
Byzantine Agreement with Interval Validity
Darya Melnyk

Distributed Computing Group
ETH Zurich

Zurich, Switzerland
dmelnyk@ethz.ch

Roger Wattenhofer
Distributed Computing Group

ETH Zurich
Zurich, Switzerland
wattenhofer@ethz.ch

Abstract—To solve Byzantine agreement, n nodes with real
input values, among which t < n/3 are Byzantine, have to agree
on a common consensus value. Previous research has mainly
focused on determining a consensus value equal to an input value
of some arbitrary node. In this work we instead assume that the
values of the nodes are ordered and introduce a novel validity
condition which accepts consensus values that are close to the kth

smallest value of the correct nodes. We propose a deterministic
algorithm that approximates the kth smallest value and show
that this approximation is the best possible for the synchronous
message passing model. Our approach is furthermore extended
to multiple dimensions, where the order is not well-defined, and
we show that our algorithm can be applied to determine a value
that lies within a box around all correct input vectors.

Index Terms—distributed consensus, multi-valued, vector
agreement, synchronous systems

I. INTRODUCTION

Some of the key results in distributed computing promise
to provide a distributed system that can tolerate arbitrary
(“Byzantine”) failures. The machines (nodes) of a distributed
system regularly check if they are in the same state. Whenever
the nodes disagree, they run a Byzantine agreement protocol to
eliminate blunders by some nodes and thus enforce agreement.
If nodes continually agree on their state, the distributed system
as a whole is correct.

For Byzantine agreement to be applicable, it should be fast
and ensure that all nodes agree on a common state. These
criteria are known as termination and agreement property,
respectively. However, the two properties are not enough. For
instance, a protocol may just agree to delete all the information
in the system, fulfilling both termination and agreement, but
potentially also destroying valuable data. To prevent such
absurd “solutions”, we need a third property, known as the
validity property. Informally, the validity property must make
sure that the decision “makes sense”. In particular, if all nodes
of a distributed system propose the same state, they should
settle for that state.

There are several situations where nodes of a distributed
system do not propose the same state. For example, all nodes
of a distributed stock market system may have seen a different
transaction first, and therefore propose their own transaction
as the next one to be included in the common ledger. Other
situations could occur when all nodes of a distributed auction
system offer a slightly different price, or the nodes of a
distributed flight control system are equipped with a height

sensor and all sensors report slightly different altitudes, e.g.,
represented as floating point numbers. With Byzantine nodes
participating in the decision, it would be not advisable to simply
agree on any value.

A majority decision will also not help in systems where
each node might propose a different outcome. Luckily, many
distributed systems seem to have in common that the inputs
of the Byzantine agreement algorithm can be ordered: some
transactions have an earlier timestamp than others and altitude
sensors will likely report at least slightly different heights. If
the inputs are ordered, we can try to decide on a value which is
not an outlier, as outliers coming from Byzantine nodes should
be avoided. Instead we want to decide on a value which makes
sense: If we want our plane to operate safely, we can think
of avoiding outliers by choosing the median value. If we are
interested in the price of honest bidders for our apartment, we
are looking for a high bid, but not a goofy outlier.

The median is in some sense the safest value in a Byzantine
setting, as it is robust against Byzantine attacks from both sides,
i.e., it does not matter whether the Byzantine nodes propose
high or low values. Our paper presents the first algorithm that
finds the optimal median in the Byzantine setting. The ability to
choose the largest or smallest value in Byzantine environments
also finds various applications. The need of a generalization
to the kth largest or smallest value is less obvious, but it is
interesting in several cases as well. As an example, consider
a distributed system with at most t Byzantine (arbitrarily
malicious) nodes. In addition to these Byzantine nodes, it is
assumed that there are nodes that are not Byzantine but also not
correct. These nodes will generally follow the protocol, but they
will not be completely honest about their input, e.g. agents who
always bid a too high value. We do not want our result to be
affected by these nodes. By going for the kth smallest or largest
value instead of the maximal/minimal/median value, we can
adapt nicely to such situations. In this paper we will assume that
the implementation is aware of such malfunctioning behavior
of the system and chooses k accordingly before starting the
algorithm.

Paper Overview: Given totally orderable inputs, we are
looking for an output close to the kth largest or smallest value,
and depending on the number of Byzantine nodes we can
tolerate a solution in an interval around the kth value. In Section
III, we formally define this validity condition. In Section V, we
present an algorithm that will achieve this interval validity. Our



algorithm is optimal in that it tolerates the maximum possible
number of t < n/3 Byzantine nodes. Our algorithm is also
optimal in how close the chosen value is to the kth value thanks
to a matching lower bound. In Section VII we finally show
that our algorithm also can handle multi-dimensional inputs.

II. RELATED WORK

The problem of Byzantine agreement was first introduced
as the “Byzantine Generals Problem” by Pease, Shostak and
Lamport [12], [16]. They showed that it is not possible to
reach agreement if at least one third of all nodes are Byzantine.
Byzantine agreement has since then been studied in a range of
different settings, synchronously and asynchronously in shared
memory and message passing models. For the synchronous
message passing model, Fisher and Lynch [9] proved that any
deterministic algorithm can reach consensus in a minimum of
t+1 rounds. Berman et al. later proposed the Phase Queen [2]
and the Phase King Algorithms [3] that both match this lower
bound for binary input values. While agreement is possible
in the synchronous message passing model, no deterministic
protocol can establish agreement in the presence of even one
Byzantine node in the asynchronous model. This was shown
by Fisher, Lynch and Paterson [10].

Byzantine agreement is well studied in the binary setting
where each node has the input value 0 or 1. Many applications
must however be able to handle real numbers R or natural
numbers N. This setting is referred to as multivalued Byzantine
agreement [21] in the literature. The idea is to establish
agreement on a value that was an input value of some correct
node. Some proposed algorithms assume that the majority of
nodes have the same input value [11], [20], [21]. If there is no
clear majority, some leader node might decide on a value that
all nodes will adapt, or the nodes choose a preselected value.
These algorithms need t + 1 rounds to establish agreement,
which is optimal in the synchronous model. The algorithms
will however agree on an arbitrary value if there is no majority
among the input values.

Dolev et al. [7] proposed a deterministic algorithm for
approximate Byzantine agreement in the asynchronous message
passing model. In this relaxed setting, nodes do not establish
consensus on an exact value, since this is impossible [10]. They
instead converge towards a consensus value in every round. In
the proposed algorithm the values of all nodes converge towards
the mean of the correct values. Fekete [8] later improved the
running time of the algorithm and proposed an algorithm for
approximation that solves consensus in the synchronous model
exactly, if it iterates for t+ 1 rounds. Approximate agreement
can guarantee that the values of correct nodes will be inside
an arbitrarily small interval after sufficiently many iterations
but cannot solve the exact Byzantine agreement problem
unless the lower bounds for exact consensus are satisfied.
Another relaxation of the Byzantine agreement problem is
k-set agreement, where the nodes try to agree on values that
are within some common set of size at most k [5], [13], [17].

In this paper we present a protocol which establishes
agreement on a value that is an approximation to the kth

smallest of all correct input values. Similar approaches have
been considered for the special case of the median: Doerr
et al. [6] consider the Power of Two Choices to establish
agreement on the value which is close to the median in
the asynchronous message passing model. In their protocol,
each node requests the values of two nodes chosen uniformly
at random among all nodes and updates its value to the
median of the two requested values and its own. The authors
showed that for t ∈ O(

√
n) the system stabilizes with a

consensus value that is between the (n/2− c
√
n log n)-largest

and the (n/2 + c
√
n log n)-largest value. The same problem

was considered for the synchronous message passing model by
Stolz et al. [19]. In this paper the authors proposed an algorithm
which computes an approximation of the median within t+ 1
rounds. Their approximation is not optimal compared to the
bounds of any deterministic algorithm for this model. We will
use these ideas to derive an approximation to the kth smallest
value and show that our method can be adjusted to solve the
median problem optimally.

In the spirit of [14], [15], [22] we will present how our
method can be applied to Byzantine vector consensus. This is
a generalization of multivalued agreement that allows multi-
dimensional input values. Previous work mostly concentrated
on finding a value which is within the convex hull of all
correct values. While this method is efficient for approximate
agreement in the asynchronous message passing model, the
exact agreement in the synchronous message passing model
requires exponential number of computations to determine the
convex hull in the presence of Byzantine nodes. Xiang and
Vaidya [23], [24] introduced two relaxations of the convex
hull - the k-relaxed and the (δ, p)-relaxed Byzantine vector
consensus. The former requires the consensus value to be inside
the projections of the convex hull onto any k dimensions of the
vectors and the latter requires the value to be within distance δ
to the convex hull. They show that their relaxation cannot be
used to improve the number of Byzantine nodes that can be
tolerated by the system. We will relax the validity condition
from the convex hull to a box and apply our proposed kth

smallest value algorithm. This adjustment allows us to achieve
exact consensus in O(d(t + 1)) rounds, where d represents
the dimension. It can furthermore tolerate up to dn/3e − 1
Byzantine nodes.

III. MODEL AND NOTATION

In this work we consider Byzantine agreement for the
synchronous message passing model in a distributed system
with n nodes, where every node can directly communicate with
every other node. In the beginning of the computation each
node has an input value from a totally orderable domain, for
example R. The goal is to make all nodes agree on a common
value that is close to the kth smallest value of all correct input
values by communicating in synchronous rounds. In each such
round, a node sends one message to all other nodes, receives
all messages sent by the other nodes and finally performs
some local computation on the received input. We differentiate
between two kinds of nodes. The correct nodes follow the



protocol at all times. If such a correct node sent a message to
all other nodes, this message will be received by all nodes in
the same round. In addition, we allow our system to contain
at most t nodes that are Byzantine, where t < n/3. Byzantine
nodes can behave arbitrarily, they can choose to send different
messages to different nodes or not to send any message at
all. The Byzantine nodes are assumed to be controlled by an
omnipotent adversary. The adversary has knowledge about all
message contents that the correct nodes send in the same round
and is allowed to decide which messages the Byzantine nodes
will send in this round upon accessing that information.

The Byzantine agreement protocol must generally satisfy
the following standard conditions:

• (Agreement) All correct nodes agree on the same value
upon termination.

• (Termination) Every correct node terminates with a valid
value after a finite number of communication rounds.

• (All-Same Validity) If all correct nodes start with the same
value, they eventually agree on that value.

• (Correct-Input Validity) The nodes agree on the value that
at least one of the correct nodes has proposed.

Note that the Correct-Input validity is equivalent to the All-
Same validity if the input values of nodes are binary. However,
in the multi-valued setting where all nodes have different input
values the Correct-Input validity cannot be satisfied. This is
because any correct node is not differentiable from a Byzantine
node which follows the protocol using its own input value. We
therefore introduce a relaxed validity condition of the Correct-
Input validity:

• (Any-Input Validity) The nodes agree on the value that
at least one of the nodes has proposed. This value is not
required to be proposed by a correct node.

In this paper, the goal of the protocol is to make all correct
nodes agree on a particular value which is close to the kth

smallest value among the input values of all correct nodes. It
is not necessarily a drawback if the Byzantine nodes propose
values close to the kth smallest value, while values that are
far away should be omitted. In order to handle values that are
too far away from the kth smallest value we introduce a new
validity condition called Interval Validity. Let S be a sorted
array containing the n − t correct input values and refer to
S[k] as the kth smallest value in this array. In each round it
is assumed that every node stores the values of all received
messages in a sorted array R of size n− t+ f . Note that R[k]
is not the same value as S[k], since R also stores f Byzantine
values. The validity condition for the kth smallest value is
defined as follows

Definition 1 (Interval Validity). Sort all input entries of correct
nodes in an array S. A valid value is a value v that is close
to the kth smallest value of all correct nodes:

S
[
k − dt/2e

]
≤ v ≤ S

[
k + bt/2c

]
This validity condition does not guarantee that v is an input

value of a correct node. We only require it to not be further
away than dt/2e positions from the actual kth value in S. For

t = 0 the validity condition holds only for S[k] = v, which
is the exact kth smallest value. Note that this is not the same
definition of Interval Validity as used in [1].

For brevity we denote the subarray of S which starts with the
ath value and ends with the bth S[a, b] . In contrast,

[
S[a], S[b]

]
denotes the interval enclosed by the two values, i.e., correct
and Byzantine values which lie inside the boundaries. The
same notation is used for R, which also will be referred to as
the local array of a node.

For the computation of the kth smallest value we use the
geometric median. It is defined as the central value of an array
of ordered numbers. For an even number of nodes, this value
usually corresponds to the mean of the two central values. We
adjust the definition of the median to agree on the smaller of
the two central values in the case where a node receives an
even number of values:

Definition 2 (Median). Given an array A of n values, the
median is defined as A

[
bn/2c

]
, i.e., the value at position

bn/2c in the array A.

This alternative definition enables the nodes to choose a
valid median value.

IV. LOWER BOUND FOR THE APPROXIMATION OF THE
kTH SMALLEST VALUE

In this section we show that no deterministic algorithm
can approximate the kth smallest value better than by dt/2e
positions in the presence of t Byzantine nodes. The quality
of the approximation is calculated by the number of positions
by which the approximate kth smallest value is shifted from
the actual kth smallest value with respect to the array S.
Two cases will be considered separately, the case where
k ∈

[
dt/2e + 1, n− b3t/2c

]
and the case where k is outside

of these bounds. In the first case the lower bound on the
approximation value is dt/2e. In the second case we need to
guarantee that the approximation value is inside the interval
of all correct nodes. Otherwise the Byzantine nodes might
choose values that deviate arbitrarily from the values of the
correct nodes. With this restriction the approximation of the kth

smallest value can be up to t positions away from the actual
value.

Theorem 1. Assume k ∈
[
dt/2e + 1, n − b3t/2c

]
. Then, no

deterministic algorithm can choose a value that is closer than
dt/2e to the actual kth smallest value when t Byzantine nodes
are present in the system.

Proof. We consider t+ 1 cases for which the values that the
correct nodes received only differ in t values that were sent by
the Byzantine nodes. We will show that the correct nodes are
not able to distinguish the given views, while the kth smallest
values in any two views differ by up to t positions. Figure 1
shows such an example for t = 4 with t different values that
might potentially be the kth smallest value.

Let max(S) and min(S) respectively denote the maximum
and minimum value of the correct nodes. We assume that a
Byzantine node always sends the same value to all other nodes,



Fig. 1. In this example we look for the 4th smallest value in a system with (n− t) = 7 correct nodes and t = 3 Byzantine nodes. The correct nodes are
shown in black, the Byzantine nodes in red. All values are ordered according to the axis. On the first axis, the Byzantine nodes choose their value to be larger
than all correct values. On the last axis the Byzantine values are all smaller than the correct values. In between, the Byzantine nodes choose some values to be
larger and some to be smaller. All four cases are not differentiable to the correct nodes, since all nodes just see n values. The correct nodes do not know the
position of the Byzantine nodes. Therefore, any of the blue marked correct nodes might be a candidate for the actual 4th smallest value. Thus, the nodes must
agree on a value that minimizes the distance to each of the four candidates.

4th value

4th value

4th value

4th value

interval of possible 4th smallest values

these two
options minimize
the failure

i.e., all nodes receive all t Byzantine values and values that
were sent by the same node are equal. In the first case the t
Byzantine nodes send values that are larger than max(S) to
every correct node. In this case the new kth smallest value has
the same position as before, i.e., the kth smallest value is R[k].

In the second case we assume that one Byzantine node
sends a value that is smaller than min(S) and the other t− 1
Byzantine nodes send values that are larger than max(S). This
way, the kth smallest value is at position k + 1 in the array R.

In the third case we assume that two Byzantine values are
smaller than min(S). This will shift the kth smallest value by
2 positions in R etc.

In the last case all t Byzantine nodes broadcast values that
are smaller than min(S). Here, the Byzantine nodes shift the
kth smallest value to position k + t in the new array, i.e., it is
R[k + t].

In any of the cases a node knows that its array contains
exactly t Byzantine values, but the cases are indistinguishable
to the node. The kth smallest value can therefore be any value
from the subarray R[k, k + t]. Choosing a value closer to k
would decrease the mistake in the first case and increase it in
the last. A value closer to k + t does the opposite. The value
that minimizes the mistake is the median value which is at
most dt/2e positions away from all solutions. Note that for
odd values of t the value must be rounded up since the median
of R[k, k + t] lies between two values. It is thus not possible
for a deterministic algorithm to be better than dt/2e positions
away from the optimal solution.

Theorem 2. For k outside
[
dt/2e + 1, n − b3t/2c

]
, any

deterministic algorithm can be forced to choose a value further
away than dt/2e but at most t positions away from the actual
kth smallest value.

Proof. We consider the same t + 1 cases as in the proof of
Lemma 1. The median of the subarray R[k, k+t] minimizes the
mistake of approximating S[k]. If k ≤ dt/2e the median of this
subarray may be a smaller value than S[1] which is the smallest
correct value. The median does not satisfy the requirements
for the approximation of the kth value in this case since the
values outside of

[
S[1], S[n− t]

]
can be arbitrarily small or

large. The closest value inside the interval of correct values is
at position t+ 1. Therefore, the value at position t+ 1 is the
one that minimizes the mistake to any S[k] with k ≤ dt/2e.
Analogously, the closest correct value for k > n−b3t/2c is at
position n− t. The guess of the kth smallest value may deviate
from the actual value by more than dt/2e. If we are looking
for the minimal or maximal values, i.e., S[1] or S[n− t], this
value may deviate by t, since all Byzantine nodes may choose
values smaller than the smallest correct value or larger than
the largest correct value.

V. ALGORITHM FOR THE kTH SMALLEST VALUE

In this section we present an algorithm that selects an
approximation of the kth smallest value in the presence of
Byzantine nodes. We will show that this algorithm gives the
best approximation to S[k] for all values of k ∈ [0, n − t].
As in the previous section, two cases are distinguished for
which the bounds of the approximation differ: In case where
k ∈

[
dt/2e+ 1, n− b3t/2c

]
, the algorithm finds a value that

satisfies Definition 1. For k outside of
[
dt/2e+1, n−b3t/2c

]
the solution can not be guaranteed to satisfy Definition 1. In
this case the solution will instead be at most t positions away
from the actual kth smallest value. We will also prove that
our algorithm produces an optimal solution by showing that it
matches the bounds from Section IV.



Algorithm 1. The kth Smallest Value Algorithm

Phase 1 Choosing values close to the kth smallest value
Input: input value x of node v
Output: new input value x∗ in the vicinity of the kth smallest value

every node v executes the following commands :
1: Broadcast x
2: Receive input values from every other node, store all values in the sorted array R
3: x∗ := median of the subarray R[k, k + f ]
4: if x∗ ≤ R[f ] then . k is too small and R[k] can be an arbitrarily small Byzantine value
5: x∗ := R[f + 1]
6: else if x∗ > R[n− t] then . k is too large and R[k] can be an arbitrarily large Byzantine value
7: x∗ := R[n− t]
8: end if
9: return x∗

Phase 2 Determining an interval where the actual kth smallest value is suspected to be
Input: x∗ from Phase 1
Output: trusted interval T for every node and a guess for the kth value sk

every node v executes the following commands :
1: Broadcast x∗

2: Receive new input values from all other nodes and store them in the sorted array R
3: Broadcast(R[f + 1], R[n− t])
4: Receive bounds (R[f + 1], R[n− t]) from all other nodes
5: for every new input value x∗ that is in at least n− t intervals

[
R[f + 1], R[n− t]

]
do

6: add x∗ to the sorted array T and call it the trusted array
7: end for
8: Guess for the kth value sk := median(T )
9: return trusted array T , guess for the kth value sk

Phase 3 King algorithm for the kth smallest value
Input: guess for the kth value sk, trusted array T
Output: consensusValue

1: for i = 1 to t+ 1 do
Communication Phase:

2: Broadcast(guess for the kth value sk)
3: receive guesses x from all other nodes
4: if some value x is received ≥ n− t times then . satisfied if all correct nodes have the same input value
5: Broadcast(“propose x”)
6: end if
7: if some “propose x” received > t times then . at least one correct node broadcast “propose x”
8: guess for the kth value sk := x
9: end if

Phase King (only the King node executes this phase):
10: kingValue = guess for the kth value sk
11: Broadcast(“suggest kingValue”)

Decision Phase:
12: if sk == kingValue or kingValue ∈

[
T [min], T [max]

]
then

13: Broadcast(“support kingValue”)
14: end if
15: if “propose x” received < n− t times and “support kingValue” received > t times then
16: sk = kingValue
17: end if
18: end for



The main idea of the algorithm is to perform a step at the
beginning where each node selects a new input value that
is close to the actual kth smallest value that we are looking
for. Denoting this value the new input value of the node, we
reduce the problem of establishing agreement with a special
result to a multivalued agreement where nodes can agree on
any value inside the interval of all correct values, i.e., inside[
S[1], S[n− t]

]
. We use the ideas of the Phase King Algorithm

proposed by Berman et al. [3] to establish agreement on any
value. One distinguished correct node, the King, can decide on
the value that all correct nodes have to adapt. The same authors
showed that t + 1 rounds suffice to establish agreement on
any input value in the presence of Byzantine nodes. A similar
idea was used in [19], where a distinguished node, the Jack,
proposed the value that all nodes should adapt.

Algorithm 1 presents our method in pseudo code. It is divided
into three phases: In the first phase, every node has an input that
is broadcast to every other node. Each node sorts the received
messages in increasing order and stores them in a local array
R. It picks a local approximation of the kth smallest value from
R and sets it to be the new input value. In the second phase,
every node broadcasts its selected kth smallest value and stores
the received values in a sorted array. Then, all nodes exchange
their interval bounds to determine the interval in which the
kth smallest value should lie from their perspective. The nodes
also pick the median of the corresponding array to be their
local guess for S[k]. The third phase is where the consensus
is established. We use the Phase King Algorithm to make the
nodes agree on one of the local guesses from Phase 2. Hereby
we assume that there are (t + 1) predetermined King nodes
known to each of the correct nodes in the system, and each
such King is assigned to exactly one round of Phase 3 in the
algorithm.

Throughout the algorithm we assume that the correct nodes
know the total number of nodes n and the upper bound on
the number of Byzantine nodes t present in the system. Since
Byzantine behavior is arbitrary, we also have to consider the
case where some Byzantine nodes decide not to send any value
to a correct node in the first phase of the algorithm. Such a
correct node would have to choose the approximation of the
kth smallest value from a smaller set with fewer Byzantine
nodes, thus not satisfying the required approximation for the
kth smallest value. One possibility to prevent this case is to
fill up the array R with dummy values which are assumed
to be worst-case input values, i.e. all smaller than S[1]. We
can however reach a better local approximation of the kth

smallest value by adjusting the number of Byzantine nodes
and choosing the kth smallest value directly from the smaller
interval. We therefore define f ≤ t, which denotes the number
of values that are suspected to be Byzantine in the array of
received values R. We assume that each correct node receives
n− t+ f values in a round and can calculate f since it knows
n and t. Note that this number f depends on the node and
the communication round, since Byzantine nodes can deviate
arbitrarily from the protocol.

A. Correctness of the Algorithm

In this section we will prove the correctness of Algorithm 1
and show that the algorithm performs optimally in the proposed
model.

Theorem 3 (Correctness and Validity). Algorithm 1 achieves
Byzantine agreement in the presence of t < n/3 Byzantine
nodes with a valid consensus value according to Definition 1.

Theorem 4 (Termination and Optimality). Algorithm 1 termi-
nates in O(t+1) rounds with message complexity O((t+1)n2)
and achieves an optimal approximation to the kth smallest
value.

B. Proof of Theorem 3

We start by considering Phase 1 and 2 of the algorithm.
These are preprocessing steps that force all correct nodes to
choose their new input values such that they satisfy the desired
validity conditions of the algorithm. Recall that the values in
all arrays and subarrays are sorted.

Lemma 1. After the first phase of the algorithm, ev-
ery node has chosen a new input value that is inside
the interval

[
S
[
k − df/2e

]
, S
[
k + bf/2c

]]
⊆[

S
[
k − dt/2e

]
, S
[
k + bt/2c

]]
.

Proof. Every node selects its input value as the median of its
local subarray R[k, k + f ]. It is sufficient to show that S[k] is
inside any such interval. This is because the algorithm chooses
the median of this interval as a guess for S[k]. Therefore, it
ensures any value from the interval to be at most df/2e ≤ dt/2e
positions away from S[k].

To prove that S[k] is inside the interval we assume that the
Byzantine nodes choose values smaller than S[k]. Values larger
than S[k] do not influence the position of the kth value. Every
value smaller than S[k] shifts the kth value by one position
and f Byzantine nodes can shift the kth value by at most
f positions. This way, S[k] will always be inside the chosen
interval

[
S[k], S[k+f ]

]
⊆
[
S[k], S[k+t]

]
. By the observation

above the chosen median of the interval will be at most df/2e
positions away from S[k].

This lemma shows that the new input values x∗ which are
generated by Phase 1 are valid values according to Definition
1 for k ∈

[
dt/2e+ 1, n− b3t/2c

]
. Other values of k will be

considered separately in Section V-C.

Lemma 2. In Phase 2, the nodes decide on a trusted interval
T which is a subinterval of[
S
[
k − dt/2e

]
, S
[
k + bt/2c

]]
.

Proof. Every correct node cuts off the t rightmost and leftmost
values of R. The received values from correct nodes are valid
values according to Lemma 1. There are at most t Byzantine
nodes, and therefore also at most t values that are either too
large or too small. Step 3 of Phase 2 would remove such
values. A value is added to T if it is contained in at least n− t



intervals, at least n − 2t of which came from correct nodes.
Thus, all values in T are valid according to Definition 1.

Lemma 3. The interval T is non-empty for each correct node.

Proof. We know that all correct nodes will receive the same
n− t correct values. Some of the nodes might remove at most
t largest and smallest entries after sorting the values. Therefore,
at least n− 3t > 0 central values are left inside the interval T
for each correct node. Moreover, this implies that the median
of all correct values x∗ from Phase 2 will be inside every
correct interval T .

The analysis of Phase 3 is similar to the analysis of the
Jack algorithm proposed in [19]. We emphasize the important
points of the analysis in the following part.

Lemma 4. If the King adapts the proposed value from Step 5,
it will be accepted by all nodes.

Proof. Only one value x can be proposed simultaneously in
Phase 3 by correct nodes. Assume there is another value y that
is proposed by some correct node. From any n− t messages
that a node received in Step 2, at least n − t − f ≥ n − 2t
values were broadcast by correct nodes. If two correct nodes
propose two different values x and y in Step 5, there must
have been 2(n− 2t) = 2n− 4t > n− t correct nodes which
broadcast either of the values in Step 2. This is a contradiction
since each correct node broadcasts only one value. If the King
adapts the proposed solution, it has received the proposals from
more than t nodes, i.e., at least one correct node. Each such
correct node saw other guesses for the kth smallest value x at
least n− t times. This means that at least n− 2t > t correct
nodes broadcast the value and will support the kingValue in
Step 13 of Phase 3.

Note that the trimming procedure in Phase 2 may also cut
off correct input values. Nevertheless, the chosen median guess
is not cut off in sufficiently many correct intervals. We will
show that the median of the trusted array T is inside the trusted
interval of at least (t+ 1) correct nodes.

Lemma 5. If the correct King proposes its own value, all
correct nodes will agree on this value.

Proof. In Phase 2, any correct node decides on a value that
is the median of the array of values that it has seen in at
least n− t bounds. f of the received bounds could have been
malicious, while n−t−f > t of the bounds came from correct
nodes. This way, also the value of the King was inside at least
t + 1 correct bounds. The corresponding nodes will support
the kingValue in step 13 of Phase 3.

In the next part we will show that the decision value is valid
according to Definition 1 and also satisfies the standard validity
conditions from Section III.

Lemma 6 (Interval Validity). The decision value of all nodes
is a valid value in the sense of Definition 1.

Proof. By Lemma 5, the correct kingValue will be accepted by
all nodes. The nodes might however have established agreement
in one of the previous rounds. We need to show that any value
that was accepted by all nodes is a value that was inside at
least one trusted interval of a correct node. Any value that was
adapted in Step 16 of Phase 3 has been supported by more than
t nodes in Step 13, i.e., by at least one correct node and thus
was inside its trusted interval. Since any value in the trusted
interval of correct nodes is correct, the accepted value must
have been correct as well.

Lemma 7 (Any-Input Validity). The algorithm satisfies Any-
Input Validity.

Proof. To show that Any-Input Validity holds, we need to
consider the first phase of the algorithm. There, the correct
nodes choose their new input value. This new input value is
a median of values that a node received from all other nodes,
i.e., a valid value according to the definition of Any-Input
Validity. In the next two rounds, the nodes establish agreement
on the new input values, where they choose a value that is
inside an array of some of the nodes. This value must therefore
have been suggested by at least one, possibly Byzantine, node,
which proves the statement.

Lemma 8 (All-Same Validity). Algorithm 1 satisfies All-Same
Validity.

Proof. For All-Same Validity assume that all correct nodes
have the same input value x. In the first phase, the Byzantine
values will be either equal to x, or they will be not considered
in Step 3. Therefore, the new input values x∗ in Phase 2 must
be equal to the value x, i.e., x∗ = x. If a Byzantine node
chooses a value unequal to x∗ in Phase 2, it will land on the
right or the left side of the sorted array, and will thus be outside
any interval bounds (R[f +1], R[n− t]) making the nodes set
sk = x∗ = x. All correct nodes will propose x in the third
phase, which will immediately lead to agreement.

C. Proof of Theorem 4

In this section we prove that the algorithm terminates after
a finite number of rounds with an optimal approximation for
the kth smallest value.

Lemma 9 (Termination). For t < n/3, Algorithm 1 requires
O(t+1) rounds of communication and terminates with a valid
value.

Proof. The algorithm terminates after sufficiently many nodes
have accepted the King’s value. Since there are (t + 1)
predetermined Kings at the beginning of the algorithm, there
will be one King that is not Byzantine in at least one of the
rounds of the algorithm. By Lemma 5, all correct nodes will
accept the King’s value because it is inside the interval of
every correct node. This way, all correct nodes will decide on
a valid value after at most (t+ 1) rounds. In the case when
a Byzantine node proposes a valid value to sufficiently many
correct nodes, the algorithm might establish agreement in one
of the earlier rounds.



The next lemma shows that Algorithm 1 achieves the best
possible approximation for the kth smallest value.

Lemma 10 (Optimality). Algorithm 1 finds the best possible
approximation for the kth smallest value.

Proof. For k ∈
[
dt/2e + 1, n − b3t/2c

]
, each correct node

chooses in Phase 1 of Algorithm 1 the best possible approx-
imation to the kth smallest value according to the proof of
Theorem 1. In the next steps, the decision value is chosen as a
value inside the bounds of all correct node values. Therefore,
the decision value is between the smallest and the largest
approximation of the kth value, and gives a value that is at
most dt/2e positions away from S[k].

In the case where k is outside of the interval[
dt/2e + 1, n − b3t/2c

]
, Algorithm 1 performs differently.

For k ≤ dt/2e, each node in the algorithm needs to choose
its guess sk as the (f + 1)-st value of each node. For
k ∈ [n− t− f + 1, n− t], each node chooses the (n− t)-th
value. According to Theorem 2, the local values of the nodes
are chosen optimally. With these values, the algorithm will
achieve the best possible approximation.

Thus, Algorithm 1 also finds the best approximation for the
kth smallest values outside the interval

[
dt/2e+1, n−b3t/2c

]
.

Lemma 11 (Message Complexity). The message complexity
of Algorithm 1 is O

(
(t+ 1) · n2

)
.

Proof. In the first two phases of the algorithm the nodes
exchange a constant amount of values with each other node
which gives an upper bound of O(n2) messages for the first
part. In Phase 3, all nodes exchange their messages with all
other nodes in each of the t+ 1 rounds. This gives a message
complexity of O

(
(t+ 1) · n2

)
for the last rounds and also the

total message complexity.

It should be noted that the problem of finding the kth smallest
value can also be solved using Interactive Consistency (IC) [9],
[16]. In this problem, all nodes have to agree on the same vector
of n values among which n− t have to be equal to the input
values of each of the correct nodes. Each node can then choose
the kth smallest value in this vector as its decision value and
thus find an optimal approximation to the kth smallest value.
IC protocols either need to rely on witness techniques, e.g.,
the Reliable Broadcast [4], [18], or require parallel execution
of the Byzantine Agreement Protocols for each of the input
values in order to guarantee that Byzantine nodes cannot send
around different values to different nodes. The witnessing
technique requires exponential message complexity [9]. The
parallel execution of an Agreement Protocol increases the
message complexity of a given algorithm by a factor of n, for
the King algorithm this leads to message complexity in the
order of O(n4). In contrast to this method our algorithm shows
that it is possible to agree on a value with special requirements,
such as the kth smallest value, without increasing the time
or message complexity of the standard multivalued Byzantine
agreement protocols.

This concludes the analysis of Algorithm 1 and shows that
the algorithm performs best possible in the distributed setting.
In the next part we will apply the idea of Algorithm 1 to find
the median of all correct nodes in the distributed setting.

VI. FROM THE kTH SMALLEST VALUE TO THE MEDIAN

The median can be computed similarly to the kth smallest
value. The main difference is that the Byzantine nodes can
shift the kth smallest value by broadcasting values which are
smaller than S[k]. In contrast, the median can be shifted in
any direction by broadcasting larger and smaller values than
the median itself. As will be shown in the next theorem,
each node therefore has to search for the median inside a
symmetric interval R

[
k − df/2e, k + bf/2c

]
. As a validity

condition we require the consensus value to be inside the
interval

[
S
[
m − dt/2e

]
, S
[
m + bt/2c

]]
, where m is the

position of the median of S according to Definition 2. This
validity condition was first proposed in [19]. Only the first
phase of Algorithm 1 needs to be adjusted as presented in
Algorithm 2.

Algorithm 2. Distributed Median Algorithm

Phase 1 Choosing values close to the median
Input: input value x of node v
Output: new input value x∗ in the vicinity of the kth smallest

value
every node v executes the following commands :

1: Broadcast x
2: Receive input values from every other node, store all values

in the sorted array R
3: x∗ := median of R
4: if x∗ ≤ R[f ] then
5: x∗ := R[f + 1]
6: else if x∗ > R[n− f ] then
7: x∗ := R[n− f ]
8: end if
9: return x∗

Theorem 5. In Algorithm 2 the nodes agree on a value that
lies within the interval

[
S
[
m−dt/2e

]
, S
[
m+ bt/2c

]]
, where

m is the median of S.

Proof. As before, we only need to show that every correct
node will decide on a median that is within the interval[
S
[
m − df/2e

]
, S
[
m + bf/2c

]]
of all correct nodes after

the first phase of the algorithm. The Byzantine nodes can shift
the median in both directions. Note that placing one value at a
position before the median and another one after does not shift
the median in the array. The worst case is when all f Byzantine
values lie on one side of the actual median. In this case the
median is shifted df/2e ≤ dt/2e positions away from its actual
position. It is guaranteed that the guess of the kth smallest value
sk is not further away than df/2e positions from the actual
median since every node picks the median of R as its new



input value. Thus, all correct nodes will choose their new input
value inside the interval

[
S
[
m− dt/2e

]
, S
[
m+ bt/2c

]]
.

With Phase 2 and 3 as in Algorithm 1, the presented
Distributed Median Algorithm computes an approximation
for the median which is optimal.

VII. VECTOR CONSENSUS

A. Motivation

Vector consensus is a generalization of the one-dimensional
consensus where the nodes have more than one input value
and the values of single components are comparable. The idea
is to determine a representative vector which is close to the
vectors of all correct nodes. There are a number of applications
that requires vector consensus. One example is the distributed
facility location problem, where nodes need to minimize their
distance to a median location. Another example are voting
protocols, where the voters need to determine a representative
median voter. Using the definition of the geometric median in
multiple dimensions does however seem difficult since there
is no explicit formula to compute a median and only iterative
solutions provide an approximation.

In this section, we use the Distributed Median Algorithm
to generalize consensus to multiple dimensions. Similar ap-
proaches can be found in [14], [15], [22]. In these papers
the authors generalize the idea of removing the t leftmost and
rightmost values of the sorted array to several dimensions. They
therefore compute the convex hull of every n− t nodes, show
that the intersection of all such convex hulls is non-empty and
determine a central point inside the intersection. The number
of possible convex hulls does however become exponential for
large t and computing a central point inside the intersection is
therefore costly [22]. The papers instead propose approximate
algorithms that can also be applied to asynchronous consensus.
In this section we want to derive an exact version of the vector
agreement, while restricting our computation to a linear number
of rounds in t. We relax the condition of the consensus value
from being inside the convex hull to a value that is inside the
range of all correct values in each component. In addition, we
have to drop the Any-Value Validity condition from Section
III, while the All-Same Validity condition still holds.

B. Generalization to d Dimensions

First, we introduce a new validity condition for the general
case:

Definition 3 (Box Validity). Let v1, . . . , vn−t ∈ Rd be the
input values of all correct nodes. A vector w ∈ Rd satisfies
box validity, if for each component i ∈ [d] holds

min(v1i , . . . , v
n−t
i ) ≤ wi ≤ max(v1i , . . . , v

n−t
i )

We generalize the one-dimensional case by applying Algo-
rithm 2 to compute the median of each coordinate separately.

Lemma 12. The algorithm terminates in the presence of
t < n/3 Byzantine nodes with a value that is valid according
to Definition 3.

Algorithm 3. Vector Consensus

Consensus in d Dimensions
Input: n input vectors v1, . . . , vn ∈ Rd

Output: consensusValue m ∈ Rd

1: for i = 1 to d do
2: use Algorithm 2 to compute the median mi of the

values v1i , . . . , v
n
i

3: end for
4: return (m1, . . . ,md)

Proof. The algorithm can tolerate up to (n− 1)/3 Byzantine
values, since every component is considered separately. In
every component the t leftmost and rightmost values are cut
off, and the median is computed according to Algorithm 2.
Assume some Byzantine value was outside of the interval in
some other dimension of the vector. It is not possible for the
algorithm to determine whether the node that is an outlier in
some component is actually Byzantine. Therefore, we do not
need to remove this component of the vector from the set
of all nodes. This way we can compute the medians in each
component without restricting the number of Byzantine nodes.
Observe that the computed median is at most dt/2e positions
away from the correct median in each component and is in
the range of all correct values in this component. Thus, the
value is guaranteed to satisfy box validity.

Lemma 13. Algorithm 3 satisfies All-Same Validity.

Proof. Assume all correct nodes decided for the same vector.
Then, the correct nodes will propose the same value to agree
on in each iteration of Algorithm 3. By Lemma 8 the nodes
will agree on the same values in each component, and therefore
on the same vector in the end.

With this algorithm it is possible to make the nodes agree
on a vector that is not too far away from all vectors that were
proposed by the correct nodes. The number of Byzantine nodes
does not change with the dimension of the input vectors, and
the number of rounds is bounded by the number of Byzantine
nodes.

VIII. CONCLUSION

In this paper we presented a variation of the multivalued
agreement problem, where the nodes are required to agree on
a particular value from the interval of all correct nodes. We
showed that no deterministic algorithm can solve this problem
in the presence of Byzantine nodes, but can only approximate
the value with an accuracy of dt/2e positions away from the
actual value. We proposed an algorithm for consensus on the
kth smallest value in the synchronous message passing model
that matches this bound. Using the same algorithm we were
able to improve the result of [19] and find the best possible
approximation of the median of all correct nodes. While the
algorithm performs optimally in the one-dimensional case,



the idea seems not to be applicable to find a representative
value for multi-dimensional consensus. In a vector space the
ordering of the input vectors is not well-defined and it becomes
computationally expensive to find a representative vector in
the presence of Byzantine nodes [14], [15], [22]. Relaxing
the validity condition gives a result that is independent of the
dimension and can tolerate up to a third of Byzantine nodes.

REFERENCES

[1] Mayank Bawa, Aristides Gionis, Hector Garcia-Molina, and Rajeev
Motwani. The price of validity in dynamic networks. In Proceedings of
the 2004 ACM SIGMOD International Conference on Management of
Data, SIGMOD, June 2004.

[2] Piotr Berman and Juan A. Garay. Asymptotically optimal distributed
consensus. ICALP. July 1989.

[3] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Towards Optimal
Distributed Consensus. In 30th Annual Symposium on Foundations of
Computer Science, FOCS, October 1989.

[4] Gabriel Bracha. Asynchronous Byzantine Agreement Protocols. Infor-
mation and Computation, 75(2):130–143, 1987.

[5] Soma Chaudhuri. More Choices Allow More Faults: Set Consensus Prob-
lems in Totally Asynchronous Systems . Information and Computation ,
105(1):132 – 158, 1993.

[6] Benjamin Doerr, Leslie Ann Goldberg, Lorenz Minder, Thomas Sauer-
wald, and Christian Scheideler. Stabilizing Consensus with the Power of
Two Choices. In Proceedings of the Twenty-third Annual ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA, June 2011.

[7] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and
William E. Weihl. Reaching Approximate Agreement in the Presence of
Faults. Journal of the ACM, 33(3):499–516, July 1986.

[8] Alan D. Fekete. Asymptotically optimal algorithms for approximate
agreement. Distributed Computing, 4(1):9–29, 1990.

[9] Michael J. Fischer and Nancy A. Lynch. A Lower Bound for the Time to
Assure Interactive Consistency. Information Processing Letters, 14(4):183
– 186, 1982.

[10] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossi-
bility of Distributed Consensus with One Faulty Process. Journal of the
ACM, 32(2):374–382, April 1985.

[11] Matthias Fitzi and Martin Hirt. Optimally Efficient Multi-valued
Byzantine Agreement. In Proceedings of the Twenty-fifth Annual ACM
Symposium on Principles of Distributed Computing, PODC, July 2006.

[12] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
Generals Problem. ACM Transactions on Programming Languages and
Systems, 4(3):382–401, July 1982.

[13] Hammurabi Mendes and Maurice Herlihy. Tight Bounds for Connectivity
and Set Agreement in Byzantine Synchronous Systems. In 31st
International Symposium on Distributed Computing (DISC 2017).

[14] Hammurabi Mendes and Maurice Herlihy. Multidimensional Approximate
Agreement in Byzantine Asynchronous Systems. In Proceedings of the
Forty-fifth Annual ACM Symposium on Theory of Computing, STOC,
June 2013.

[15] Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and Vijay K.
Garg. Multidimensional agreement in Byzantine systems. Distributed
Computing, 28(6):423–441, January 2015.

[16] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching
Agreement in the Presence of Faults. Journal of the ACM, 27(2):228–234,
April 1980.

[17] Roberto De Prisco, Dahlia Malkhi, and Michael Reiter. On k-Set
Consensus Problems in Asynchronous Systems. IEEE Transactions
on Parallel and Distributed Systems, 12(1), 2001.

[18] T.K. Srikanth and Sam Toueg. Simulating Authenticated Broadcasts
to Derive Simple Fault-Tolerant Algorithms. Distributed Computing,
2(2):80–94, June 1987.

[19] David Stolz and Roger Wattenhofer. Byzantine Agreement with Median
Validity. In 19th International Conference on Priniciples of Distributed
Systems, OPODIS, December 2015.

[20] Sam Toueg. Randomized Byzantine Agreements. In Proceedings of the
Third Annual ACM Symposium on Principles of Distributed Computing,
PODC, August 1984.

[21] Russell Turpin and Brian A. Coan. Extending binary Byzantine agreement
to multivalued Byzantine agreement . Information Processing Letters ,
18(2):73 – 76, February 1984.

[22] Nitin H. Vaidya and Vijay K. Garg. Byzantine Vector Consensus in
Complete Graphs. In Proceedings of the 2013 ACM Symposium on
Principles of Distributed Computing, PODC, July 2013.

[23] Zhuolun Xiang and Nitin H. Vaidya. Relaxed Byzantine Vector Consensus.
In 20th International Conference on Principles of Distributed Systems
(OPODIS 2016).

[24] Zhuolun Xiang and Nitin H. Vaidya. Brief Announcement: Relaxed
Byzantine Vector Consensus. In Proceedings of the 28th ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA, July 2016.


