
Boosting Market Liquidity of Peer-to-Peer Systems
Through Cyclic Trading

Raphael Eidenbenz1, Thomas Locher2, Stefan Schmid3, Roger Wattenhofer1
1 ETH Zurich; {eidenbenz,wattenhofer}@tik.ee.ethz.ch
2 ABB Corporate Research; thomas.locher@ch.abb.com

3 Telekom Innovation Laboratories & TU Berlin; stefan@net.t-labs.tu-berlin.de

Abstract—Tit-for-tat trading lies at the heart of many incen-
tive mechanisms for distributed systems where participants are
anonymous. However, since the standard tit-for-tat approach
is restricted to bilateral exchanges, data is transferred only
between peers with direct and mutual interests. Generalizing
tit-for-tat to multi-lateral trades where contributions can occur
along cycles of interest may improve the performance of a
system in terms of faster downloads without compromising
the incentive-compatibility inherent to tit-for-tat trading. In
this paper, we study the potential benefits and limitations of
such a generalized trading in swarm-based peer-to-peer sys-
tems. Extensive simulations are performed to evaluate different
techniques and to identify the crucial parameters influencing
the obtainable throughput improvements and the corresponding
tradeoffs. Moreover, we discuss extensions for overhead reduction
and provide an optimized distributed implementation of our
techniques. In summary, we find that allowing inter-swarm trades
on short trading cycles can improve the throughput significantly;
on the other hand, trading on long cycles does not pay off as the
communication and management overhead becomes exceedingly
large while the additional performance gains are marginal.

I. INTRODUCTION

In most economic systems, goods are exchanged for money.
The main reason is that a well-accepted currency helps to
overcome the typical problem of barter systems, namely that
two individuals need to find matching amounts of exactly
the right goods. Money provides flexibility as any service
offered can be redeemed with any other person who accepts
money. Moreover, money provides temporal freedom in that a
surplus from imbalanced bartering can be stored and redeemed
in future transactions. However, barter continues to exist in
different forms, e.g., corporate barter, neighborhood barter
markets,1 or organ donation barter.2

The largest barter markets today are probably Internet-
based, i.e., the Internet serves as a catalyst and platform for
various forms of barter-based trading. In fact, a large fraction
of the Internet traffic is caused by peer-to-peer file sharing sys-
tems that use bartering to exchange data. BitTorrent, arguably
the most popular file sharing protocol, is also based on this
trading principle: Peers interested in the same content form
a so-called swarm, and blocks of this content are exchanged
directly among peers in the swarm. Since only direct barter is

1See for instance http://www.huffingtonpost.com/kirsten-dirksen/barter-
markets-can-tradin b 255545.html for a report on barter markets in
Barcelona.

2Since monetary trade with human organs is prohibited by law, economists
have developed organ donation markets that rely on direct—or even multi-
lateral—trades (see, e.g., the 2007 Nobel Memorial Prize in Economics).

used on a per swarm basis, this policy is called intra-swarm
trading. The main drawback of this policy is that a peer is not
interested in trading with another peer that possesses a subset
of its own blocks; this can severely reduce the market liquidity
and thus the overall throughput. Measurements [1] show that
about half of the peers in BitTorrent are active in multiple
swarms at the same time, as illustrated in Figure 1. Hence,
inter-swarm trading may result in a higher system throughput.
In this paper, we study to what extent we can boost the market
liquidity of a peer-to-peer system by allowing multi-lateral
bartering across swarms, without compromising the basic tit-
for-tat incentive mechanism.

10

100

1000

10000

100000
52.2%

18.0%

9.2%
5.4% 3.5%

6.9%
3.0% 1.8%

1 2 3 4 5 6-10 11-20 >20

p

e
e

rs
 in

 %

downloads

Fig. 1. Distribution of the number of downloads per peer in BitTorrent.

Apart from direct inter-swarm trading, further trading oppor-
tunities can arise when peers are allowed to trade along cycles
of interest (cf. Figure 2). Our measurements in live BitTorrent
swarms reveal that even on a subset of the BitTorrent system,
the number of such trading cycles is large. Moreover, the
number of cycles grows fast with increasing cycle length: each
additional hop increases the number of cycles by 3-4 orders
of magnitude, as shown in Figure 3. In the remainder of this
paper, we will refer to a trading cycle consisting of k peers as
a k-cycle. Figure 4 further illustrates the potential of trading
on cycles as it shows that a random peer is part of a large
number of inter-swarm cycles with a probability of roughly
1/3 even if we only consider a subset of 1000 swarms.

A. Our Contributions

This paper addresses the question of how the use of inter-
swarm trading cycles affects the achievable throughput in a
system. While it is clear that in the best case, the relative
throughput increase can be unbounded (in particular when
there are no intra-trading opportunities), we focus on the

𝑆2

𝑆1

𝑝1

𝑆3

𝑝3 𝑝2

𝑝4

𝑝5 𝑝6

Fig. 2. Possible trading situation for a peer p1 participating in two
overlapping swarms S1 and S2: in addition to the direct bilateral trades within
a swarm (e.g., with peer p6 in S2), p1 can exchange data along intra-swarm
cycles (e.g.,(p1, p2, p3, p1) in S1). Moreover, it can trade pieces with one or
more peers in different swarms (e.g., along the cycle (p1, p5, p4, p1)).

throughput gain in practical scenarios. Based on data col-
lected from real swarms we conduct simulations to study the
achievable throughput under different trading strategies and in
different scenarios.

The results indicate that the throughput of a peer-to-peer
system can indeed benefit from trading on cycles. Interestingly,
these benefits are obtained already for fairly short cycles,
involving up to three nodes. Longer cycles do not lead to
a substantially larger performance but incur a large com-
munication and computational overhead. For our evaluation,
we also derive a model for the peers’ download prefer-
ences combining preferential-attachment and co-occurrence
principles. Moreover, we identify certain pitfalls, such as the
problem of redundant downloads, and we propose techniques
that considerably mitigate this problem. Methods to reduce
the communication overhead are also discussed. Finally, we
outline a distributed implementation of our techniques.

II. RELATED WORK

The peer-to-peer paradigm relies on the contributions of
the participants, i.e., the peers are supposed to contribute in
order to receive a certain service in return. Some systems, for
example eMule, are based on indirect reciprocity where peers
can earn credits for their contributions. eMule is a light-weight,
pair-wise credit system, and there are more complex payment-
based incentive mechanisms such as the Karma system [2]
or the now defunct MojoNation. However, these solutions
typically require either a central administration or a distributed
storage for the credits which is prone to cheating and attacks
(e.g., Sybil attacks, whitewashing, etc., see also [3]). KaZaA is
an example of an early system based on direct reciprocity that
is rather easy to exploit: peers announce their “participation
level” themselves; remote peers offer a prioritized service to
participants that claim high contribution levels, without any
verification. More recently, Menasché et al. [4] have compared
the different types of reciprocity. The authors prove that under
certain circumstances, direct reciprocity can emulate indirect
reciprocity (i.e., credit-based systems). However, users must
be willing to download undemanded content for bartering

1E+0

1E+2

1E+4

1E+6

1E+8

1E+10

2-cycles 3-cycles 4-cycles

av
e

ra
ge

 #
 c

yc
le

s
p

e
r

p
e

e
r KAT

BTJ
TPB

Fig. 3. Average number of inter-swarm k-cycles (cycles of length k) per
peer for k = 2, 3, 4 for data sets of the top 1000 video torrents of the three
torrent discovery sites with the highest Alexa rank, ThePirateBay.org
(TBP), BTJunkie.org (BTJ), and kat.ph (KAT). The number of 4-cycles
is approximated within an error margin of 1%. Note the logarithmic scale.

purposes and may use up to twice the bandwidth they would
use under indirect reciprocity. The authors also describe a
broker architecture (e.g., a sophisticated BitTorrent tracker)
and study the system performance by simulation.

As mentioned before, the BitTorrent protocol is also based
on direct reciprocity, but it is not a pure tit-for-tat system as
peers also upload data “optimistically” for free, which can
be exploited by selfish [5] or even free-riding clients [6].
Since the throughput of a strict tit-for-tat system is lower,
such a system must employ certain methods to improve its
performance, e.g., source coding [7], [8] or network coding [9].
Indeed, coding schemes constitute an alternative approach to
increase the market liquidity of peer-to-peer systems: linear
combinations of blocks are computed and distributed in place
of the original blocks, yielding a higher block diversity and
hence more trading opportunities. It is worth noting that coding
schemes can easily be combined with inter-swarm and cyclic
trading. The drawback of coding approaches, however, is
their high computational complexity. A different approach is
taken by Levin et al. [10] who assume an auction perspective
on BitTorrent and study a modified BitTorrent protocol in
which peers reward one another with proportional shares
of bandwidth. Using game theory, the authors show that a
proportional-share client is strategy-proof.

The idea of inter-swarm trading is not new. Guo et al. [11]
argue that inter-swarm collaboration in BitTorrent is more
effective than, e.g., directly stimulating seeders to stay in
the network. They initiate the discussion of a multi-torrent
system featuring a tracker site overlay and exchange-based
trades along cycles. Aperjis et al. [12] adopt a more the-
oretical perspective and prove that bilateral equilibrium al-
locations are not Pareto-efficient in general, in contrast to
multilateral allocations. Their work is related to a graph-
theoretic generalization of classical Arrow-Debreu economics
where edges in the graph indicate which entities can engage
in direct trades [13]. The authors also provide quantitative
insights (using BitTorrent data) into strategies where bilateral
exchanges may perform quite well. Capotă et al. [14] formalize
a resource (i.e., upload bandwidth) allocation problem in

0

0.2

0.4

0.6

0.8

1

1E+0 1E+3 1E+6 1E+9 1E+12

C
C

D
F

cycles a peer is in

KAT 2-cycles

KAT 3-cycles

KAT 4-cycles

Fig. 4. Complementary cumulative distribution function of the number of
inter-swarm cycles in which a peer resides; for all peers found in the top 1000
video torrents of KAT, with respect to cycles within these torrents.

BitTorrent communities across swarms and find that for file-
sharing (goal: maximal throughput) and video-streaming (goal:
serve as many users as possible with a stream of a certain
quality) communities there is a high price of anarchy and that
today’s seeders’ torrent selection mechanism is suboptimal: if
peers uploaded (or seeded) in a different subset of the available
torrents, the overall performance would be higher. Finally,
Anagnostakis and Greenwald [15] discuss multi-lateral tit-for-
tat trading from an incentive-compatibility perspective. Using
simulations, the authors show that their proposed algorithm
provides real incentives in the sense that free riders experience
a poor service.

In contrast to the previous works reviewed above, we
provide insights into the tradeoffs of cycle-based incentive
mechanisms in different scenarios, focusing on the potential
throughput gain as a function of the main parameters such
as the cycle length. In addition, we describe a distributed
algorithm to compute cycles and to avoid redundant down-
loads, and use realistic BitTorrent data traces to evaluate its
performance.

III. MODEL

We consider a peer-to-peer system where peers interested
in the same content are organized into swarms, i.e, in every
swarm specific content is shared. This content is divided into
multiple data blocks, and a block is the basic unit of trade.
In practice, a peer typically joins a swarm by contacting a
so-called tracker, a system entity whose main objective is
to keep track of the peers in the swarm. Once a new peer
informs the tracker that it wants to join, the tracker stores this
peer’s address and returns a list of addresses of other peers
in the swarm. Instead of periodically querying the tracker, the
peers can discover additional peers by exchanging addresses
amongst themselves. In the first part of the paper, we make the
simplifying assumption that peers are fully connected inside
a swarm. The effect of trading with only a small subset of all
possible peers is discussed in Section V-E.

Formally, we are given a set P of peers and a set S of
swarms. Each peer p ∈ P joins a subset Sp ⊆ S of swarms

over time, where Sp is the set of swarms whose content
peer p is interested in. We assume that a peer has a certain
upload and download bandwidth available. While a peer p has
incomplete downloads it tries to acquire file blocks by direct or
indirect trades with peers that have interesting blocks to offer.
A snapshot of the current peer interests can be modeled using
a (dynamic) directed graph, which we call the demand graph:
The node set is P , and there is a directed edge from peer p1 to
peer p2 if p1 is interested in at least one block offered by peer
p2 in some swarm. Each peer can obtain a local approximate
view of the demand graph by communicating with other peers
and thus trade blocks along interest cycles of various length
(see Section IV).

While a peer is in the process of downloading a certain
content, it is called leecher, whereas a peer that has already
obtained all blocks is called seeder in the respective swarm.
Naturally, a peer participating in multiple swarms can be a
seeder in some swarms and a leecher in others at the same
time. Once a peer p has acquired the content of all swarms in
Sp, it leaves the system. Note that before leaving the system,
it is in the peer’s interest to stay in a swarm even after it has
downloaded the corresponding content because there might
still be opportunities to provide blocks from this swarm in
exchange for blocks traded in other swarms. Thus, in a game-
theoretic sense, seeding is a rational behavior. Compared to the
standard intra-swarm trading, this incentive for peers to stay
connected after they become seeders is a remarkable advantage
of trading along cycles.

IV. ALGORITHM

In this section, we introduce the core algorithmic aspects,
that is, we discuss how a local approximation of the demand
graph is computed and particularly how cycles are selected for
trading. As it is too costly to maintain an approximation of
the entire demand graph, each peer p only keeps track of its
k-neighborhood for some constant k ≥ 1, which is the set of
peers that can be reached from p with at most k hops in the
demand graph. This is achieved by regularly exchanging peer
lists and information about locally available blocks with all
peers in the k-neighborhood and the trackers. Naturally, the
peers only know their immediate neighbors in the beginning,
but they quickly get to know their k-neighborhood by commu-
nicating with the peers in their neighbors’ peer lists. Given the
k-neighborhood, a peer computes possible trading cycles by
exploring the demand graph. Since we only consider cycles of
short length, a brute-force approach is feasible to find cycles in
the demand graph; however, heuristics may be used to prune
the search space. The process of computing trading cycles is
explained in more detail in Section VI.

The trading policy defines which cycles are used to share
data blocks and how the upload capacity is allocated. In
order to capture the direct effect of trading along cycles, we
investigate the following straightforward policy:

Cycle(k): The peer participates in any trading cycle that
is of length at most k. The bandwidth is allocated equally
among all active cycles. If the data flow on a cycle is

diminished due to constraints by other peers, the unused
bandwidth is allocated evenly among the remaining cycles.

Blocks are traded in a tit-for-tat-like manner on each cycle
by having each peer p in the cycle send one block after the
other to the peer that is interested in p’s blocks, i.e., the
blocks move opposite to the direction of the edges in the
corresponding demand graph. In order to ensure fair trading,
each peer maintains a balance between the number of uploaded
and downloaded blocks for each active cycle. If the number
of uploaded blocks is some constant τ larger than the number
of downloaded blocks, the peer waits until the imbalance
becomes smaller before sending out the next block. For our
evaluation, we look at the most restrictive case of τ := 1.
Once a peer loses interest in its trading partner in a cycle, the
corresponding edge in the demand graph vanishes and trading
on this cycle ceases. Whenever a peer wants to upload a certain
block, the block is put into a FIFO queue, i.e., the blocks
are sent sequentially, and the actual upload time depends on
the available bandwidth at the peer. All peers use a uniform
block selection strategy, i.e., when requesting a block from a
neighbor a peer selects a random block out of the interesting
blocks that are requestable and non-pending. If no such block
is available the peer re-requests a random pending block, i.e., a
block that has been requested but not yet received. The impact
of this trading strategy on the system performance is evaluated
in the following section.

V. EVALUATION

The main objective is to evaluate the influence of the
parameter k on the market liquidity, i.e., the goal is to quantify
the impact on the overall throughput. Naturally, a larger k
yields more potential trading cycles; on the other hand, the
message and computational complexity grows rapidly with
increasing k. Therefore, it is of paramount importance to
choose the right value for k, taking the overhead into account.
Apart from studying the influence of k, we also compare
Cycle(k) to the Intra-swarm policy where only bilateral,
intra-swarm exchanges are allowed, and the bandwidth is also
allocated equally among all active trades. This comparison
reveals the potential gain of trading on cycles. Furthermore,
as the overhead of Cycle(k) may become quite large, simply
because all cycles are considered, we propose refinements that
significantly increase the efficiency.

A. Methodology

There are two options to evaluate the different trading
policies: simulating a trading system or conducting extensive
measurements in a real distributed system. We opt for a simu-
lation on packet level and emulate peers that run the distributed
algorithm. One major advantage of a simulation approach
is that we can ensure the same conditions (e.g., network
congestion, CPU and memory usage) in all executions, which
enables a fair comparison of the various policies. Moreover,
a simulation test run takes considerably less time than a real

time experiment.3 These desirable properties would be lost
when conducting measurements, e.g., on a testbed such as
PlanetLab. A more insightful approach would be to have a
real client that is actively used on the public Internet to trade
files; however, this is not a promising approach as it depends
on how well the client is received and how willing people are
to share information about their downloads. For these reasons,
we believe that the benefits of running a proper simulation,
in particular the ability to study the effect of a parameter
change in isolation, easily outweighs the shortcomings, which
is mainly the loss of some network properties.

B. Simulation

We implemented an event-driven simulator that allows us to
create multiple swarms where peers can join and leave over
time. The simulator models the execution on a packet level,
and both the size of the file shared in a swarm as well as the
block size are parameterized. By default, we use 512 MB files
and blocks of size 512 kB.

For simplicity, we do not consider any bounds on the
download bandwidth in our evaluation. However, we limit the
upload bandwidth of each peer to 500 kB/s. In order to inject
data into the system, we assume the presence of a designated
seeder in each swarm that provides any leecher with free file
blocks at a constant rate of 10 kB/s.4 These publishers do not
engage in any trading otherwise. Regarding latencies, we use
two models: one with constant latencies of 60ms between all
peers, and one where the latencies capture the distribution of
peers over three continents (e.g., Asia, Europe, America), that
is, we draw the latency of a connection from three different
Gauss distributions depending on the number of continental
hops (i.e., N (30, 10) for transmissions within a continent,
N (60, 10) for one continental hop, and N (90, 10) for two
continental hops). Since both latency models yield similar
results, we will only present the results for constant latencies
in the following.

To model practical systems, we use a snapshot of the
BitTorrent economy gathered by Zhang et al. [1]. Since
such a snapshot contains millions of nodes and even more
interactions, it is not feasible to use the entire trace in the
simulation. This is not critical as the interactions change
anyway when a different trading policy is used. We use the
trace to determine the cardinality Dp = |Sp| for each peer
p in our evaluation. In particular, we compute the number of
downloads for all peers in the data set and store these values
in a data set D. The total number of peers and swarms is
determined using the same BitTorrent snapshot: Since there
are 3.65 times more peers than swarms in the data set, we
simulate 365 peers and 100 swarms in the first part of the
evaluation.

3In order to get the results presented in this paper, we simulated a total
of more than a thousand test runs. A similar amount of test runs would take
more than 20 months in real time.

4Existing systems typically rely on peers willing to provide blocks for
free in order to solve the bootstrap problem. While some of these providers
might have altruistic motives, others might have an interest in the actual
dissemination of the content.

Fig. 5. Total throughput over time.

A single run of the simulation proceeds as follows. The
simulations start at time t = 0 with n = 100 swarms each
containing only one designated publishing seeder. Each peer
p ∈ P is assigned the total number Dp of downloads it
will start during the simulation by randomly choosing a value
from the set D. The Dp swarms for each peer p are chosen
uniformly at random from all swarms S. Since a peer typically
joins its swarms over time, we model the time when a peer
p joins the next swarm in Sp using a Poisson process with
parameter λ = 10−1min−1 until it has joined all Dp swarms,
i.e., we assume that the intervals between join events follow
an exponential distribution. Whenever a new download starts,
a peer joins the corresponding swarm as a leecher. Recall
that a peer never leaves a swarm until all its downloads are
completed.

We conducted several simulations where all peers use the
policy Intra-swarm, Cycle(2), Cycle(3), or Cycle(4).
Note that although both Intra-swarm and Cycle(2) re-
strict the peers to bilateral exchanges, they differ in that
the latter allows for inter-swarm exchanges. Each scenario is
executed with ten different sample sets and the results are
averaged.

C. First Results
We start by analyzing the total throughput of all peers over

time. Figure 5 depicts the averaged throughputs for the four
different trading policies. The results confirm our expectation
that Intra-swarm achieves the lowest throughput because
it is the most restrictive trading policy, and the throughput
increases when larger trading cycles are used. Interestingly,
using Cycle(2) already results in a significant improvement:
The peak download rate increases by roughly 12%. The
policy Cycle(3) achieves even better results (24%); however,
Cycle(4) only slightly outperforms Cycle(3) (26%).

The distribution of the download completion times is even
more insightful. Figure 6 shows the completion times of all
downloads sorted in descending order. It is clearly visible that
the download rates improve substantially when inter-swarm
trading is allowed. On average, a download completes within
5 hours 4 minutes with Intra-swarm, 2 hours 35 minutes

Fig. 6. Distribution of download completion times.

with Cycle(2), 2 hours 8 minutes with Cycle(3), and 2
hours 1 minute with Cycle(4). Thus, the average download
completion times are reduced by 49% when allowing trades on
2-cycles, and by 58% when additionally using 3-cycles. The
improvement in terms of the median download completion
times is 28% for Cycle(2) and 37% for Cycle(3). Again,
the difference between Cycle(3) and Cycle(4) is negligible.
We also recorded the completion times of all downloads in
each individual simulation run: Compared to Intra-swarm,
84.4% of all downloads complete faster with Cycle(2), and
the median improvement is 8.2%. When Cycle(3) is used,
96.9% of all downloads have a smaller completion time,
and the median improvement is 14.7%. The same numbers
for Cycle(4) are 97.4% and 16.1%, i.e., the numbers for
Cycle(3) and Cycle(4) are again quite similar.

The investigation of completion times shows that while
cyclic trading does not increase the peak throughput of the
system tremendously (12% for 2-cycles and 24% for 3-cycles),
the average download completion times, and therefore also the
average download rate per download, improve significantly.
One of the reasons is that cyclic trading especially helps at the
beginning of a download, when the peers do not need to get
initial blocks from seeders only, as well as towards the end of
a download when the final missing blocks are collected more
efficiently thanks to inter-swarm trades. Additionally, Figure 6
shows that more downloads have a completion time close to
the median when trading on cycles, i.e., the resource allocation
is more balanced. Note that this also indicates a higher degree
of fairness when trading on cycles.

D. Avoiding Redundancy
From our first experiments we can conclude that the in-

creased liquidity due to additional trading opportunities along
cycles indeed leads to an increase of the overall performance.
However, there is an issue that needs to be addressed: The
same blocks can be requested in different cycles, which results
in redundant downloads. The reason is that, as defined in
Section IV, a peer requests a pending block if there is no
available block that has not been requested already. This
behavior is reasonable to some extent as pending requests
might remain unanswered due to network failures, or slow

0

200

400

600

800

1000

1200

1400

1600

1800

2000

d

u
p

lic
at

e
s

downloads sorted descending

Intra-swarm

Cycle(2)

Cycle(3)

Cycle(4)

Fig. 7. Distribution of duplicates per download for each trading policy in
descending order.

connections might be worth replacing with faster connections.
Moreover, it guarantees that all members of a cycle are always
willing to trade on the cycle as long as the cycle exists in the
demand graph. Unfortunately, such a nonrestrictive policy on
re-requests leads to an intolerable number of redundant blocks
as soon as the peers trade on cycles longer than 2. Figure 7
shows that peers download up to 1500 redundant blocks for
a download consisting of 1024 blocks when using Cycle(3),
and up to 2000 blocks when using Cycle(4).

The redundancy problem arises because the number of
trading cycles that a neighboring peer p appears in is often
larger than the number of interesting blocks that p has to
offer. As a countermeasure, we propose the following two
modifications to the trading policy Cycle(k).

1) Selecting Cycles: Limit the number of active cycles per
neighbor proportionally to the number of blocks it can
provide.

2) Probabilistic Re-Request: Re-request pending blocks
only with a certain probability ρ.

Figure 8 depicts the tradeoff between probabilistic re-
requests and the throughput: While the number of duplicates
depends linearly on the re-request probability, the throughput
grows quickly as long as ρ is fairly small. Thus, a smart
re-request strategy can significantly reduce the number of
duplicates without severely impacting the performance of the
system.

In comparison with the measure of limiting the number of
cycles that are selected for trading, probabilistic re-requests
prove to be quite effective: while the use of Selection with
Cycle(3) reduces the average number of duplicates from
462 to 266, probabilistic re-request with parameter ρ = 0.1
achieves a reduction to 48 duplicates on average, i.e., a
reduction by almost 90%. It is evident that using probabilistic
re-requests reduces the number of duplicates much more than
limiting the selection of cycles. However, since we would
like a systems that incurs a redundancy of less than 5% for
the majority of downloads, we combine the two measures
in the following to achieve an average redundancy of 27
duplicates per download in the case of Cycle(3). Depending
on the maximum cycle length used in a trading policy, we

Fig. 8. Tradeoff between average number of duplicates and the average
download rate with varying re-request probabilities for Cycle(3).

adapt the re-request probability ρ to achieve a good tradeoff
between redundancy and download rate. In particular, we use
a re-request probability of ρ = 0.5 for Intra-swarm and
Cycle(2), and ρ = 0.1 for Cycle(3) and Cycle(4).

Another natural strategy to mitigate the redundancy problem
would be to sort the cycles according to their “capacity”, which
we define as the number of blocks that could be traded along
the cycle before the first peer loses interest and the cycle
breaks. However, in our experiments, the performance gains
were almost negligible and therefore not worth the additional
algorithmic complexity.

In the following, we reassess the throughput benefits of our
general block trading algorithms with our two anti-redundancy
mechanisms in place. Regarding redundancy, probabilistic re-
requesting and limiting the number of active cycles ensured
that the median number of duplicates per download is 30 (i.e.,
an overhead of 2.9%) or less for all policies simulated; the 99th

percentile is below 90 (8.8%), and the maximum number of
duplicates is over 90 only for the Cycle(2) policy.

Regarding performance, the adapted simulations yield me-
dian download completion times of 3 hours 59 minutes
for Intra-swarm, 1 hour 57 minutes for Cycle(2), 1
hour 41 minutes for Cycle(3), and 1 hour 39 minutes for
Cycle(4). The average download completion time is 5 hours
43 minutes with Intra-swarm, 3 hours with Cycle(2), 2
hours 50 minutes with Cycle(3), and 2 hours 39 minutes
for Cycle(4). Qualitatively, the results are very similar to the
results without anti-redundancy measures in terms of average
download completion times: Cycle(2) and Cycle(3) per-
form 47% and 51% better than Intra-swarm, respectively.
The improvement in terms of the median completion times is
even higher, i.e., 51% for Cycle(2) and 58% for Cycle(3).
Compared to the simulations without any redundancy-reducing
measures, the loss in performance is small, e.g., the median
download completion time is increased by less than 5% for
all cyclic trading policies.

Finally, we would like to point out the interesting issue
of coordination that occurs as soon as peers are willing to
trade only on a subset of all the cycles they are part of. If a
peer decides to trade on only a few of potentially thousands

of cycles present, it can happen that there is at least one
peer unwilling to trade on every cycle. Thus, the performance
degrades simply because the peers do not agree on which
cycles to trade. This phenomenon is naturally more prevalent
the more cycles there are to chose from, i.e., for larger k. The
lack of coordination is also the reason for the fact that the
overall average download rate is lower for Cycle(4) than for
Cycle(3). Fortunately, this issue does not affect performance
significantly if the peers use only cycles up to length 3 since
still more than two thirds of all negotiations succeed.

E. Active Set Trading Policy

So far, we have assumed that the peers in a swarm are all
connected to each other. While this is possible to a certain
extent, the cost of interacting with too many neighbors can
be large (especially if TCP connections are used). In the Bit-
Torrent protocol, peers only trade actively with a small subset
of neighbors, the so-called active set. A similar extension is
also possible in our scenario. We have conducted experiments
where peers trade with a small number of neighbors, in
particular, we allow each peer to connect to only 10 peers per
swarm. As a result, a peer can learn only about a subgraph
of the demand graph, and trade only on cycles involving
neighbors in the active set. Interesting peers are always added
to the active set if the set is not full. Each peer periodically
assesses the active peers in terms of the amount of data
received since the last assessment and replaces the worst peer
by another random peer in the swarm. Moreover, peers are
replaced immediately when they become uninteresting.

Figure 9 depicts the download completion time distribu-
tions for different policies and their counterparts using the
redundancy-reducing measures and active sets. In our sim-
ulations, active sets containing at most 10 peers lead to a
throughput decrease of at most 5%, and combining active sets
with redundancy-reducing measures results in a total loss of
at most 10%. Since this performance decrease is modest, the
refined Cycle(k) policies still greatly outperform the basic
Intra-swarm policy.

Introducing active sets does not increase the number of du-
plicates downloaded: all policies exhibit a median redundancy
of less than 3%, i.e., the median number of redundantly down-
loaded blocks over all downloads is 30, and the maximum
redundancy is less than 10%. Furthermore, the overhead of
building up the local view of the demand graph is small as
only little data needs to be transferred. In our simulations, we
start a breadth first search along the edges up to k hops in
the demand graph whenever a new edge appears. We account
for the communication overhead incurred by a peer p by
aggregating the number of times an outgoing edge of p was
traversed in all search processes, and multiply it by the number
of bits needed to represent a respective search message.

In all simulation runs, the maximum overhead per peer was
below 0.8% of the content size downloaded by the peer, except
for the scenario where peers employ Cycle(4). The over-
head for Cycle(4) without redundancy-reducing measures is
slightly larger at up to 2%, with active sets and redundancy-
reducing measures, it grows to an intolerable level of 22%.

Fig. 9. Comparison of the download completion time distributions of the
Intra-swarm (IS) policy and the Cycle(k) policies for k = 2, 3, 4 (C2,
C3, C4) and their versions with active sets of size 10 as well as redundancy-
reducing measures in place (ISas*, C2as*, C3as*, C4as*). The three horizontal
lines of each box in a box plot depict the lower quartile, the median, and the
upper quartile, and the end of the two whiskers represent the 5th and the
95th percentile.

As a conclusion of our simulations with |P| = 365 and
|S| = 100 we propose to use Cycle(3) with active sets,
probabilistic re-request, and the cycle selection measure to
achieve an improvement of more than one third in terms of
median download completion time, and the average download
completes 44% faster. This is compared to Intra-swarm,
which exhibits 5% redundancy on average, whereas the over-
head due to redundant downloads of the proposed method
amounts to only 2.6%. Moreover, using this method shortens
the completion time in more than 93% of all downloads.

As a simpler alternative, one might also use Cycle(2)
with the respective extensions to achieve an improvement of
the download completion times of 25% (median) and 42%
(average) with even less overhead and redundancy.

F. Modeling Preferences

In this section, we propose and evaluate a more sophisti-
cated and arguably more realistic model for the peer pref-
erences. So far, we have assumed a uniform model of peer
preferences, where the peers choose the swarms they will join
uniformly at random from the swarm set S . This simple model
ignores the fact that the users of file sharing systems typically
have specific interests, which implies more clustered mappings
between peers and swarms. We study the clustering coefficient
distribution in the undirected graph consisting of the node set
P and edges between peers that appear in at least one common
swarm. The clustering coefficient of a peer is the number of
edges between neighboring peers in this graph divided by the
maximum number of such edges.

The uniform choice of swarms produces a demand graph
whose clustering coefficients are too low if the number of peers
and swarms is sufficiently large. In order to demonstrate this,
we compare the clustering coefficients produced by our simu-
lator with uniform preferences to the clustering coefficients
we computed from the BitTorrent snapshot. As Figure 10
illustrates, if we keep the ratio of n = |P| and |S| constant
at 3.65 the clustering coefficients decrease with growing n.

Fig. 10. Clustering coefficients with uniform preferences for different scales
|P| × |S|.

For n = 36 almost all clustering coefficients are too high,
whereas for n = 3650 the clustering coefficient of most
peers with more than one download is significantly too low.
The peers with clustering coefficients of 1 are mostly peers
with only one download. The explanation is that with more
swarms available the probability that two peers in one swarm
also appear together in another swarm decreases although the
average swarm size remains constant.

Consequently, to reflect user preferences and thus the true
correlation between peers and swarms more precisely, we
propose a preference model that combines the concepts of
preferential attachment: a popular swarm is likely to become
more popular in the future, and co-occurrence: if a peer
already shares many other interests with the peers in a given
swarm S, it is more likely to join S as well (for a motivation
see, e.g., [16]). Whenever a peer p starts a new download it
joins swarm S with a probability proportional to the number
of p’s neighbors in S (co-occurrence) and the size of S
(preferential attachment), i.e.,

Pr[p enters S] ≈ (|Np ∩ S|+ 1)
α
+ (|S|+ 1)β∑

X∈S (|Np ∩X|+ 1)
α
+ (|X|+ 1)β

where Np denotes the set of p’s neighbors. The parameters
α and β allow us to model arbitrary combinations of the
two concepts. For α = 0, our preference model is a pure
preferential attachment model, and for β = 0 it is a pure
co-occurrence model. For α = β = 0, we get a uniform
distribution.

Given the proposed model, we can set up simulations that
approximate both the clustering coefficient distribution and the
swarm size distribution well by using a peer-swarm ratio of
3.65 and fit the clustering coefficient distribution by adapting
α and β. However, as larger α and β values lead to larger
clustering coefficients, we must consider a scenario where
the uniform distribution results in clustering coefficients that
are too low. As Figure 10 illustrates, this is the case for
large peer and swarm sets when keeping the peer-swarm ratio
constant. Since the computational complexity of the simulation
increases quickly with the number of peers and swarms—
and we also want to be able to fit the parameters for small
networks—, the best option is to abandon the requirement

0

0.2

0.4

0.6

0.8

1

cl
u

st
e

ri
n

g
co

ef
fi

ci
e

n
t

peers sorted ascending

BitTorrent
b = 0

b = 1

b = 1.42

b = 2.0

b = 3.0

Fig. 11. Clustering coefficient distributions for |P| = |S| = 100, α = 1
and varying β. The error is minimized for β ≈ 1.42.

to keep the peer-ratio set to 3.65. We found that by using
|P| = |S| = 100 the swarms contain fewer peers on average
than in the BitTorrent data; however, the clustering coefficients
with uniform preferences are well below the BitTorrent clus-
tering coefficients. Figure 11 depicts the clustering coefficient
distribution observed in BitTorrent, and the clustering coeffi-
cient distributions produced by our simulator for various β.

We fitted the parameters α and β of the co-occurrence
preference model using the method of least squares, i.e., α and
β are set to values that minimize the error 1

n

∑n
i=1(ci − ĉi)2,

where ĉi is the i-th lowest clustering coefficient in the simu-
lation, and ci is the clustering coefficient at the corresponding
position in the measured clustering coefficient distribution.
Our study indicates that the choice of β has a large impact on
the clustering coefficient distribution (cf. Figure 11), whereas
the choice of α does not impact the clustering coefficients
much for the relatively small numbers of peers and swarms
used in our setup. The parameter α has a slight effect on
the steepness of the curve.5 As the error is similar for any
α < 5 by selecting the best value for β, we chose α = 1
for simplicity. The respective optimal choice for β is 1.42,
yielding an error smaller than 10−3.

Figure 12 shows the download completion times in the
scenario with 100 peers and 100 swarms using α = 1 and β =
1.42. The results are similar to those in earlier experiments,
and we can draw the same conclusions: Cycle(k) clearly
outperforms Intra-swarm for any k = 2, 3, 4. Again, the
figure shows that while the throughput rises with increasing k,
the difference between Cycle(3) and Cycle(4) is marginal.
We conjecture that the results also hold for a larger number
of peers and swarms.

VI. DISTRIBUTED IMPLEMENTATION

Having presented our evaluation results, we now discuss the
distributed protocol, CYCT4T, in order to fill in the blanks
in the high-level description of the algorithm in Section IV.
In particular, CYCT4T enables peers to find cycles and to
negotiate on which cycles to trade in an efficient manner. Note
that CYCT4T is the algorithm used in our simulation with the

5We believe the effect of co-occurrence will have a greater impact in larger
systems.

0

2

4

6

8

10

12

14

co
m

p
le

ti
o

n
 t

im
e

(h

)

downloads sorted descending

Intra-swarm

Cycle(2) AS*

Cycle(3) AS*

Cycle(4) AS*

Fig. 12. Distribution of download completion times for |P| = |S| = 100,
α = 1, and β = 1.42.

exception that we merged the local views of the demand graph
into a global view to save space.

CYCT4T uses the usual mechanisms like tracker polling,
peer exchange (PEX), or distributed hash tables (DHT) to
discover peers. Initially, two peers exchange information about
their locally available blocks. After that, the peers only notify
each other when new blocks become available.

In order to keep a local view of the demand graph, each
peer p maintains two tables. The outTable, which contains
all (known) interesting peers (out-neighbors), i.e., the peers
possessing blocks that p is interested in, and the inTable
whose purpose is to keep track of all peers from which there
is a directed path of length at most k−1 in the demand graph
ending at peer p. In particular, for each direct in-neighbor
r, inTable stores the information which peers can reach p
on paths P , |P | < k, where r is the last intermediate hop.
The entries in the inTable consist of three values: source,
which is the identifier of the peer at the beginning of the
path, via, the identifier of the last peer on the path before
p itself, and distance, the minimum length of all such paths.
When p computes an update message for its out-neighbors the
distance information is used to determine which inTable-
entries are irrelevant. Peers also store direct in-neighbors r in
the inTable as an entry (r, r, 1). Note that if a peer q is in p’s
outTable and its inTable contains the entry (q, r, d− 1)
then there exists at least one cycle p → q → . . . → r → p
of length d for peers p, q, and r. Thus, the inTable and
the outTable together allow p to decide whether it is in a
cycle of length at most k with r as its predecessor and q as
its successor for two given peers r,q.

Naturally, these tables must be built up initially and updated
when there is a change in the vicinity. For this purpose, each
peer informs the peers in its outTable about changes in its
tables as follows. If peer p learns about an interesting peer
q, it adds q to its outTable and sends q an update list
of all relevant (source,distance)-pairs extracted from its own
inTable (cf. Table I). Upon receiving an update list from
a peer r, peer p increases all distances by 1, since one hop
is added to the paths, and updates the corresponding entries
with via = r in its inTable. Afterwards, it recursively
computes relevant (source,distance)-pairs and forwards them

UPD: SELECT DISTINCT source, distance
FROM inTable
WHERE distance < k − 1 AND via 6= q;

CID: SELECT source
FROM outTable INNER JOIN inTable
ON outTable.id = inTable.source
WHERE via = r;

TABLE I
SQL QUERIES FOR A FULL UPDATE MESSAGE TO q (UPD), AND FOR

FINDING ALL OUT-NEIGHBORS ON CYCLES WITH IN-NEIGHBOR r (CID).

to the peers in its outTable. The tables must also be updated
if an edge from a peer r to peer p disappears. In this case,
p removes all entries where via = r from its inTable and
sends a remove list containing the removed entries to the peers
in its outTable. If a peer receives such a remove list, it
updates its inTable accordingly and computes an update
message. For the sake of brevity, we omit the details of these
computations and the precise contents of the update message.
Basically, an update message must announce all changes to the
minimum shortest path distance over all in-neighbors. Thus,
modifications to an entry in the inTable concerning source
q where via = r must be announced to the peers in the
outTable only if this modification changed the minimum
distance from q via any in-neighbor.

Whenever peer p1 adds an interesting peer p2 to its
outTable, it checks whether there is a cycle containing
edge (p1, p2). As described earlier, p1 can only determine
whether there are such cycles, but not how many there are
and not which peers they contain in particular (except for
cycles of length smaller equal 3). In order to find all cycles
with edge (p1, p2), peer p1 sends a cycle ID (CID) message
containing hp1(p1||p2) to p2, where hp1 is a hash function
private to p1 and || denotes the concatenation operator. The
hash functions hp are required to produce hash values of
publicly known constant length. Peer p2 in turn determines
the set X of out-neighbors that are part of a cycle to p1 (cf.
Table I), and it forwards the received CID with its private
hash value hp2(p2||x) appended to each peer x ∈ X . The
peers receiving a CID message execute the same steps unless
the list contains k hash values already, in which case they
do not forward the CID any further. Peer p1 will finally
get a CID message hp1(p1||p2)||hp2(p2||p3)|| . . . ||hp`(p`||p1),
where ` ≤ k, for each cycle. Although peer p1 cannot
decrypt the CID message, it can compute the cycle’s length
and recognize the head hp1(p1||p2). Furthermore, a unique
cycle ID is computed by XORing all contained hash val-
ues, hp1(p1||p2), hp2(p2||p3), . . . , hp`(p`||p1). The cycle ID
is appended to each future data message, indicating that
this transfer is a contribution to the trade on this particular
cycle. Note that the cycle ID is constructed such that each
cycle is identified with its unique ID by every involved peer
regardless of the order of the hash values. This prevents
potential problems that could arise when a particular cycle
is found by more than one search process. This can happen
due to inconsistent approximations of the demand graph.

Since it is unknown in advance which and how many cycles

will be discovered, a second phase is required to select cycles
for trading. For each potential cycle, peer p1 initiates the
negotiation by sending the hashes in the received CID message
together with a negotiation bit, set to 1, to its out-neighbor
in the cycle. Each peer in the cycle may set the negotiation
bit to 0, indicating that it does not want to trade on this
cycle, before it forwards the message. If the bit is still set
to 1 when p1 receives the message, this cycle is accepted for
trading, otherwise it is discarded. In order to inform the other
peers about the final decision, the result is sent around the
cycle. Each peer starts trading as described in Section IV as
soon as it learns that the negotiation was successful, i.e., it
requests a desired block from the successor in the cycle. Of
course, the peers do not start uploading a block at exactly
the same time. However, this is not a critical issue as the tit-
for-tat trading on cycles proposed in Section IV automatically
mitigates temporal fluctuations and also differences of edge
bandwidths: a peer with large upload bandwidth waits for
the rest of the cycle to catch up as soon as the threshold on
the local upload-download balance is reached for this cycle.
Hence, the bandwidth expended at each peer for any given
cycle tends towards the bandwidth of the slowest edge if the
threshold is not too large.

VII. CONCLUSION

What are the potential gains in barter-based peer-to-peer
systems when moving from bilateral trades to multi-lateral
trades along cycles of interest? Our study shows that peer-
to-peer systems can benefit from trading on cycles in the
sense that the majority of peers obtains the desired content
faster. Especially for short cycles, the throughput benefits are
high and the overhead is low. We find that the best tradeoff
is achieved using the Cycle(3) trading policy with active
sets and probabilistic re-request. Also Cycle(2) can be very
attractive due to its simplicity and low overhead.

The generalization of the basic tit-for-tat concept to trading
on cycles has interesting game-theoretic implications. For
example, it becomes rational for a peer to stay in a swarm
after the download is complete, as the acquired content can
still be used in cross-swarm trades. This is in stark contrast
to bilateral intra-swarm bartering, where peers do not have an
incentive to offer such content. Thus, the introduction of inter-
swarm trades could motivate users to stay in swarms longer,
thereby increasing the availability of content. It is worth noting
that the generalization also opens up new ways of cheating
for selfish peers. For example, if two peers collude, they can
fake a multitude of 4-cycles with an imaginary fourth node
to make a trustful node believe it resides in many 4-cycles
and thus provides several free file blocks until the balance
threshold is reached on all cycles. An easy way to counter
such an attack is to keep an additional balance associated with
peers rather than cycles: for every unreturned file block on a
cycle with neighbors u and v decrease the balance (or the trust
value) for both peers. If the balance is too low, no additional
blocks are forwarded until new blocks are received. More
work is needed to fully understand the economical aspects
of trading on cycles: New forms of strategic behavior may

hurt the system performance, e.g., a selfish peer may prefer
shorter trading cycles because shorter cycles are easier to
find, require less management overhead, and may be more
stable. Moreover, while we discussed multiple optimizations
and refinements of the basic trading policy, there are aspects
of the protocol that might still be improved in future work,
e.g., the bandwidth allocation to the different cycles. This can
result in additional performance gains.

Acknowledgments. We are grateful to Chao Zhang, Prithula
Dhungel, Di Wu and Keith W. Ross for providing us with the
BitTorrent data. The authors would also like to thank Michael
König, Ali Ghodsi, Bernhard Ager and Anja Feldmann for
helping with the evaluation, and Klaus M. Schmidt from LMU
Munich for interesting economical discussions.

REFERENCES

[1] C. Zhang, P. Dhungel, D. Wu, and K. W. Ross, “Unraveling the
BitTorrent Ecosystem,” IEEE Transactions on Parallel and Distributed
Systems, vol. 22, no. 7, 2010.

[2] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer, “KARMA: A
Secure Economic Framework for Peer-to-Peer Resource Sharing,” in
Proc. Workshop on Economics of Peer-to-Peer Systems, 2003.

[3] R. Landa, D. Griffin, R. G. Clegg, E. Mykoniati, and M. Rio, “A
Sybilproof Indirect Reciprocity Mechanism for Peer-to-Peer Networks,”
in Proc. 28th IEEE International Conference on Computer Communi-
cations (INFOCOM), 2009.

[4] D. Menasché, L. Massoulié, and D. Towsley, “Reciprocity and Barter
in Peer-to-Peer Systems,” in Proc. IEEE International Conference on
Computer Communications (INFOCOM), 2010.

[5] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkatara-
mani, “Do Incentives Build Robustness in BitTorrent?,” in Proc. 4th
USENIX Symposium on Networked Systems Design & Implementation
(NSDI), 2007.

[6] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer, “Free Riding in
BitTorrent is Cheap,” in Proc. 5th Workshop on Hot Topics in Networks
(HotNets), 2006.

[7] D. Grolimund, L. Meisser, S. Schmid, and R. Wattenhofer, “Havelaar: A
robust and efficient reputation system for active peer-to-peer systems,”
in Proc. Workshop on the Economics of Networked Systems (NetEcon),
pp. 69–74, 2006.

[8] T. Locher, S. Schmid, and R. Wattenhofer, “Rescuing Tit-for-Tat with
Source Coding,” in 7th IEEE International Conference on Peer-to-Peer
Computing (P2P), Galway, Ireland, September 2007.

[9] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network Information
Flow,” IEEE Transactions on Information Theory, vol. 46, no. 4,
pp. 1204 –1216, 2000.

[10] D. Levin, K. LaCurts, N. Spring, and B. Bhattacharjee, “Bittorrent is an
auction: analyzing and improving bittorrent’s incentives,” in Proc. ACM
SIGCOMM, pp. 243–254, 2008.

[11] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, “Measure-
ments, Analysis, and Modeling of BitTorrent-like Systems,” in Proc. 5th
ACM SIGCOMM Conference on Internet Measurement (IMC), 2005.

[12] C. Aperjis, R. Johari, and M. J. Freedman, “Bilateral and Multilateral
Exchanges for Peer-Assisted Content Distribution,” in Under submis-
sion, 2011.

[13] S. M. Kakade, M. Kearns, and L. E. Ortiz, “Graphical Economics,” in
Proc. 17th Annual Conference on Learning Theory (COLT), pp. 17–32,
2004.

[14] M. Capota, N. Andrade, T. Vinko, F. Santos, J. Pouwelse, and D. Epema,
“Inter-swarm resource allocation in bittorrent communities,” in Proc.
IEEE International Conference on Peer-to-Peer Computing (P2P),
pp. 300 –309, 2011.

[15] K. Anagnostakis and M. Greenwald, “Exchange-based Incentive Mech-
anisms for Peer-to-Peer File Sharing,” in Proc. 24th International
Conference on Distributed Computing Systems (ICDCS), 2004.

[16] G. Linden, B. Smith, and J. York, “Amazon.com Recommendations:
Item-to-Item Collaborative Filtering,” Internet Computing, IEEE, vol. 7,
no. 1, pp. 76 – 80, 2003.

