
HotNets 2015

How to destroy networks
for fun (and profit) Nick Shelly

Joint work with:
Brendan Tschaen, Klaus-Tycho Förster, Michael Chang,
Theophilus Benson, Laurent Vanbever

The network has become more complex

- Web services are growing in
complexity and across location

- Millions of lines of code in
devices

- Need to test systemic failure
- NY Stock Exchange, United, and

WSJ.com all went down in one
day (Jul 2015) due to technical
glitches (“single router issue”)

http://WSJ.com

Outline

❖ Netflix’s Approach and black-box
testing

❖ Design of Armageddon
❖ Results on real-world topologies
❖ Coverage scenarios and failure types

Netflix’s Approach

Problem Test

Disable production Chaos Monkey

Client-server interaction Latency Monkey

Company “best practices” Conformity Monkey

Health of systems Doctor Monkey

Cloud garbage collection Janitor Monkey

AWS security, SSL certs Security Monkey

Internationalization 10-18 Monkey

Disable entire zone Chaos Gorilla

“The best way to avoid failure is to fail constantly.”

Random vs. pre-meditated chaos
❖ More overall coverage

❖ Planned failures should have a minimum duration
(say 1 hour of outage during work hours), so
cover as much as possible in as few “iterations”

❖ Systematic but not exhaustive

❖ Allow a well-  
programmed network  
to succeed

Network testing spectrum

White boxBlack box

Controller
failures

Device spec
testing

OSPF / BGP
convergence

Armageddon
Model

checking
Symbolic
execution

SDN

Legacy Chaos
Monkey

Fuzz
testing

Outline

❖ Netflix’s Approach and black-box
testing

❖ Design of Armageddon
❖ Results on real-world topologies
❖ Coverage scenarios and failure types

Armageddon

From topology to failures, while checking

Failure injection Network monitoringFailure computation

- End-to-end connectivity
- Congestion failure
- Waypoints

Topology

- Permanent loop found
- Blackhole!

Network invariant checker Error logs

How to disrupt the network

ToR

Spine

10GB

Server
Rack

1GB
1GB

1GB

1GB
A B

Which links can we fail, while making sure there is
connectivity between A and B?

10GB

Initial idea - fail links while keeping connectivity
How to test all links, while making sure there is always

connectivity between every two nodes?

Fail only one link per iteration

For n nodes, takes n iterations to
fail each node in network

Ring network is upper bound on
of iterations

General case - graph “Jenga”
How to test all links, while making sure there is always

connectivity between every two nodes?

Greedy Killer Algorithm:

1. Set all links to weight=1
2. Find Minimum Spanning Tree —

this will be left over after failing
everything else

1
1

1

1

1

1

1

1 1

1
1

1

General case - graph “Jenga”
How to test all links, while making sure there is always

connectivity between every two nodes?

Greedy Killer Algorithm:

1. Set all links to weight=1
2. Find Minimum Spanning Tree —

this will be left over after failing
everything else

3. Terminate all links not in MST
4. Mark those terminated as weight=0 

Repeat Steps 2 - 4, until all links are
tested at least once.

0

0

0

0

0
0

Outline

❖ Netflix’s Approach and black-box
testing

❖ Design of Armageddon
❖ Results on real-world topologies
❖ Coverage scenarios and failure types

Iterations to test network completely
❖ 261 network topologies from

Internet Topology Zoo and 7
RocketFuel graphs on ISPs

❖ Some links cannot be failed:
remove “un-failable” links and
treat as sub-networks

❖ Ring networks take a long time
to fail

❖ 78% of the networks can be
failed entirely in 6 iterations,
91% in 8 iterations

0 5 10 15 20 25 30 35
iterations

C
D

F
of

 n
et

wo
rk

s

0

20

40

60

80

100

Can “stress test” most of network quickly

% of links tested

C
D

F
of

 n
et

wo
rk

s

0 20 40 60 80 100
0

20

40

60

80

100

1 iteration
2 iterations
3 iterations

❖ In one iteration we can
fail about 30% of the links

❖ In half the networks we
can test 80% of the links
in 3 iterations

❖ Optimal > 50% of the
time

Outline

❖ Netflix’s Approach and black-box
testing

❖ Design of Armageddon
❖ Results on real-world topologies
❖ Coverage scenarios and failure types

Future work - better failure scenarios

We currently only fail to force
connectivity over single links (no
more than n failure iterations)

Can we test multiple links at a
time (~m2 scenarios test all sets of
2 link failures with m links)

Generalize the network via
clustering (isomorphism)

Bandwidth guarantees on failures

Future work - different failure types

Control Plane:

❖ Failing erroneous replica

❖ Send random drop or
erroneous command

❖ Force usage of waypoint

Data-plane:

❖ Fail device or ports

❖ Add link delays or drops

❖ Resource exhaustion

❖ Traffic congestion (over
use resource)

Questions?

