

σj
, where µi and

σi denote the mean and standard deviation of time series Xi, respectively. The
correlation coefficient captures linear relationships and ranges from 1 (strong
positive correlation) to -1 (strong negative correlation). A value of 0 means that
time series are uncorrelated. The matrix R ∈ [−1, 1]N×N denotes the symmetric
correlation matrix that contains all pairwise correlations between the input time
series, i.e. R = (ρij)i,j∈{1,...,N}. A useful property of Pearson’s correlation coef-
ficient is that it comes with triangular bounds similar to the triangle inequality
in metric spaces [8]. These bounds allow estimating the correlation between two
time series Xi and Xj via their correlations with a third time series Xk:

Theorem 1 (Triangular bounds). For time series Xi, Xj and Xk it holds

that ρikρkj −
√

(1− ρ2ik)(1− ρ2kj) ≤ ρij ≤ ρikρkj +
√

(1− ρ2ik)(1− ρ2kj).

3.2 Problem statement

Our goal is to obtain a small estimate R that well approximates the full cor-
relation matrix R without computing all pairwise correlations. Intuitively, the
size of an estimate is the number of model parameters that need to be stored,
and the quality is measured by the absolute deviation from the true correlation.
Formally, let ρ̂(i, j | R) : {1, ..., N}2 −→ [−1, 1] be an estimator for the corre-
lation ρij based on the representation R. The loss of an estimator is given by
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Fig. 2. Estimating pairwise time series correlations by inter-class correlations

the absolute deviation from the true correlation `ij = |ρ̂(i, j | R) − ρij |. The
traditional brute force estimator is the special case R = R and ρ̂(i, j | R) = ρij .
The brute force approach has 1

2N(N + 1) model parameters and incurs a loss of
zero. The other extreme is the special case R = c ∈ [−1, 1] and ρ̂(i, j | R) = c,
which has only a single parameter to store, but potentially high loss. We aim
at trade-offs between these two extremes. The general problem is thus to find
a low redundancy representation R with a small number of parameters and an
estimator ρ̂(i, j | R) that incurs a small loss.

We restrict ourselves to representations based on partitions of the dataset into
classes of similar time series. The idea is illustrated in Fig. 2 for time series from
two equivalence classes Pk and Pk′ . All pairwise correlations between members
of the two classes are redundant and can be collapsed to a single estimate for the
inter-class correlation ck,k′ with minor loss. Formally, we aim at representations
of the form R = (P, C), where P is a partition of X into K = |P| equivalence
classes and C = {ck,k′ ∈ [−1, 1] | 1 ≤ k ≤ k′ ≤ K} is a set of inter-class
correlations. The respective estimator is ρ̂(i, j | P, C) = ck,k′ for i ∈ Pk and j
in Pk′ . Such representations have N + 1

2K(K+ 1) parameters. The fewer classes
K are necessary to capture all pairwise correlations with small loss, the lower
the redundancy in the final estimate. We formalize our problem as the following
approximation problem:

Problem 1. Given a collection of time series X and an error bound ε ≥ 0, find a
partition P of X and a set of inter-class correlations C, such that the estimate
R = (P, C) has a loss `ij = |ck,k′ − ρij | ≤ ε for all i ∈ Pk and j ∈ Pk′ .

The challenge is to obtain such estimates with as few correlation computations
as possible. In particular, without computing the full matrix R. A trivial solution
for Problem 1 is the partition intoN singleton classes P = {{X1}, ..., {XN}} such
that the inter-class correlations are exactly the pairwise time series correlations.
This solution collapses to the full correlation matrix R with zero loss but without
reduction of redundancy or any computational efficiency improvements. In the
following, we formally derive non-trivial approximations that guarantee a loss
of at most ε with lower redundancy than R, and can be computed way more
efficiently than the full matrix.



4 COREQ

The intuition behind our construction is that homogeneous equivalence classes
with high intra-class correlations lend themselves to high-quality estimates for
the inter -class correlations. Based on our formal analysis we propose the efficient
greedy partitioning algorithm COREQ (CORrelation EQuivalence) and three
estimators to obtain pairwise class correlations from the resulting partitions: an
estimator with approximation guarantees and two powerful heuristics.

4.1 Approximations with quality guarantees

We start with the formal construction of a solution to Problem 1 with quality
guarantees. The idea is to build homogeneous equivalence classes by a pivoting
approach. Each class is identified with a unique pivot time series, and all other
time series are assigned to classes such that the correlations to their respective
pivot time series are at least α ∈ (0, 1]. The parameter α controls the class
homogeneity: the closer α to 1, the more homogeneous the equivalence classes,
and the lower the estimation loss. Since we do not specify the number of classes
K in advance, such partitions exist for any choice of α. The following theorem
establishes how large α needs to be chosen to guarantee a loss of at most ε:

Theorem 2. Let α ∈ (0, 1] and ε ≥ 0. Let P = {Pk | k = 1, ...,K} be a partition
of X with associated pivot time series Xik ∈ Pk such that ∀Xi ∈ Pk : ρi,ik ≥ α.
Furthermore, let the inter-class correlations C be the correlations between these
pivot time series scaled by a correction factor that depends on α:

ck,k′ =
1

2

(
1 + α2

)
ρik,i′k . (1)

It holds that `ij ≤ ε for all Xi, Xj ∈ X , if α ≥
√

1−
(

2ε√
5+2

)2
.

A proof based on the triangular bounds from Theorem 1 can be found in the
Supplementary Material.3 Section 4.2 provides an efficient greedy algorithm to
compute such partitions. The scaling factor 1

2 (1 + α2) in Equation 1 can be in-
terpreted as the uncertainty about the representativeness of pivot correlations:
the smaller α, the more heterogeneous the equivalence classes, and the less rep-
resentative the pivots for their classes. Consequently, it is safer—in the general
case—to estimate correlations close to zero instead of extremal values. Theorem 2
states that for any desired error bound ε we can find a (possibly) non-trivial solu-
tion R = (P, C) to Problem 1 that guarantees `ij < ε for all pairs of time series.
However, the quality guarantee is based on the worst-case bounds from Theo-
rem 1 which do not make any assumptions on the distribution of correlations
within a dataset. In particular, we do not assume that the time series cluster
into homogeneous groups as motivated in Fig. 2 for many real-life time series
collections. For any realistic choice of ε the theorem thus requires a threshold α

3 available on the project website https://hpi.de/mueller/coreq.html



very close to 1 to guarantee the quality on any possible input dataset. For ex-
ample, a loss `ij ≤ 0.1 can only be guaranteed for all pairs of time series on any
input dataset if we set α ≥ 0.9989. The downside of choosing a value of α close
to 1 is that we will most likely obtain the trivial solution with high redundancy
and no computational efficiency improvements. As we see in Section 5, we can
efficiently obtain estimates with low redundancy and low losses on many real-life
datasets for much lower values of α.

4.2 A greedy estimation algorithm

We compute the pivot-based partitions formally defined in Theorem 2 as follows.
We start by picking an arbitrary time series Xi from X as a pivot series and
compute the correlations betweenXi and all remaining time series. All time series
with a correlation to Xi not smaller than α are stored in a new equivalence class
P . The class P always contains Xi itself. All elements from P are removed from
the original time series collection X , and the procedure is repeated with a newly
picked pivot series until all time series are processed. This procedure terminates
with a partition as of Theorem 2 for any α ∈ (0, 1] with at most 1

2N(N + 1)
correlation computations. In the best case, if all correlations are larger than α,
it terminates with only N correlation computations. Given such a partition, the
question is how to best estimate the inter-class correlations C. We propose three
alternatives to obtain a complete correlation estimate:

(i) COREQ-P1: scaled pivot correlations from Equation 1 in Theorem 2
which theoretically guarantee low errors on all datasets for α −→ 1 but
have a bias towards zero for smaller choices of α.

(ii) COREQ-P2: simplified estimate that uses unscaled pivot correlations
ck,k′ = ρik,i′k to remove the bias for smaller choices of α.

(iii) COREQ-A: average estimate that samples a logarithmic number of cor-
relations between pivot Xik and the class Pk′

ck,k′ =
1

max (1, dlog2Nk′e)

max(1,dlog2Nk′e)∑
j′=1

ρik,rand(Pk′ ),

where Nk′ = |Pk′ | and rand(Pk′) returns a random time series from Pk′ .

All of these estimates can be obtained from the correlations computed during
class construction and do not require additional correlation computations. In
COREQ-A we sample a logarithmic number of correlations to account for the
heterogeneity in large equivalence classes. All three estimates converge to the
pivot correlations for α −→ 1 and differ only for α� 1.

4.3 Formal relation to clustering algorithms

There is a clear relationship between our equivalence class-based correlation
matrix approximations and the well-known optimization problem of time series



clustering. We could relax the goal of strict approximation guarantees for all
pairs of time series towards estimation with minimal aggregated loss. Let X ∈
RN×T be a matrix representation of X where all time series are standardized
to have zero mean and unit variance over time. Furthermore, let R = 1

TXX
>

be the true correlation matrix, Z = {0, 1}N×K be an indicator matrix that
encodes class memberships of a partition P = {P1, ..., PK}, and C ∈ [−1, 1]K×K

be a matrix of inter-class correlations. The error function E = ‖R − ZCZ>‖2
encodes the goal of finding an estimate R = (P, C) that well represents all
correlations within R. We observe that this error function is a quadratic form
of the sum of squared errors (SSE) that is used extensively for clustering, most
prominently in K-Means. To see this relation, let M ∈ RK×T be the matrix of
cluster centroids in K-Means. The sum of squared errors is defined as SSE =
‖X −ZM‖2. Using the pairwise centroid correlations as estimates for the inter-
class correlations C = 1

TMM>, we obtain E = ‖ 1
TXX

>−Z 1
TMM>Z‖2. Due to

the structural similarity of E and SSE, we use K-Means clustering as a baseline
in our experiments. However, to the best of our knowledge, there is no clustering
algorithm that allows approximating correlations up to an error bound ε.

5 Empirical evaluation

Our empirical evaluation consists of two parts. In the first part, we extensively
analyze the quality of the estimates obtained by COREQ in terms of average loss
and model size on a large variety of datasets. In the second part, we compare
the performance of COREQ against two state-of-the-art competitors and the
K-Means baseline on a real-life dataset from the geoscientific domain. We imple-
mented COREQ as a Python C module. All source codes necessary to reproduce
our results are available on GitHub.4 Additional information is provided on our
project website.5

5.1 Experimental setup

Performance measures. The average loss for an estimate R is given by ¯̀ =
1
Z

∑N
i=1

∑N
j=i `ij with Z = 1

2N(N+1). The closer to 0, the better. The model size
is given by the total number of model parameters that need to be stored by an
algorithm, divided by the number of entries in the true correlation matrix. Model
sizes close to 0 indicate a low redundancy, whereas values close to 1 indicate high
redundancy. We also count the number of correlation computations necessary to
obtain an estimate. All performance measures are averaged over ten independent
runs to obtain stable results for each algorithm and dataset.

Data. To analyze the performance of COREQ over a large variety of time
series collections, we run experiments on all 85 time series collections from the

4 https://github.com/KDD-OpenSource/coreq
5 https://hpi.de/mueller/coreq.html



well-known publicly available UCR Time Series Classification Archive [1]. For
a real-life comparison with state-of-the-art algorithms, we use satellite image
time series obtained from the NASA Terra MODIS satellite mission [3]. The
dataset contains 236,197 EVI time series (Enhanced Vegetation Index) for South
America, captured with a temporal resolution of 16 days between 2000 and 2015
(length 368). The EVI is computed from multi-spectral satellite images and
captures the level of greenness at a given point in time as a proxy for vegetation
cover.

Competitors. As a baseline, we perform one iteration of K-Means clustering
with a fixed K to obtain a partition of the dataset and use the pairwise cen-
troid correlations as class correlations. Using more iterations is infeasible since
it drastically increases the number of correlation computations. We also com-
pare against two state-of-the-art algorithms proposed by Mueen et al. [11] to
compute an Approximate Threshold Correlation Matrix (ApproxThresh) and
a Threshold Boolean Correlation Matrix (ThreshBoolean). ApproxThresh
approximates (up to an error ε) all correlations larger than a threshold τ by
exploiting a Discrete Fourier Transform-based early-abortion criterion for in-
dividual correlation computations; all correlations below τ are set to 0 without
error guarantee. ApproxThresh is designed to reduce the number of operations
for individual correlation computations. To compare the total costs of correlation
estimation with our approach, we scale the number of correlation computations
with the speedup factor per correlation computation. ThreshBoolean uses a
dynamic programming-based pruning strategy to reduce the number of pairwise
comparisons. It estimates all (absolute) correlations above τ as ±1 and all other
correlations as 0, without any quality guarantees.

5.2 Quality of estimates

We first analyze the performance of COREQ in terms of average loss and result-
ing model size on all 85 UCR datasets for various values of α. Fig. 3 visualizes
the distribution of average loss over all UCR datasets as boxplots along with
the mean model size. We provide separate boxplots for COREQ-P1/P2 and
COREQ-A; mean model sizes are identical. As expected, increasing α pushes
the average loss on all datasets towards zero since equivalence classes become
more homogeneous. At the same time, it increases the model size. COREQ-A
outperforms COREQ-P1/P2 over the full parameter space, with the margin of
improvement largest for low values of α. Lower values of α typically come with
larger and more heterogeneous equivalence classes, such that the pivot corre-
lations are not representative. The scaled pivot correlations from COREQ-P1
perform worse than the unscaled variant COREQ-P2 on many datasets. The
datasets where COREQ-P2 outperforms COREQ-P1 contain time series that
are all very strongly correlated. In these cases, the theoretically justified bias
towards zero correlations is harmful. With α = 0.9, all three estimation variants
achieve high-quality estimates with average losses below 0.1 and a mean model
size below 0.35.
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Fig. 3. Distribution of average loss (boxplots) and mean model size (line) across all
UCR datasets for α ∈ [0, 1].
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Fig. 4. Average loss against model size achieved by COREQ-A on all UCR datasets
for α ∈ [0, 1], along with histograms over model size.

Detailed scatter plots of the results of COREQ-A can be found in Fig. 4.
Each point in a plot shows the model size and average loss achieved on a single
dataset. The histograms below show the corresponding distributions of model
sizes. We observe that even for α = 0.9 the large majority of datasets can well
be estimated with model sizes below 0.1. Only a few datasets appear on the far
right with model sizes close to 1. Manual inspection of these datasets revealed
that they contain purely uncorrelated time series or ambiguous group structures.
These instances cannot be estimated more efficiently with our approach. COREQ
provides low redundancy estimates with low average losses on all datasets with
strong group structures.
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Fig. 5. Performance on EVI data over the full parameter space of each algorithm.

5.3 Comparison with existing methods

We now compare COREQ-A with the state-of-the-art algorithms introduced by
Mueen et al. [11] and our K-Means baseline. We address two questions in our
analysis: (1) How much loss does an algorithm incur at a given model size?
(2) How many correlation computations are necessary to obtain an estimate
with that model size? All algorithms in our evaluation depend on different in-
put parameters that affect the estimation performance. These input parameters
directly control the model size: the larger α in COREQ and K in K-Means, the
more pairwise class correlations have to be estimated and stored, while a smaller
threshold τ in ApproxThresh and ThreshBoolean means that more pair-
wise time series correlations have to be stored. To compare these approaches in
a meaningful and fair way, we run all algorithms over a wide range of param-
eterizations (α ∈ {0.1, 0.2, ..., 0.9}, K ∈ {1, 2, 4, ..., 8192}, τ ∈ {0.9, 0.8, ..., 0.1})
and use the resulting model size as the unified scale. The error bound for Ap-
proxThresh is set to ε = 0.05. We use the EVI dataset6 as a real-life example
from the geoscientific domain.7

To answer the first question, Figure 5 (left) shows the average loss of the
resulting correlation estimates against the model size. If a curve is close to the
origin, it means that small estimates obtained with that algorithm capture most
of the information from the correlation matrix. COREQ-A clearly outperforms
K-Means, ApproxThresh and ThreshBoolean over the full parameter space:
our algorithm has lower losses at the same model sizes. The improvement is
largest for very small estimates. The ThreshBoolean approach behaves un-

6 subsamples of 10,000 time series for COREQ/K-Means/ApproxThresh and 1,000
time series for ThreshBoolean due to performance reasons

7 We also ran experiments on the chlorine concentration data used in the original
publication by Mueen et al. [11]; the results are consistent with the results presented
in this paper and reported for completeness in the Supplementary Material.



usually: since it can only estimate correlations as either 0 or ±1, lowering the
threshold τ means that more and more weak correlations are stored and esti-
mated as ±1. The algorithm is not designed to capture weak correlations ac-
curately. Overall, COREQ-A provides the highest quality estimates for the full
correlation structure, with improvements being largest for very small estimates.

For the second question, Figure 5 (right) shows the number of correlation
computations required to obtain the final estimates (normalized by the total
number of pairs) against model size. Our approach scales linearly with the model
size: the number of correlations that we compute is roughly the same as the num-
ber of model parameters we output. The K-Means baseline performs worst, even
though we run only one iteration. More iterations or more sophisticated clus-
tering algorithms could improve the quality of the estimates, but come with an
even higher computational cost. ApproxThresh requires a constant number of
correlation computations for all threshold values τ . The early abortion criterion
yields an average speed-up of only 2 per correlation computation, meaning that
the EVI time series are uncooperative [2]. ApproxThresh outperforms our ap-
proach in terms of correlation computations only in the large model size region
on the right. The pruning strategy employed in ThreshBoolean is effective at
the far left of the plot, where the threshold τ is close to 1. For lower threshold
values almost all pairwise correlations are computed. COREQ is the fastest algo-
rithm in terms of correlation computations in the small model size region of the
parameter space—with a large margin to all competitors. In the same region, we
obtain the lowest average loss values.

6 Conclusion and future work

We provide a novel way to estimate correlation matrices for large time series
collections that exploits redundancies in the input data to drastically reduce the
number of parameters to estimate. We show that the partitions we obtain for
estimation have theoretical approximation guarantees, allow for very small high-
quality estimates on a large variety of real-life datasets, and outperform state-of-
the-art approaches. There is still need for a robust way to select the parameter
α optimally for any input dataset as to obtain the best trade-off between model
size and average loss. Algorithmically, dynamically adapting α during estimation
to process datasets with weak and strong group structures could be beneficial.
We defer this challenge to future work. Furthermore, combining our estimation
approach with a probabilistic model for time series collections would allow us
to devise more concise probabilistic error guarantees on top of the worst-case
bounds we used in Theorem 2. At last, an extension of COREQ for streaming
time series would allow efficient monitoring of correlations for anomaly detection.
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