
Lower Bounds for the Capture Time:
Linear, Quadratic, and Beyond

Klaus-Tycho Förster, Rijad Nuridini, Jara Uitto, and Roger Wattenhofer

Computer Engineering and Networks Laboratory,
ETH Zurich, 8092 Zurich, Switzerland

{foklaus,rijadn,juitto,wattenhofer}@ethz.ch

Abstract. In the classical game of Cops and Robbers on graphs, the
capture time is defined by the least number of moves needed to catch all
robbers with the smallest amount of cops that suffice. While the case of
one cop and one robber is well understood, it is an open question how
long it takes for multiple cops to catch multiple robbers. We show that
capturing ` ∈ O (n) robbers can take Ω (` · n) time, inducing a capture
time of up to Ω

(
n2

)
. For the case of one cop, our results are asymptoti-

cally optimal. Furthermore, we consider the case of a superlinear amount
of robbers, where we show a capture time of Ω

(
n2 · log (`/n)

)
.

1 Introduction

This paper brings you back to your childhood, when you played the game of tag
with your friends. Particularly interesting is a team version of tag sometimes
known as jail, chase, manhunt, smee, or, as in this paper, cops and robbers. In
cops and robbers, children are split into two teams, the cops and the robbers,
where cops need to touch robbers, in order to jail them. If all children run at
approximately the same speed, and the playground is suitably obstructed, the
game becomes exciting, and cops usually need to cooperate in order to block
possible escape paths of the robbers. Are there playgrounds (graphs) where the
cops need a long time to catch all the robbers? This is the central open question
we will investigate in this work.

The analytical study of these games on graphs is still relatively young.
Breisch [9] first discussed searching for a lost person in a cave in 1967, followed by
a formalization by Parsons [22,23] a decade later. The work of Quilliot [25] and
Nowakowski and Winkler [21] introduced a game of pursuit-evasion on graphs,
today commonly known as Cops and Robbers: A cop has to catch a robber, with
both alternating in moves along edges. Aigner and Fromme [1] allowed multiple
players into the game and showed that in any planar graph, three cops suffice to
win. These articles spawned a rich field of interest, with plenty of further work,
we refer to the book of Bonato and Nowakowski [7] for an in-depth overview and
to [2,8,15] for recent surveys.

There are two central questions in the game of Cops and Robbers: First, how
long will these cops need to catch the robbers, i.e., what is the capture time?
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Secondly, how many cops are needed to catch the robbers, i.e., what is the cop
number?

The case of one cop and robber is well understood, with the graphs where
one cop suffices being characterized [21,25], and the time needed to capture one
robber being at most n− 4 in n ≥ 7 vertex graphs [14]. With multiple cops and
robbers, much is still unknown. For the first question, the best current result
states that if k cops suffice, then they can capture a single robber in at most
nk+1 time [3]. Already for one cop this bound is off by a factor of n. For the

second question, O
(
n/
(

2(1−o(1))
√
logn

))
cops always suffice [13,18,26] and there

are graphs where Ω(
√
n) cops are needed [24], but it is unclear what the exact

bound is. Meyniel conjectured in 1985 that O(
√
n) cops always suffice [12].

It is an open question what a good capture time lower bound would be for
more than a single cop and robber, cf., e.g., [7]. It seems that so far, essentially
only the cases of i) the cartesian product of two trees and ii) the d-dimensional
hypercube have been successfully investigated for just one robber. For i), the
capture time is half the diameter of the graph [19], while for ii), it is Θ(d ln d),
i.e., polylogarithmic in n = 2d [6].

After discussing further related work in the following Subsection 1.1 and a
formal model in Section 2, we start with the case of one cop and any ` ∈ O(n)
robbers in Section 3, and prove that the capture time is Θ(` · n).

In Section 4, we investigate the reversed case of k cops and one robber. As
it turns out, the k cops might need Ω(n) time to capture a single robber, just
like in the case of one cop.

Afterwards, we study the case of many cops and many robbers in Section 5,
where we show that for k cops and any ` ∈ O(

√
n/k) robbers, the cops need

at least Ω(` · n) time to capture all robbers in general graphs. Furthermore, we
discuss a superlinear number of robbers and show that the time to capture them
all can be as high as Ω

(
n2 · log (`/n)

)
.

1.1 Further Related Work

The capture time density of a graph can be defined as as the ratio of the capture
time to the number of vertices. Bonato et al. extended this notion to infinite
graphs, or more precisely to limits of chains of induced subgraphs, and showed
that the density can take any value from 0 to 1 for a single cop and robber [5]. It
can be tested in polynomial time if fixed k ∈ N is the cop number of a graph [3],
with these graphs being characterized in [10]. Nonetheless, determining the cop
number of a graph is EXPTIME-complete [16].

Many more variants of Cops and Robbers are considered in the literature
(e.g., can the cops win if they do not start too far away from the robber [4],
applications to compact routing [17], or how to contain worm attacks in net-
works [11]), we again refer to [2,7,8,15] for an even further overview.
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2 Model

The game of Cops and Robbers is a pursuit-evasion game played on undirected
graphs G = (V,E) with |V | = n and diameter of D. We denote the set of k ∈ N
cops as C = {p1, p2, . . . , pk} and the set of ` ∈ N robbers as R = {r1, r2, . . . , r`}.
Throughout this paper, all graphs are assumed to be connected, finite, and, as
standard in the literature, reflexive (i.e., each vertex has one self-loop, which is
the same as allowing the cops and robbers to stand still).

The game proceeds in rounds, where each round consists of first the cops
making a move and then the robbers making a move. In round 0, the cops make
a move by placing each cop on a vertex and then the robbers make a move by
placing each robber on a vertex. In round 0 and every further round, vertices can
be shared by an arbitrary number of cops and robbers. For all subsequent rounds
i ≥ 1, first, a cop move consists of moving each cop along an incident edge, with
second, a robber move defined by moving each robber along an incident edge.
Both the cops and robbers have perfect information, i.e., they know the whole
graph and every previous move played.1

A robber is caught if a cop shares its occupied vertex. Once robber ri is
captured, he is removed from the game, i.e., the cops need not to guard the
robbers that are already captured. Should at least k cops be needed to catch all
robbers on G, then the graph is called k-copwin with a cop number c(G) = k.

For c(G) = k and ` = 1, we define the capture time capt(G, k, 1) as the
smallest number of moves needed for the k cops to catch the robber, no matter
what strategy the robber employs. Note that by this formulation, the capture
time capt(G, k, 1) is only defined on graphs where k cops can actually catch a
robber. In a similar fashion, capt(G, k, `) is the smallest number of moves needed
for the k cops to catch all ` robbers. Let ri be the i-th robber to be caught and
define capt(G, k, ri) as the smallest number of moves needed for the k cops to
catch the first i robbers.

3 One Cop, Many Robbers

We start with the case of one cop, many robbers. Gavenčiak showed in 2010 that
n − 4 is the maximum capture time for one cop and one robber if n ≥ 7 [14].2

Observe that after catching one robber, the cop could go back to her starting
position in at most diameter D moves and then catch the next robber in at most
n− 4 moves. This gives us an upper bound for the capture time:

Observation 1 Let G be a 1-copwin graph. Then, capt(G, 1, `) ∈ O(` · n).

Our next step will be to show a matching lower bound:

Theorem 2. Let n ≥ 12. Then, for all ` ∈ O(n), there exists an n-vertex graph
G with capt(G, 1, `) ∈ Ω(` · n).

1 Bonato and Nowakowski also compared it to Pac-Man [7].
2 We note that it was previously known that capt(G, 1, 1) ≤ n− 3 for n ≥ 5 [5].
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The combination of both yields that the upper and lower bounds are asymptot-
ically tight, i.e., the capture time of general graphs is Θ(` · n) for ` ∈ O(n).

Before proving Theorem 2, let us start with the example of a tree without
branches, i.e., a path: While it might take the cop D/2 ∈ Ω(n) time to capture
the first robber, all subsequent robbers can be captured in n−1 moves, inducing
a total capture time of less than 2n. However, the goal is to force the cop to
move a linear number of times for each robber, which is shown in the following
proof. Thus, we will construct a graph where, akin to a path, the robber has to
move to one end to catch one robber, but then all robbers escape to the other
end of the path, inducing a linear capture time for each robber. To ensure that
the robbers can escape to the other side, at each end there will be a star with a
ray-length of two, cf. Figure 1. Next, we will give a proof for Theorem 2.

S2,4 S2,4

Fig. 1. Let Sx,y be the star that has y rays of length x, i.e., the common star with n
nodes would be S1,n−1. In this example, there are two S2,4, connected by a path of
nodes. Consider a game of one cop and four robbers on this graph with 32 nodes. If in
round 0 the four robbers choose a star that is farthest from the cop’s initial position,
and place themselves at the end of the four rays, then the cop needs at least 10 ≥ n/4
moves to capture the first robber. As the remaining robbers will flee to the other star,
the cop needs 19 > n/2 moves to catch each further robber, inducing a total capture
time of 67. This construction can be directly extended to S2,bn/8c for every ` ≤ n/8.

Proof (of Theorem 2). We begin by describing the construction of the graph G
with capture time Ω(` · n). Let n ≥ 12 and suppose for now that ` ≤ n/8. Let
Sx,y be the star that has y rays of length x. Create two stars S2,`, denoted by
left star and right star in this proof. Connect the center nodes of both stars by
a path of the remaining nodes. Note that this path (including the center of both
stars) has a length (of nodes) of least n/2 ∈ Ω(n).

When the cop places herself in round 0, she can be either directly in the
middle of the path, or closer to the left or the right star center.

Before describing the strategy of the cop, we first describe the strategy of the
robbers: In round 0, all the robbers choose a star which has a higher distance to
the cop than the other star (or, to break symmetry, the left one if the distance is
equal); and place one robber at the end of each the ` rays of the star. Until the
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cop enters one the rays of their star, all robbers stay put. Then, when the cop
is one move into the ray from the center of the star, the corresponding robber
stays put, but all other robbers move one step towards the center of their star.
Should the cop now move back to the center of the star, then all robbers go the
end of their rays again. But if the cop moves to the end of the ray to catch a
robber, then all the robbers move to the other star and choose pairwise different
rays to place themselves at the end. The strategy is iterated until all robbers are
caught.

We now describe a lower bound for the number of moves needed by the cop
to counter the robbers’ strategy: To catch the first robber, no matter where the
cop starts, she has to move Ω(n) times and she has to move to the end of a ray
to do so, i.e., capt(G, 1, r1) ∈ Ω(n). Once a single robber is captured, all other
robbers will move to the end of the rays of the other star, and the cop has no
possibility to catch them before that. Thus, Ω(n) moves are needed to capture
the second robber, and so on, leading to capt(G, 1, r`) = capt(G, 1, `) ∈ Ω(` ·n).

Should the amount of robbers be larger than n/8, then both stars are created
as S2,bn/8c, and we ignore all robbers rbn/8c+1, . . . , r`. Even if they should all be
captured in the first round, the capture time for the remaining robbers will still
be Ω(` · n). ut
Corollary 3. For all n ≥ 12 there exists a n-vertex graph G s.t. the number
` ≤ n of robbers can be chosen with capt(G, 1, `) ∈ Θ(n2).

4 Many Cops, One Robber

In this section, we turn our attention to the case of many cops and extend our
results for an arbitrarily large fixed number of cops:

Theorem 4. Let k0 ≥ 2 be a positive integer. There exists an integer k ≥ k0 and
a graph G = (V,E) with |V | = n ∈ O(k2) s.t. c(G) = k and capt(G, k) ∈ Ω(n).

In other words, we claim that the time required to catch the first robber is
asymptotically linear in the number of nodes of the graph. Furthermore, we do
not only prove the case that the number of cops k is a constant, we propose
a stronger claim, which states that the number of nodes n our construction
requires is in the order of O(k2), i.e., k ∈ O(

√
n).

For this effort, we utilize a graph construction by Pra lat that shows the
existence of graphs with n nodes with a cop number of Ω(

√
n) [24].

Lemma 5. [24] Let c(n) denote the maximum of c(G) over all connected graphs
with n vertices. Then, c(n) >

√
n/2− n0.2625 for n sufficiently large.

While Lemma 5 provides us with the existence of graphs with a high cop
number, the capture time in these graphs remains low, i.e., a small constant.
At first sight, it is not clear if the capture time of a graph can be high in the
presence of “many” cops. As a trivial example, the capture time for a single
robber is 1 if the number of cops is at least n/2, since the initial positions of the
cops can be chosen such that each node can be reached within 1 step.
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However, finding an equally straightforward bound becomes more elusive
when the number of cops is smaller than the size of the smallest dominating set3

in a graph. For the case of one cop and one robber, it is known that the capture
time of any 1-copwin graph is at most linear in the number of nodes. As the
next step, we show a more general result showing that a similar bound holds for
the case of many cops.

The basic idea is to first fix some integer k0 and take two copies G1 and G2

of a graph G with O(k2) nodes with cop number k ≥ k0 promised by Lemma 5.
Then, we connect these graphs with a long bridge (i.e., a path) with b ∈ Ω(n)
nodes in a similar fashion as in Section 3. The endpoints e1 and e2 of the bridge
are connected to arbitrary nodes s1 and s2 in graphs G1 and G2, respectively.
Notice that since k ∈ O(

√
n), we can choose b ∈ Ω(n). We denote the graph

constructed in this manner by D(G, b). See Figure 2 for an illustration.

. . .

G1 G2

︸ ︷︷ ︸

b nodes

e1 e2s1 s2

Fig. 2. Construction of the graph D(G, b) for the case of two cops. The entry nodes
s1 and s2 are chosen arbitrarily and connected by a path of length b. One cop is not
sufficient to catch the robber alone in graphs G1 and G2.

4.1 Evasion Strategy

The next step is to choose the initial placement for the robber according to
the initial placement of the cops in graph D(G, b) = (V,E) for some G and
b. Let X = {x1, . . . , xk}, where xi ∈ V for every 1 ≤ i ≤ k, be the initial
placements of the cops, i.e., cop pi is initially located in node xi. In addition,
let d(u, v) denote the length of the shortest path between nodes u and v and
d(u,A) = min{d(u, v) | v ∈ A}, where A ⊆ V . We say that G1 is away from the
cops if

|{x ∈ X | d(x,G1) ≥ bb/2c}| ≥ dk/2e ,
i.e., half of the cops are at most as close to G1 as they are to G2. Being away is
defined similarly for G2. It is easy to verify that either G1 or G2 is away from
the cops for any k, possibly both.

3 A set D ⊆ V is a dominating set for V if every node in V \D has a neighbor in D.
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Intuitively, we aim to locate the robber into one of graphs that is away from
the cops, say G1. By doing this, the fact that the cop number of G1 is k ensures
that the robber has a strategy that allows it to evade any number of cops trying
to catch him before every cop has entered G1. However, before stating the claim
formally, there are some minor technicalities that have to be accounted first.
Our construction slightly modifies graph G1 (and G2) by adding one additional
edge that connects the bridge to G1 and this can have an effect on the strategy
of the robber that allows him to evade up to k − 1 cops.

Fortunately, there is a simple way to show that this is not an issue. Consider
now only the graph G1 and the strategy S that the robber has to evade at
most k − 1 cops in G1 indefinitely. To utilize S in graph D(G, b), we extend
it to the larger graph in the following manner. Consider any configuration of
the game, i.e., the placements of the players in which there are k′ ≤ k − 1 cops
occupying nodes u1, . . . , uk′ in G1. Then, the robber selects the move from S that
corresponds to a configuration in which the k′ cops occupy the nodes u1, . . . , uk′

in G1 and the remaining k − 1− k′ cops occupy node s1.

Observation 6 Let G = (V,E) be a graph with c(G) = k and let H = (V ∪
{v}, E∪{(u, v)}), where v 6∈ V and u is an arbitrary node in V . Then, c(H) ≥ k.

4.2 The Cop Number

We have now gathered the tools that our approach requires to show that captur-
ing one robber with many cops takes at least linear time in our graph construc-
tion. However, before going to the claim, we make one more observation about
our construction. That is, we show that the cop number of D(G, b) is at most
c(G) + 1 and at least c(G) for any b. While it might seem that adding the bridge
between two graphs with cop number k should not increase the cop number, it
is not clear that the robber cannot trick the cops and escape from G1 to G2

once all the cops have entered G1. As a simple example of the aforementioned
issue, consider the graph shown in Figure 3. While graph G in the example is a
1-copwin graph, adding an edge between two copies of G breaks this property.
The 1-copwin properties are easy to verify by recalling a graph is 1-copwin if
and only if it can be reduced to a single vertex by successively removing corners,
i.e., nodes whose (inclusive) neighborhood is contained in the neighborhood of
some other node [1].

We tackle this issue by observing that the cop number in the graph we have
constructed is either k or k+ 1, given that the cop number of G is k. It is clearly
the case that c(D(G, b)) ≤ k + 1 since the game, from the perspective of the
cops, can be “reduced” to playing it only in G1 by simply leaving one cop to
guard the bridge. Now the cops chasing the robber can use a strategy that does
every move with the robber not in G1 as if the robber was in s1. If the robber
decides to leave G1, the cop guarding the bridge can capture the robber.

Lemma 7. Let G = (V,E) be a graph with c(G) = k ≥ 2. Then, k ≤ c(D(G, b))
≤ k + 1 for any integer b > 0.



8 K.-T. Förster, R. Nuridini, J. Uitto, R. Wattenhofer

u u′

Fig. 3. Two copies of a graph G with cop number 1 connected by an edge denoted by
the dashed line. Node u is the unique corner in G. Since adding the dashed edge adds
a node into the neighborhood of u that is not in the neighborhood of any other node
in G, it follows that u is not a corner after addition of this edge. Due to the symmetry
of this example, there are no corners in the resulting construction and therefore, it is
not 1-copwin.

Proof (of Lemma 7). It was shown by Berarducci and Intrigila [3] that if H
is an induced subgraph of G and there exists a graph homomorphism from G
onto H, which is the identity mapping in H, then k = c(G) ≥ c(H). Since
c(G) = k, G is an induced subgraph of D(G, b) and the homomorphism can be
found by considering a mapping where G2 is mapped onto G1 and every node
in the bridge to s1, it follows that k ≤ c(D(G, b)). Given k + 1 cops, one of the
cops can guard the bridge and force the robber never to exit either G1 or G2.
Therefore, the remaining k cops can simply apply the strategy promised by the
fact that c(G) = k to capture the robber. ut

We are now ready to show that the capture time is at least asymptotically
linear in the number of the nodes, for an arbitrarily large number of cops.

Proof (of Theorem 4). Let H be a graph with m nodes and a cop number of
at least

√
m/2 −m0.2625 ≥ k0 promised by Lemma 5. Set G = D(H, b), where

b = m, and let c(H) = k′. Consider now the game with c(G) = k cops, where
k′ ≤ k ≤ k′ + 1 by Lemma 7, one robber, and let G1 and G2 be the copies
of H in G. Assume without loss of generality that the cops are away from G1.
According to Observation 6, the robber has a strategy that allows him to escape
at most k′−1 cops as long as not every cop has entered the subgraph induced by
G1 ∪{e1}, where e1 is the endpoint of the bridge connected to G1. By definition
of the cops being away from G1, there are at most bk/2c ≥ k′ − 1 cops that
are closer to G1 than to G2. Thus, there is at least one cop that has to move
Ω(b) ∈ Ω(n) times before G1 ∪ {e1} is occupied by at least k′ cops for the first
time. Since the robber is not captured before this happens and the case for G2

works analogously, the claim follows. ut

5 Many Cops, Many Robbers

Sections 3 and 4 dealt with the case of one cop and one robber, respectively.
We now focus on the case of multiple cops and multiple robbers. Our goal is to
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show that there are k-copwin graphs for arbitrarily large k, s.t. capturing all `
robbers with the k cops must take in the order of ` · b time, with the number of
nodes in the graph being in the order of at most ` · k2 + `2 · k+ b. In particular,
our goal is establish Theorem 8:

Theorem 8. Let k0 ≥ 2 be a positive integer. There exists an integer k ≥
k0, s.t. for all b ∈ N and for all ` ∈ N holds: There exists a graph Gk,`,b =
(Vk,`,b, Ek,`,b) with i) c(Gk,`,b) = k or c(Gk,`,b) = k + 1 and ii) |Vk,`,b| ∈ O(` ·
k2 + `2 · k + b), s.t. capt(Gk,`,b, c(Gk,`,b), `) ∈ Ω(` · b).

From Theorem 8, we can directly claim the following corollary, which shows
that the capture time is at least asymptotically linear in the number of the
nodes times the number of robbers, for an arbitrarily large number of cops and
robbers by setting b ∈ Θ(` · k2 + `2 · k):

Corollary 9. Let k0 ≥ 2 be a positive integer. There exists an integer k ≥ k0
and a graph G = (V,E) with |V | = n ∈ O(` · k2 + `2 · k) s.t. c(G) = k and
capt(G, k, `) ∈ Ω(` · n).

We note that the cop number k can be as high as O(
√
n/`), and the amount of

robbers as high as O(
√
n/ k) in Corollary 9.

To prove Theorem 8, we cannot use a graph construction similar to the ones
in Section 3 or Section 4. In Section 4, the construction relied on the fact that
there is just one robber. When connecting the two copies of the graph promised
by Lemma 5, the robber can pick the side with less cops – and some cops have to
cross the long bride, inducing a linear capture time. However, this construction
cannot be coupled with the idea of Section 3, as we cannot rule out a single cop
waiting on the bridge: Connecting the graphs promised by Lemma 5 can increase
the cop number by one (cf. Figure 3). Then, the robbers cannot escape over the
bridge, allowing the cops to capture them in rapid succession. Even if one would
add multiple bridges, the extra cop could simulate the behavior of the robbers,
capturing at least a fraction of them each time the robbers cross. Thus, we need
an improved graph family to establish Theorem 8.

In the following, we first describe the new graph construction (Subsection
5.1) with the desired properties and the strategy of the robbers in these graphs
(Subsection 5.2), before we prove Theorem 8 in Subsection 5.3.

5.1 The Graph Construction of Gk,`,b

Given an integer k0, Lemma 5 promises a graph Gg = (Vg, Eg) with a cop number
of c(Gg) = k ≥ k0 and at most |Vg| ∈ O(k2) nodes. Henceforth, we will refer to
these graphs Gg as gadget graphs with a diameter of D(Gg) = Dg.

The construction idea of this subsection is as follows: We construct a cycle
and attach ` copies of the gadget graph with long lines to top, bottom, left, and
right side of the cycle. A graphical depiction can be found in Figure 4.

We first describe how to attach the copies: Let vg be a fixed node in Gg.
Attach a line of nodes of length 10` · Dg to vg. Then, copy the graph Gg with
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︸
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b
no
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Fig. 4. The graph Gk,`,b consists of the four subgraphs Gtop
g , Gbottom

g , Gleft
g , and Gright

g ,
which are connected cyclically by paths of length b. Each of the four subgraphs consists
of ` copies of the gadget graph Gg with c(Gg) = k, which is in turn connected to a path
of length 10` · Dg (with Dg being the diameter of Gg). Initially, the ` robbers place
themselves all in a subgraph s.t. at least half the cops are at least b/2 moves away from
the subgraph, one robber in each of the ` gadget graphs. As each robber can evade
less than k cops in his gadget graph indefinitely, no robber can be caught until k cops
enter his gadget graph. I.e., the cops need Ω(b) moves to capture the first robber. If
there are just Gk,`,b = k cops, the robbers could then all escape to another subgraph,
forcing the cops to spend at least Ω(b) moves for each subsequent robber. However,
if there are c(Gk,`,b) = k + 1 cops, the extra cop pk+1 could patrol anywhere in the
graph, possible blocking the path of the robbers. However, if all robbers always try to
move to their respective node vend, but moving back when a cop comes closer than
Dg, the extra cop can keep at most one extra robber in check. Then, as soon as k cops
enter a gadget graph with a robber, the other robbers can escape to another subgraph:
In the top subgraph case, the robbers “left” of pk+1 go to Gleft

g , the robbers “right”
of pk+1 go to Gright

g . As all these robbers always keep a distance of at least Dg to the
next cop when escaping to another subgraph, they can position themselves perfectly
in their new gadget graph with a diameter of Dg. This can be iterated, enforcing a
capture time of Ω(` · b). If b ∈ Ω(n) is chosen, then this yield a lower bound of Ω(` ·n).
We note that three subgraphs would also suffice with a slightly modified strategy.
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the line ` times as Gg,1, . . . , Gg,`, with the other endpoints of the lines called
vend,1, . . . , vend,` respectively. Connect vend,i to vend,i+1 with a line of length
3 · Dg for all 1 ≤ i < `, inducing a path from vend,1 to vend,` consisting of
3(`−1) ·Dg new nodes. Denote this construction as Gtop

g and copy it three more

times as Gbottom
g , Gleft

g , and Gright
g .

Lastly, we connect all four structures with a cycle by adding 4 · b nodes:
Connect vtopend,` by a line of length b with vrightend,1, vrightend,` by a line of length b with

vbottomend,1 , vbottomend,` by a line of length b with vleftend,1, and vleftend,` by a line of length b

with vtopend,1.

Lemma 10. The graph Gk,`,b has O(` · k2 + `2 · k + b) nodes.

Proof (of Lemma 10). Each of the four graphs Gtop
g , Gbottom

g , Gleft
g , and Gright

g

consists of ` copies ofGg with a line of 10`·Dg nodes and 3(`−1)·Dg further nodes
connecting them. Together with the 4b nodes acting as bridges, the total node
count is in Gk,`,b is 4 (`(·|Vg|+ 10` ·Dg) + 3(`− 1) ·Dg + b). Due to Lemma 5,
|Vg| ∈ O(k2), which results in an upper bound of O(` · k2 + `2 ·Dg + b) nodes.

The graph construction of Lemma 5 uses k+1-regular graphs with 2(k2+k+1)
nodes [24]. As shown by, e.g., Moon in [20], the diameter Dg of Gg is therefore in

O( 2(k2+k+1)
k+1 ) ∈ O(k). Hence, the number of nodes in Gk,`,b is O(` ·k2+`2 ·k+b).

ut

We now show that the cop number of the whole construction is at most the
cop number of the gadget graph plus one:

Lemma 11. Let Gg with c(Gg) = k be the gadget graph used in the construction
of Gk,`,b. The cop number of Gk,`,b is k or k + 1.

Proof (of Lemma 11). The cop number of Gk,`,b is at least k, as the cop number
of the gadget graph Gg is already k: A robber could place themselves into a copy
of Gg and just simulate his evasion strategy accordingly, with never leaving Gg.

Furthermore, k+1 cops suffice for Gk,`,b: Already two cops can force a robber
to place himself into a gadget graph. Then, one cop waits at the exit node vg,
while the remaining k cops capture the robber, simulating their winning strategy
from the gadget graph Gg with c(Gg) = k. ut

5.2 The Robber Strategy

The robber strategy in Gk,`,b can be summarized as follows: Start in the part of
the graph with the fewest cops (each robber in a distinct gadget graph), then try
to wait at the end of the line of the current gadget graph, only going back into
the gadget graph if a cop comes close. If a cop comes into the current gadget
graph, simulate an evasion strategy, which will work for sure until at least k cops
enter. Then, as soon as k cops are close to any gadget graph in the subgraph, the
other robbers escape to another subgraph without cops, and repeat the initial
strategy. If there are k+1 cops in the graph, then the cop pk+1 may hold back one
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extra robber from escaping, but all the other robbers can move away from pk+1

to another subgraph (possible splitting the robbers into different subgraphs).

We now describe the strategy in detail: After the cops placed themselves,
the robbers choose a subgraph Gtop

g , Gbottom
g , Gleft

g , Gright
g to start in that has

the most cops being in a distance of at least b/2. W.l.o.g., let this subgraph be
Gtop

g . Note that due to the pigeonhole principle, at most half of the cops can be
within a distance of b/2 near Gtop

g and that at least k cops are needed to catch
a robber in a gadget graph (cf. Lemma 11). Hence, the remaining cops need at
least b/2 + 10` ·DG moves to reach any gadget graph in Gtop

g

Each of the ` robbers will place themselves into a pairwise distinct gadget
graph Gtop

g,1 , . . . , G
top
g,` as follows: Each robber ri will assume that there are k− 1

cops in his gadget graph Gtop
g,i , with the missing ones placed all at vtopg,i . Then,

his placement will be identical as in his evasion strategy for the graph Gg.

Next, as soon as the distance to the nearest (real) cop is larger than Dg, the
robber will move towards the node vtopend,i, but not surpassing it yet. Should then a
cop come closer, then the robber will move back towards Gg,i, keeping a distance
of at least Dg, but move forward again if the cop is further away again. When the
robber enters his graph Gtop

g,i again with a cop close, he resumes simulating the
evasion strategy until the distance to the next cop is more than Dg. The distance
of Dg is necessary for the robber to assume an arbitrary starting position in the
gadget graph again before the first cop enters the gadget graph.

As soon as at least k cops are in a distance of at most Dg to one of the
gadget graphs at the top (the robber in this graph now stops moving), there can
be at most one other cop, say pk+1, left in the graph. This cop pk+1 can be in
distance of at most Dg for only one robber (this robber now stops moving as
well), allowing all other robbers R′ to be at their node vtopend,i.

Let Gtop
g,j be the gadget graph to which the cop pk+1 is closest. Due to the

construction of Gk,`,b, each robber in R′ has now a distance of more than Dg to
pk+1 (if it exists), and a distance of at least 9` ·Dg to all other cops.

Should c(Gk,`,b) = k, then there is no cop pk+1, and all robbers from R′ move
to the same of one the other three subgraphs Gbottom

g , Gleft
g , Gright

g and place
themselves in pairwise distinct gadget graphs, repeating their initial strategy
accordingly.

If c(Gk,`,b) = k+ 1, then the cop pk+1 can be closest to the node 1) vtopend,1, 2)

vtopend,`, or 3) to some node vtopend,j , with 1 < j < `. In the case of 1) (i.e., the cop is
at the “left end”), all robbers from R′ move to pairwise distinct gadget graphs in
Gright

g . In the case of 2) (i.e., the cop is at the “right end”), all robbers from R′

move to pairwise distinct gadget graphs in Gleft
g . For the last case of 3), let R′<

be the robbers of R′ be at nodes vtopend,i with i < j and R′> be the robbers of R′

be at nodes vtopend,i with i > j. All robbers from R′< move to unoccupied pairwise

distinct gadget graphs in Gleft
g , all robbers from R′> do the same in Gright

g .

Afterwards, the robbers repeat their strategy, adjusted to being in Gtop
g ,

Gbottom
g , Gleft

g , Gright
g accordingly. Note that the robbers may be split up between
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all four subgraphs, but that it takes always at least k cops to force them to move
to another subgraph.

5.3 A Lower Bound for the Capture Time

In this subsection, we will complete the proof of Theorem 8 by showing a lower
bound of Ω(`·b) on the capture time when the robbers use the strategy described
in Subsection 5.2 in the graph Gk,l,b. Essentially, the cops need to move at least b
times to capture a constant number of robbers, forcing a lower bound of Ω(` · b).

Proof (of Theorem 8). With Lemma 10 (the size of the graph) and Lemma 11
(the cop number of the graph), all that is left to show of Theorem 8 is a capture
time of capt(Gk,`,b, c(Gk,`,b), `) ∈ Ω(` · b).

After the cops place themselves initially in the graph Gk,l,b, the strategy of
the robbers will ensure that at least half the cops are at least b/2 moves away
from each robber. As the robbers are initially in the gadget graphs, at least k
cops are required to capture any robber in its gadget graph, requiring at least
b/2 moves from some cops to capture the first robber.

We begin with the case of c(Gk,l,b) = k before discussing c(Gk,l,b) = k + 1.
Let w.l.o.g. Gtop

g be the subgraph where k cops are for the first time within
a distance of Dg to a gadget graph. Then, when the other robbers R′ in Gtop

g

escape to another subgraph Gbottom
g , Gleft

g , Gright
g , these robbers need at most

3` ·Dg moves to exit the subgraph Gtop
g . However, each of the k cops needs at

least 9`·Dg moves to reach the first node of the type vtopend, ensuring that the other
robbers have at least a distance of Dg at all times to these k cops before they
enter their new gadget graph to hide in. For every next robber to be captured,
these k cops need to move thus to the next gadget graph in another subgraph,
enforcing at least b moves for the cops, ensuring a capture time of Ω(` · b).

The case of c(Gk,l,b) = k + 1 is similar, but now there is an additional cop
(w.l.o.g. pk+1) that might not need to enter the gadget graphs and is free to move
around through the graph, possibly capturing or blocking the other robbers R′.
Still, if not at least k cops enter a gadget graph at some point, no robber can be
caught, as the robbers can always evade less than k cops in their gadget graph.
Consider the move when at least k cops are within distance Dg to a gadget
graph. Due to the strategy of the robbers, the remaining cop pk+1 can be within
distance of Dg to at most one robber in Gtop

g . Thus, all other robbers, which

are at nodes of the type vtopend, can escape to the other subgraphs (Gbottom
g , Gleft

g ,

Gright
g ), depending on where pk+1 is located – the “ring” structure of Gk,`,b does

not allow pk+1 to block the other robbers.

I.e., at most two robbers can be prevented from escaping to another subgraph.
When the robbers arrive in the pairwise distinct gadget graphs of their new
subgraph Gbottom

g , Gleft
g , Gright

g , the initial situation occurs again: The cops need
to have moved at least b times to capture again at most two robbers, inducing
a total capture time of Ω(` · b). ut
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5.4 A Superlinear Number of Robbers

So far, the number of robbers has never exceeded a linear amount, i.e., we did
not consider the case of ω(n) robbers in n-vertex graphs. However, our results
can be extended to this case.

We start with the case of one cop and many robbers (cf. Section 3). Fix a
number of nodes n for Corollary 3 and let `′ be any number of robbers less than
n/8. If the number of robbers were to be increased to 2`′, then one could always
move two robbers as if they were one, with them sharing the same place. Then
the capture time would remain the same, as the cop would always capture two
robbers at once.

However, after the first two robbers are captured, and all robbers move along
the bridge connecting the left and the right star (see Figure 1), the only unoc-
cupied ray of the star can be now be occupied by splitting a pair of robbers
into singles. The cop could still capture two robbers in his next catch, but only
`′/2 times in total! After that, all rays would only be occupied by one robber,
allowing the cop to capture only one robber at once. Hence, the cop now needs
to cross the bridge connecting the two stars at least `′/2 + `′ times.

This concept can be iterated, e.g., for 4`′ robbers, the cop needs to cross the
bridge (1/4 + 1/3 + 1/2 + 1)`′ times. I.e., for t · `′ robbers, this number increases
to (1/t+ · · ·+ 1/2 + 1)`′ ∈ Ω(`′ log t). With the bridge having a length of Ω(n)
nodes, the following corollary holds:

Corollary 12. For all n ≥ 12 there exists a 1-copwin graph G s.t. for all num-
bers ` ≥ n of robbers capt(G, 1, `) ∈ Ω

(
n2 · log (`/n)

)
.

We note that a similar line of thought can be applied to the case of more than
one cop, i.e., letting the cops capture multiple robbers at once, and then splitting
up the remaining robbers evenly among the gadget graphs.
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