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ABSTRACT
We consider voting on multiple independent binary issues. In addi-

tion, a weighting vector for each voter defines how important they

consider each issue. The most natural way to aggregate the votes

into a single unified proposal is issue-wise majority (IWM): taking

a majority opinion for each issue. However, in a scenario known as

Ostrogorski’s Paradox, an IWM proposal may not be a Condorcet

winner, or it may even fail to garner majority support in a special

case known as Anscombe’s Paradox.
We show that it is co-NP-hard to determinewhether there exists a

Condorcet-winning proposal even without weights. In contrast, we

prove that the single-switch condition provides an Ostrogorski-free

voting domain under identical weighting vectors. We show that ver-

ifying the condition can be achieved in linear time and no-instances

admit short, efficiently computable proofs in the form of forbidden

substructures. On the way, we give the simplest linear-time test

for the voter/candidate-extremal-interval condition in approval vot-

ing and the simplest and most efficient algorithm for recognizing

single-crossing preferences in ordinal voting.

We then tackle Anscombe’s Paradox. Under identical weight

vectors, we can guarantee a majority-supported proposal agreeing

with IWM on strictly more than half of the overall weight, while

with two distinct weight vectors, such proposals can get arbitrarily

far from IWM. The severity of such examples is controlled by the

maximum average topic weight 𝑤̃𝑚𝑎𝑥 : a simple bound derived from

a partition-based approach is tight on a large portion of the range

𝑤̃𝑚𝑎𝑥 ∈ (0, 1). Finally, we extend Wagner’s rule to the weighted

setting: an average majority across topics of at least
3

4
’s precludes

Anscombe’s paradox from occurring.
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1 INTRODUCTION
There are numerous scenarios in which people must decide on a

slate of binary issues and come up with a single outcome for each

topic. When political parties form a platform, they must aggregate

their base’s opinions and provide a unified set of stances on nu-

merous separate issues. Similarly, when voters head to the ballot

box for local elections, they typically vote yes or no on a series of

initiatives. The election results in one outcome for each individual

topic. On a smaller scale, a group of flatmates might decide on a

series of unrelated topics and generate a plan for living together.

For example: Should the kitchen be cleaned once a week or twice a

week? Should we get the red couch or the yellow couch?

The most natural way to decide the final outcome in all of these

scenarios is to take the majority opinion on each individual topic

and aggregate them into a unified party platform, legislative agenda,

or roommate contract. However, this approach can yield a surpris-

ingly undesirable outcome: a majority of the voters may actually be

more unhappy with this result than if the opposite decision were

made on every issue (known as Anscombe’s Paradox [1]). How can

this arise? Consider a setting with 5 voters and 3 independent bi-

nary issues. The following table illustrates the preferences of each

voter on each of the 3 issues: +1 is in favor and −1 is against:
Issue 1 Issue 2 Issue 3

𝑣1 +1 -1 -1
𝑣2 -1 +1 -1
𝑣3 -1 -1 +1
𝑣4 +1 +1 +1
𝑣5 +1 +1 +1

Now, assume each voter would only vote in favor of proposals

that they agree with on more than half of the issues (in the paper,

a voter will abstain when agreeing with a proposal on exactly

half of the issues). Taking the majority on each topic yields the

proposal (+1,+1,+1). However, voters 1, 2, and 3 all disagree with

a majority of this proposal. Therefore, if we posed this proposal for

a vote, a majority of voters would vote against it. If, instead, we

posed the opposite proposal (−1,−1,−1), then voters 1, 2, and 3

would support it, and it would win the majority vote. Hence, in this

scenario, the proposal comprising the minority opinion on each

topic wins the majority vote, whereas the proposal comprising the

majority opinions fails to get majority support.

An equivalent view on the previous scenario positions Anscombe’s

paradox in a broader context: instead of assuming a vote on a

single proposal with people voting for/against it, let us assume

that the vote happens between two competing proposals 𝑝 and

𝑝′ and each voter votes for whichever of 𝑝 and 𝑝′ agrees with
their views on more topics, abstaining in case of equality. Seen

as such, Anscombe’s paradox is the situation where an issue-wise
majority (IWM) proposal 𝑝 loses the majority vote against 𝑝′ = 𝑝 ,

defined as the opposite proposal of 𝑝 . A less extreme variant of the

paradox, known as Ostrogorski’s paradox [34] happens when an

IWM proposal 𝑝 loses against some proposal 𝑝′, not necessarily 𝑝 .
Settling on the IWM proposal in such cases can lead to daunting

situations where one of its opposers calls a final vote between 𝑝

and 𝑝′ that “surprisingly” unveils general dissatisfaction with what

was otherwise a perfectly democratically chosen outcome.

Consequently, multi-issue aggregation mechanisms need to bal-

ance the tension between two majoritarian processes: majority on

the individual topics and majority when proposals are compared to

one another. In terms of the first, the chosen proposal should ideally



stay somewhat close to IWM. In terms of the second, the chosen

proposal should not be easily refuted by calling a vote against some

other proposal.

Even when voters consider the issues to be of equal importance

in their decision-making, we get paradoxical situations. However, in

reality, voters rarely consider all issues to be equally important and

often disagree on their importance; e.g., a Pew Research study from

June 2023 indicated that in the United States, there were massive

differences in perceived issue importance along partisan lines [35].

Some voting advice applications already attempt to account for

personalized issue-importance, such as Smartvote [2]. Data from

these applications can not only help assess how the current parties

are aligning with the populace [4], it can also suggest potential new

party platforms. Such pre-existing infrastructure to get data on both

voter opinions and issue importance underscores the pertinence of

issue weights to modeling this problem setting.

1.1 Our Contribution
We study the aggregation of opinions on multiple independent

binary issues with respect to two measures of majoritarianism:

agreement with issue-wise majority and success in pairwise pro-

posal comparisons. Our analysis considers two weighting models:

external weights and internal weights. In the former, the policy-

maker sets a weight to each issue reflecting its relative importance,

and voters use weighted agreement when comparing any two pro-

posals. The latter is the same, but each voter is free to choose their

own weighting vector. We use the “unweighted setting” to refer to

the edge case where issues are equally-weighted.

1.1.1 Condorcet winners. In the first part of the paper, we focus on

the complexity of determining a Condorcet-winning proposal: a pro-
posal that does not lose in a direct vote against any other proposal.

Under external weights, we find that any Condorcet winner has to

be an IWM proposal, while this does not extend to internal weights.

However, even in the unweighted setting with an odd number of

voters, where the IWM proposal is unambiguous, checking whether

this proposal is a Condorcet winner is co-NP-hard (answering an

open question in [13]).

An Ostrogorski-free domain. To mitigate this hardness result,

it would be appealing to identify a large set of instances for which

IWM proposals are Condorcet winners (i.e., Ostrogorski’s paradox

does not occur). If membership to this set could also be efficiently

verified, this would allow for practically certifying “safe instances”

where issue-wise majority is the right choice. We achieve this by

the single-switch condition of Laffond and Lainé [25]: a preference

matrix over ±1 is single-switch if it admits a single-switch presenta-
tion — a way to permute and potentially negate some columns such

that +1 entries on each row form a prefix or a suffix. They show that

for the unweighted case, this condition implies that Ostrogorski’s

paradox does not occur. We extend and simplify their analysis to

show that the same holds under external weights (but not always

for internal weights). We then provide a linear-time algorithm for

checking whether the preference matrix is single-switch and prove

that no-instances admit short proofs of this fact in the form of small

forbidden subinstances (that can also be identified in linear time by

a black-box reduction to the recognition problem which we have

not encountered before).

Secondary implications. Along the way, in this part, we make

multiple secondary contributions: (i) we uncover an interesting

topological connection: the set of single-switch presentations of a

single-switch matrix can be compactly represented as the union of

two mirror-image Möbius strips; (ii) our recognition algorithm for

single-switch matrices proceeds by reducing to checking whether

the columns of a matrix can be permuted so that the ones on each

row form a prefix or a suffix — while a linear-time algorithm is

known for this [15],
1
it relies on rather complex machinery — we

instead give a much simpler direct algorithm with the same guaran-

tees; (iii) our simpler algorithm can be adapted to yield the simplest

and at the same time most efficient algorithm for checking the

single-crossing condition in ranked social choice [16]. Similarly to

the single-switch condition, the latter also admits a characteriza-

tion in terms of small forbidden substructures [9], and finding such

forbidden substructures can be achieved within the same time com-

plexity using our black-box technique, a result which to the best of

our knowledge is new.

1.1.2 Representative majority-supported proposals. Settling on a

Condorcet-winning proposal would be ideal, especially under ex-

ternal weights where such proposals are by default IWM proposals,

but in the absence of Condorcet winners, a compromise is needed.

In fact, the hardness of checking whether an IWM proposal is a

Condorcet winner can be seen positively: it is computationally de-

manding to find the proposal that defeats it, so we need not fear a

vote being called against the defeating proposal. Hence, it is rea-

sonable to relax the demanding Condorcet condition: the chosen

proposal should, at the least, not lose against its opposite — or, in

the language of our first formulation of Anscombe’s paradox above,

should garner majority support. In the second part of the paper,

we explore existence guarantees for majority-supported propos-

als that are as close as possible to an IWM proposal 𝑝𝐼𝑊𝑀 . So far,

this has been studied in the unweighted model [13, 20]: a weakly

majority-supported proposal agreeing in strictly more than half of

the issues with 𝑝𝐼𝑊𝑀 exists and can be found in polynomial time,

while achieving better guarantees is NP-hard. The word “weakly”

can be dropped if majority is strict/unambiguous on at least one

issue, i.e., some column of the preference matrix has differing num-

bers of +1’s and −1’s. We will be interested in the more complex

weighted case.

External weights. We provide a matching guarantee to the un-

weighted case, showing that there always exists a weakly majority-

supported proposal with strictly more than half the total weight

in topics agreeing with 𝑝𝐼𝑊𝑀 . Under a simple condition on certain

higher-weight issues, we can also drop the word “weakly.”

Internal weights. In sharp contrast, with as few as two different

weight vectors, we construct families of instances where the dis-

tance between every weakly majority-supported proposal and the

unique IWM proposal gets arbitrarily large. The severity of such

examples is controlled by the maximum average topic weight 𝑤̃𝑚𝑎𝑥 :

we give a simple bound derived from a partition-based approach

that is tight on a large portion of the range 𝑤̃𝑚𝑎𝑥 ∈ (0, 1).
More paradox-free instances. Finally, we generalize Wagner’s

Rule of Three-Fourths [38] for both external and internal weights:

if the average weighted majority on the issues is at least
3

4
, then

1
Under the name of recognizing voter/candidate-extremal-interval preferences.



Anscombe’s Paradox cannot occur. Without loss of generality, if

+1 is a majority opinion on each topic, this translates to the total

weight of +1’s in the preference matrix being at least
3

4
of the total

weight. A stronger condition precludes Ostrogorski’s paradox under

external weights: if on each column the relative weight of +1’s is
at least

3

4
of that column’s total weight. This surprisingly simple

check is a counterpart to the single-switch condition, once again

giving a convenient characterization for a whole class of instances

in which returning an IWM proposal is always a good choice.

1.2 Further Related Work
Variations on the question of how best to reach consensus on a

series of issues have been studied thoroughly. We first go over

models where all topics are considered equally important.

Approval voting is a popular mechanism that is frequently used

for single-winner and multi-winner elections alike [6, 18]. Here,

each participant indicates their approval for a subset of candidates.

In contrast to our setting, not expressing the approval of a candidate

does not give the same signal as voting for the “no” stance on an

issue (which is a vote for the logical negation of the issue) [24].

Another related field of study is judgment aggregation, where

a series of judges have viewpoints on multiple topics, but there is

external logical consistency required between the topics [30]. As in

our problem, a reasonable method of reaching consensus is to take

the majority opinion on each topic. However, the outcome may fail

to be logically consistent — this is the Discursive Dilemma, and can

occur with as few as 3 judges and 3 topics [23]. There has been

some investigation into conditions that avoid this paradox, like

List’s unidimensional alignment [29],2 and other similar paradoxes

under the name of compound majority paradoxes [32].
Our problem can also be viewed as a special instance of voting in

combinatorial domains: multiple referenda with separable topics [8].

Multiple works explored generalizations of Anscombe’s paradox

and gave further impossibility results [3, 22], e.g., relating to the

Pareto optimality of aggregation rules [33].

Significant work has also been done to characterize when such

paradoxes cannot occur.Wagner proposed the Rule of Three-Fourths

[38], preventing Anscombe’s paradox, as well as a generalization

[39]. Laffond and Lainé showed that if no two voters disagree on

too many issues, then Anscombe’s is prevented [26], and for single-
switch preferences, Ostrogorski’s does not occur [25].

We now survey proposals to augment various voting systems

with weights, allowing voters to express their degrees of interest

or investment in the topics. Storable voting allows participants to

delay using their vote in a given election, and accumulate votes to

use in later elections that they have more stake in [11]. Quadratic

voting proposes a somewhat similar system in which people are

given an allotment of vote credits, and before a given election can

buy a certain number of votes [27]. Both of these systems main-

tain that voters will use more votes for elections in which they

feel strongly and believe they are likely to be pivotal in. Uckelman

introduces a framework using goalbases to express cardinal (nu-

meric) preferences over a combinatorial voting domain [37]. This,

2
The unidimensional alignment condition might appear to closely resemble the single-

switch condition, as it essentially requires that the transposed preference matrix be

single-switch. However, this is not equivalent, as rows and columns play different

roles — issue-wise majority aggregates along columns, not rows.

however, loses information by abstracting away the separability of

issues: for us, the cardinal preferences are induced by the weighted

Hamming distance. Lang also considers augmenting combinatorial

voting with preference weights and provides several computational

complexity results [28]. Satisfaction approval voting [7] modifies

approval voting by spreading a voter’s total weight equally over all

of the candidates they approve of. Finally, there is recent interest

in studying how voters have varying stakes in elections and how

to accommodate these stakes to limit distortion [10, 19].

2 MODEL AND NOTATION
For any non-negative integer𝑚, write [𝑚] := {1, . . . ,𝑚}. Given a

real number 𝑥 , write sgn(𝑥) ∈ {−1, 0, 1} for its sign. Note that for
any two reals 𝑥,𝑦, we have that sgn(𝑥 · 𝑦) = sgn(𝑥) · sgn(𝑦).

We consider a setting with 𝑛 voters and 𝑡 independent, binary

issues/topics. The decision space for each issue is B := {±1}. Each
voter 𝑖 ∈ [𝑛] is modeled as a dimension-𝑡 vector 𝑣𝑖 ∈ B𝑡 indicating
for each issue 𝑗 ∈ [𝑡] the opinion/preference 𝑣𝑖, 𝑗 ∈ B of voter 𝑖

on issue 𝑗 . We call the matrix P = (𝑣𝑖, 𝑗 )𝑖∈[𝑛], 𝑗∈[𝑡 ] the preference
profile. We also write P = (𝑐1, . . . , 𝑐𝑡 ), where 𝑐1, . . . , 𝑐𝑡 ∈ B𝑛 are the
columns of the matrix.

For each issue 𝑗 ∈ [𝑡], we are consistent with previous litera-

ture [13, 20, 38, 39] and define the majority 𝑚 𝑗 ∈ [0, 1] on issue 𝑗

to be the fraction of voters that prefer +1 on it; i.e., the number of

+1’s in 𝑐 𝑗 , divided by 𝑛. If𝑚 𝑗 > 0.5, then the majority opinion on

issue 𝑗 is +1; if𝑚 𝑗 < 0.5, then it is −1, and if𝑚 𝑗 = 0.5, then both +1
and −1 are majority opinions on issue 𝑗 . Equivalently, if we write

𝑏 𝑗 for the sum of the entries in 𝑐 𝑗 (i.e., the column’s ±1-balance), a
majority opinion on issue 𝑗 is any 𝑜 ∈ B satisfying 𝑏 𝑗 · 𝑜 ≥ 0.

A proposal is a vector 𝑝 ∈ B𝑡 that consists of a decision for each

issue. We write 𝑝 for the complement of proposal 𝑝 , which simply

flips each bit of 𝑝; i.e., 𝑝 = −𝑝 . An issue-wise majority (IWM) is a
proposal 𝑝 where the decision on each topic is a majority opinion

for the topic.

We study two weighting models: external weights and internal
weights. In the former, an externally supplied vector of non-negative

weights 𝑤 = (𝑤1, . . . ,𝑤𝑡 ) summing up to 1 is available, denoting

the importance of each issue as seen collectively by the voters.

The internal weights model generalizes this by having each voter

𝑖 ∈ [𝑛] report an individual vector of weights𝑤𝑖 = (𝑤𝑖,1, . . . ,𝑤𝑖,𝑡 );
i.e., there need no longer be consensus on the importance of any

fixed issue. For internal weights, we write𝑊 for the matrix with

rows 𝑤1, . . . ,𝑤𝑛 . We call the voting instance the pair I = (P,𝑊 )
for internal weights and I = (P,𝑤) for external weights. We will

also talk about the unweighted model, which is simply external

weights with 𝑤 = (1/𝑡, . . . , 1/𝑡), and directly write I = P for it.

For the remainder of this section, we assume external weights —

the internal weights model requires substantial additional notation

so we postpone it to later on.

For any positive integer𝑚, given two vectors 𝑢, 𝑣 ∈ B𝑚 and a

vector of weights𝑤 ∈ [0, 1]𝑚 with unit sum, wewrite𝑑𝐻 (𝑢, 𝑣,𝑤) :=∑𝑚
𝑗=1𝑤 𝑗 · I(𝑢 𝑗 ≠ 𝑣 𝑗 ) for the𝑤-weighted Hamming distance between

𝑢 and 𝑣 . We omit the𝑤 argument when referring to the unweighted

Hamming distance. For convenience, we write ⟨𝑢, 𝑣⟩𝑤 :=
∑𝑚
𝑗=1𝑤 𝑗 ·

𝑢 𝑗 · 𝑣 𝑗 for the standard𝑤-weighted inner/dot-product. One can easily

show that ⟨𝑢, 𝑣⟩𝑤 = 1 − 2 · 𝑑𝐻 (𝑢, 𝑣,𝑤).



Fix an instance I = (P,𝑤) in the external weights model. For

each voter 𝑖 with vote 𝑣𝑖 we define their individual preference
relation ≽𝑖 between proposals. In particular, given two propos-

als 𝑝, 𝑝′ ∈ B𝑡 , voter 𝑖 weakly prefers 𝑝 over 𝑝′, written 𝑝 ≽𝑖
𝑝′, iff 𝑑𝐻 (𝑣𝑖 , 𝑝,𝑤) ≤ 𝑑𝐻 (𝑣𝑖 , 𝑝′,𝑤). Note that this is equivalent to
⟨𝑣𝑖 , 𝑝⟩𝑤 ≥ ⟨𝑣𝑖 , 𝑝′⟩𝑤 ⇐⇒ ⟨𝑣𝑖 , 𝑝 − 𝑝′⟩𝑤 ≥ 0. We write ≻𝑖 and ≈𝑖
for the strict and symmetric parts of ≽𝑖 , respectively. We define

the collective preference relation ≽I between proposals: given two

proposals 𝑝, 𝑝′ ∈ B𝑡 , the voters collectively weakly prefer 𝑝 over

𝑝′, written 𝑝 ≽I 𝑝′, iff |{𝑖 ∈ [𝑛] : 𝑝 ≻𝑖 𝑝′}| ≥ |{𝑖 ∈ [𝑛] : 𝑝′ ≻𝑖 𝑝}|.
Note that this is equivalent to

∑𝑛
𝑖=1 sgn(⟨𝑣𝑖 , 𝑝 − 𝑝′⟩𝑤) ≥ 0. We write

≻I and ≈I for the strict and symmetric parts of ≽I , respectively.
A proposal 𝑝 ∈ B𝑡 is a Condorcet winner if for any other proposal

𝑝′ ∈ B𝑡 we have 𝑝 ≽I 𝑝′.
For a voting instance I, Ostrogorski’s paradox occurs if some

IWMproposal 𝑝IWM is not a Condorcet winner, Anscombe’s paradox

occurs if for some IWM proposal 𝑝IWM we have 𝑝IWM ≻I 𝑝IWM, and

the Condorcet paradox happens if there is no Condorcet-winning

proposal.

3 COMPLEXITY OF DETERMINING A
CONDORCETWINNER

In this section, we prove that it is co-NP-hard to determine whether

an instance I admits a Condorcet-winning proposal, even in the

unweighted setting with odd 𝑛:

Theorem 1. Deciding whether an instance I = P admits a Con-
dorcet winner is co-NP-hard in the unweighted setting with odd 𝑛.

This could be surprising given the following observation of [25]

for the unweighted model, which we extend to external weights:

Lemma 2. Consider an external-weights instanceI such that 𝑝 ∈ B𝑡

is a Condorcet winner for I. Then, 𝑝 is an IWM for I.

Proof. Assume the contrary, then there is an issue 𝑗 ∈ [𝑡] such
that 𝑝 𝑗 ·𝑏 𝑗 < 0. Consider the proposal 𝑝∗ obtained from 𝑝 by flipping

𝑝 𝑗 . Then, 𝑝
∗ ≻I 𝑝, a contradiction. □

Lemma 2 shows that one can restrict the search space for Con-

dorcet winners to IWM proposals. In the unweighted setting with

odd 𝑛, there is a single such proposal, which we can assume with-

out loss of generality to be 1 ∈ B𝑡 . Nevertheless, even under these

conditions, we will show that checking whether 1 is a Condorcet
winner is co-NP-hard, or, equivalently, checking whether 1 is not a
Condorcet winner is NP-hard. The latter occurs if and only if there

is a proposal 𝑝 ∈ B𝑡 such that 𝑝 ≻I 1, which, recall, means that

strictly more voters 𝑖 ∈ [𝑛] prefer 𝑝 ≻𝑖 1 than 1 ≻𝑖 𝑝 . Hence, it
suffices to prove that the following problem is NP-hard:

Problem “MAJOR”
Input: Instance I = P in the unweighted setting with odd

𝑛 such that 1 is the issue-wise majority.

Output: Does there exist a proposal 𝑝 ∈ B𝑡 s.t. 𝑝 ≻I 1?

To show its hardness, we need the following auxiliary problem:

Problem “UNANIM”
Input: Voting instance I = P in the unweighted setting.

Output: Does there exist a proposal 𝑝 ∈ B𝑡 s.t. 𝑝 ≻𝑖 1 for

all 𝑖 ∈ [𝑛] (to be read “𝑝 unanimously defeats 1”)?

UNANIM is NP-hard [14, Theorem 2], but the proof in [14] is

relatively complicated: we give a simpler one in Section A by noting

the equivalence to choosing a subset of columns of P that sum up to

a negative amount on each row (we also give a similar reformulation

of MAJOR for the interested reader).

Lemma 3. MAJOR is NP-hard.

Proof. We reduce from the NP-hard problem UNANIM. Con-

sider an instance I = P of UNANIM with 𝑛 voters. If there is an

issue 𝑗 ∈ [𝑡] disapproved by all voters in P, then P is a yes-instance

of UNANIM: all voters prefer the proposal with +1 in all coordinates

except the 𝑗-th to proposal 1. This case can be easily detected in

polynomial time, so we henceforth assume the contrary.

We build an instance I′ = P′
of MAJOR from P by adding 𝑛 − 1

voters approving all issues. For P′
to be a valid instance for MAJOR

we need that 2𝑛 − 1 is odd (which it is) and that 1 is the issue-wise
majority. The latter holds because at least 𝑛 − 1 + 1 = 𝑛 voters

approve of each issue: the 𝑛 − 1 added ones and at least one from

the first 𝑛 by our assumption. It remains to show that a proposal

𝑝 ∈ B𝑡 unanimously defeats 1 in P iff it majority-defeats 1 in P′
.

Assume 𝑝 ∈ B𝑡 unanimously defeats 1 in P. Then, each of the

first 𝑛 voters in P′
prefers 𝑝 to 1. Since there are only 𝑛 − 1 < 𝑛

other voters in P′
, a majority of the voters in P′

prefer 𝑝 to 1.
Conversely, assume 𝑝 ∈ B𝑡 majority-defeats 1 in P′

. Clearly,

𝑝 ≠ 1 has to hold, so all of the 𝑛 − 1 added voters prefer 1 to 𝑝 . To
counteract this, since 𝑝 ≻I′ 1, the first 𝑛 voters in P′

must prefer

𝑝 to 1, meaning that 𝑝 unanimously defeats 1 in P. □

For completeness, we put the pieces together to give a self-

contained proof of Theorem 1 in Section A.

4 AN OSTROGORSKI-FREE DOMAIN
As we have seen, at least for external weights, a Condorcet-winning

proposal has to be an issue-wise majority proposal. Yet, we proved

that determiningwhether one of them is actually Condorcet-winning

is co-NP-hard, even in the unweighted case with odd 𝑛, where there

is only one such proposal to check. To mitigate this hardness result,

it would be useful if we could identify a large set of instances for

which IWM proposals are guaranteed to be Condorcet-winning,

i.e., Ostrogorski’s paradox does not occur. Laffond and Lainé [25]

introduced the single-switch condition, which achieves exactly this

goal for the unweighted setting. Furthermore, they showed that

it is the most general condition preventing Ostrogorski’s paradox

among conditions that do not consider the multiplicities of the votes

(i.e., conditions defining a domain) or whether a vote is negated
or not (i.e., they only look at the set {{𝑣𝑖 , 𝑣𝑖 } | 𝑖 ∈ [𝑛]} and not

at how many times each 𝑣𝑖 or 𝑣𝑖 is repeated). In particular, if an

instance in the unweighted model is not single-switch, then it is

possible to add copies of some of the votes 𝑣𝑖 (or their negations

𝑣𝑖 ) so that some issue-wise majority proposal is not a Condorcet

winner. Two important questions underpinning their condition are:
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(a) Profile P.
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(b) Single-switch presentation of P.

Figure 1: The profile P in Fig. 1a is single-switch because its
columns can be permuted and flipped as in Fig. 1b to ensure
that ones on each row form a prefix or a suffix.

(i) Does it still guarantee the existence of a Condorcet winner in

the (at least externally) weighted setting? (ii) Is it possible to check

whether it applies in polynomial time? If not, are there short proofs

of this fact? In this section, we answer all these questions in the

affirmative.

A preference profile (matrix) P = (𝑐1, . . . , 𝑐𝑡 ) is single-switch
(SSW) if we can flip (multiply by −1 all entries in) some columns

and then permute the columns to get a new profile P′
such that +1

entries on every row form either a prefix or a suffix, in which case

we say that P′
is an SSW presentation of P. We allow flipping no

columns or leaving all columns in their original place. Intuitively,

issues are arranged along a left-right axis. Left-wing voters approve

a prefix of issues, with the length depending on their tolerance,

while right-wing voters similarly approve a suffix of issues.
3
See

Fig. 1 for an illustration of the notion. A voting instance I is single-

switch if its preference profile P is single-switch.

4.1 For External Weights Single-Switch
Prevents Ostrogorski’s Paradox

We find that, assuming external-weights, the single-switch condi-

tion guarantees that all IWM proposals are Condorcet winners. To

show this, we first show that every issue-wise majority proposal

does not lose against its opposite, i.e., Anscombe’s paradox does

not occur. We do this by streamlining and adapting the argument

in [25] (which was only for the unweighted model). Because the

single-switch condition is closed under removing issues, the gen-

eral statement then follows easily by noting that, under external

weights, Ostrogorski’s paradox happens if and only if there is a

subset of issues inducing an instance where Anscombe’s paradox

happens. The details are deferred to Section B.1.

Theorem 4. In the external-weights model, every issue-wise majority
proposal of a single-switch instance is a Condorcet winner.

4.2 Recognizing Single-Switch Profiles
The result in the previous section is particularly appealing: in the

external-weights model, if the preferences are single-switch, any

issue-wise majority proposal is a Condorcet winner. This bypasses

our previous hardness result in the case of single-switch preferences.

However, this is only useful provided one can quickly tell whether a

given profile P is single-switch or not. In this section, we show that

3
This shares similarities with several related concepts, such as single-peaked and

single-crossing preferences. However, unlike most other notions, we allow issues to

be flipped before ordering them, as they can be logically negated without changing

meaning.

this can be determined in linear time, i.e., 𝑂 (𝑛𝑡). For yes-instances,
our algorithm also determines an SSW presentation P′

(implicitly

also the permutation and flips used to obtain it). Given P′
, we also

characterize the set of all SSW presentations as the union of two

“orbits” around P′
and its column-reversal. These orbits can be

attractively interpreted topologically as two mirror-image Möbius

strips. To begin, we need the following observation following easily

from the case 𝑛 = 1. See Section B.2 for the proof.

Lemma 5. Consider a profile P admitting an SSW presentation P′ =
(𝑐1, . . . , 𝑐𝑡 ). Then, P′

𝑟 := (𝑐2, . . . , 𝑐𝑡 , 𝑐1) is also a SSW presentation
of P. Furthermore, any 𝑡 (circularly) consecutive columns in P′′

:=

(𝑐1, . . . , 𝑐𝑡 , 𝑐1, . . . , 𝑐𝑡 ) form an SSW presentation of P.

Hence, any SSW presentation P′
of a profile P corresponds

to a set of 2𝑡 such presentations that we call the orbit 𝑂P′ of P′
.

Formally, these are the 2𝑡 profiles that can be obtained by taking 𝑡

(circularly) consecutive columns in P′′
in the above. Note that the

orbits of any two SSW presentations either coincide or are disjoint,

so the set of all orbits partitions the set of SSW presentations of

P. Also, the 2𝑡 profiles in 𝑂P′ are pairwise distinct, which can

be easily seen by considering the case 𝑛 = 1, under which P′′
is

circularly equivalent to a list of 𝑡 minus ones followed by 𝑡 ones.

This reasoning additionally allows us to assign to each orbit a

representative, namely the profile with all −1’s on the first row:

Corollary 6. Every orbit contains exactly one profile where the first
row is all −1’s.

Orbits can be understood through a topological lens: For the

orbit 𝑂P′ of P′ = (𝑐1, . . . , 𝑐𝑡 ) take an 𝑛 × 𝑡 rectangular piece of

paper and write the columns 𝑐1, . . . , 𝑐𝑡 on the front and 𝑐1, . . . , 𝑐𝑡 on

the back, such that for each 𝑖 ∈ [𝑡], column 𝑐𝑖 on the front aligns

with column 𝑐𝑖 on the back. Then, give the paper a length-wise

half-twist and glue the left and right sides to form a surface known

as a Möbius strip: see Fig. 2. Cutting along the width of the strip

between any two columns recovers an 𝑛 × 𝑡 piece of paper with

one SSW presentation on one side and its opposite on the other

side. In high-level terms, each orbit is topologically a Möbius strip.

To check whether a profile P is single-switch, by Corollary 6,

it suffices to check for presentations with all −1’s in the first row:

all other presentations are generated by the orbits of such presen-

tations. There is a simple strategy to achieve this: flip columns in

P to make the first row all −1’s, and then check whether columns

in the resulting profile can be permuted to ensure that ones on

each row form a prefix or a suffix. This amounts to recognizing

single-switch-no-flips profiles: A profile P is single-switch-no-flips
(SSWNF) if its columns can be permuted to get a new profile P′

such that +1 entries on every row form either a prefix or a suffix,

in which case we say that P′
is an SSWNF presentation of P.

Recognizing single-switch-no-flips profiles. Telling whether
a profile P = (𝑐1, . . . , 𝑐𝑡 ) is single-switch-no-flips can be achieved

by appending a negated copy of P underneath [15] and running

a solver for the Consecutive Ones Problem (C1P), which can be

solved in 𝑂 (𝑛𝑡) time [5], implying the same about our problem.

However, such solvers are complicated and notoriously error-prone:

most available implementations fail on at least some edge cases

[17]. Moreover, reducing to C1P does not utilize the additional

structure present in our problem and hence does not shed light
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Figure 2: Möbius strip of orbit 𝑂P′ for P′ = (𝑐1, . . . , 𝑐10). We
start with a rectangular piece of paper of length 10 and write
(𝑐1, . . . , 𝑐10) on the (green) front side and (𝑐1, . . . , 𝑐10) on the
(red) backside. We then give the paper a length-wise half-
turn and glue the endpoints (bold strip). This gives raise to a
surface with a single continuous side.

on the structure of all solutions, as we set out to do. We give a

much simpler algorithm achieving the 𝑂 (𝑛𝑡) time-bound: Find an

index 𝑥 maximizing 𝑑𝐻 (𝑐1, 𝑐𝑥 ). Then, sort (using Counting Sort) the
columns based on their Hamming distance from 𝑐𝑥 to get a profile

P′ = (𝑐′
1
, . . . , 𝑐′𝑡 ) where 𝑑𝐻 (𝑐𝑥 , 𝑐′𝑖 ) ≤ 𝑑𝐻 (𝑐𝑥 , 𝑐′𝑖+1) for 𝑖 ∈ [𝑡 − 1] (i.e.,

ties in Hamming distance can be broken arbitrarily). We claim that

either P′
is the unique SSWNF presentation of P (up to reversing

the order of the columns), or there is no such presentation, so we

can easily check in additional 𝑂 (𝑛𝑡) time whether the candidate

solution works. All required claims shown formally in Section B.2:

Theorem 7. There is a simple𝑂 (𝑛𝑡) algorithm computing (or decid-
ing the inexistence of) an SSWNF presentation of a profileP. Moreover,
if it exists, this presentation is unique up to reversing column order.

Section B.2 also provides a much ampler discussion of related

work for this sub-problem, including the relation between our al-

gorithm and previous algorithms for recognizing single-crossing
preferences. As a bonus, it gives a similar simpler, more efficient

algorithm for recognizing single-crossing preferences, running in

time 𝑂 (𝑛𝑡
√︁
log𝑛), improving state of the art [16, Algorithm 4].

Putting it together. To decide whether a profile P is single-

switch, we flip columns in P to get a profile P′
with only −1’s

in the first row and then use the algorithm in Theorem 7 to find

an SSWNF presentation P′′
of P′

(and hence also P). If it exists,

this presentation is unique up to column reversal, so we can also

characterize the set of all SSW presentations of P by unioning the

orbits of P′′
and its column-reversal. Note that these two orbits

may coincide for pathological input profiles P.

Theorem 8. There is an𝑂 (𝑛𝑡) algorithm computing (or deciding the
inexistence of) an SSW presentation of a profile P. If the algorithm
returns a presentation P′′, let P′′

𝑟 be P′′ with the order of the columns
reversed, then the set of all SSW presentations of P is 𝑂P′′ ∪𝑂P′′

𝑟
.

4.3 Forbidden Subprofiles Characterization of
Single-Switch Preferences

Whenever the single-switch condition is not satisfied, it would be

useful if there were a short proof of this fact: a small subprofile

that is not single-switch. Formally, a profile/matrix P contains

a profile/matrix P′
as a subprofile/submatrix if we can remove

(possibly zero) rows and columns from P to get P′
up to permuting

rows and columns. Note that existence is not immediate: there could

exist arbitrarily large matrices not satisfying the condition but all

of whose proper submatrices do. We show that this is not the case:

either the condition holds, or there is a 3 × 4 or 4 × 3 submatrix

witnessing that this is not the case, as in the following:

Theorem 9. A profile P is single-switch if and only if it does not
contain as a subprofile P𝑎

1
,P𝑎

2
and any profile that can be obtained

from them by flipping rows and columns:

P𝑎
1
=


-1 -1 -1 -1
+1 +1 -1 -1
+1 -1 +1 -1

 P𝑎
2
=


-1 -1 -1
+1 -1 -1
-1 +1 -1
-1 -1 +1


We prove Theorem 9 in Section B.3 by combining a similar char-

acterization for single-switch-no-flips profiles given in [36] (under

the name voter/candidate-extremal-interval preferences) with our

insight that to go to the no-flips version it suffices to make one row

all −1’s. Henceforth, we call the 3 × 4 and 4 × 3 preference pro-

files in the theorem above forbidden subprofiles. Then, the theorem
says that P is single-switch if and only if it contains no forbidden

subprofiles. Note how this implies that single-switch profiles are

relatively rare: the probability that a random binary 𝑛 × 𝑡 matrix is

single-switch tends to zero as 𝑛 and 𝑡 tend to infinity.

Finding forbidden subprofiles. So far, we have seen that non-

membership to the class of single-switch preferences admits short

proofs, but can such proofs also be constructed efficiently? Given

some no-instance, it is straightforward to determine which forbid-

den subprofiles occur in it in time 𝑂 (𝑛3𝑡4 + 𝑛4𝑡3). In contrast, our

recognition algorithm runs in time 𝑂 (𝑛𝑡), but does not identify a

forbidden subprofile. We will now assume our 𝑂 (𝑛𝑡) recognition
algorithm as a black box and show how to identify a forbidden

subprofile for a given no-instance P in time 𝑂 (𝑛𝑡).
Let us first describe an 𝑂 (𝑛2𝑡 + 𝑛𝑡2) approach: one at a time,

try to remove each row and each column of P, i.e., 𝑛 + 𝑡 removal

attempts; if doing somakes the resulting profile a yes-instance, undo

the removal, and otherwise let it persist. At the end, the ensuing

no-instanceP′
is a subprofile ofP whose proper subprofiles are yes-

instances, so P′
is a forbidden subprofile, completing the argument.

We now modify the previous idea to run in time𝑂 (𝑛𝑡) by remov-

ing multiple rows/columns at a time.Wewill first only remove rows,

and then, starting from the resulting profile, only columns. The

reasoning for columns is entirely analogous, so we only describe

the procedure for rows: partition the rows into 5 groups𝐺1, . . . ,𝐺5,

each of size roughly 𝑛/5. Because all forbidden subprofiles are of

size 3×4 or 4×3, any occurrence of a forbidden subprofile in P only

uses rows from at most 4 of the 5 groups. Consequently, we can

find a group𝐺𝑖 such that removing all rows in𝐺𝑖 from P keeps the

property that P is a no-instance. Doing so requires at most 5 calls



to the recognition algorithm, so it can be done in overall time𝑂 (𝑛𝑡).
Ignoring for brevity the cases where 𝑛 is not divisible by 5, this

reasoning shows how to reduce 𝑛 to 4𝑛/5 in time 𝑂 (𝑛𝑡). Applying
the same reasoning iteratively until 𝑛 goes below 5 takes total time

𝑂 (𝑛𝑡) because the geometric series

∑∞
𝑖=0 (4/5)𝑖 converges.

Theorem 10. Given a non-single-switch profile P, a forbidden sub-
profile of P can be determined in time 𝑂 (𝑛𝑡).

We note that the previous idea applies more broadly; e.g., for

single-crossing preferences, which admit a characterization in terms

of two small forbidden subinstances [9], our 𝑂 (𝑛𝑡
√︁
log𝑛) recogni-

tion algorithm can be bootstrapped to also produce a forbidden

subinstance for no-instances within the same time bound. A formal

statement and more details can be found in Section B.3.

5 ANSCOMBE’S PARADOX
When preferences are not single-switch, determining whether an

IWM proposal is a Condorcet winner is co-NP hard. In light of

this, we focus on the most diabolical subset of Ostrogorski paradox

instances: those inducing Anscombe’s paradox (where an IWM

proposal is defeated by its complement, or, equivalently, an IWM

proposal fails to get majority support). If Anscombe’s paradox oc-

curs, a natural question is: “How close can we get to any given

IWM while still requiring that the proposal gets majority support?”

We first explore this question under external weights, i.e., in

instances I = (P,𝑤) where all voters share the same, unit-sum

weights vector𝑤 . Then, we introduce the necessary notation and

study it for internal weights. Finally, we give a simple characteriza-

tion of a broad swath of instances that avoid Anscombe’s paradox

entirely for internal weights. We assume throughout that 𝑡 > 1, as

Anscombe’s paradox does not occur with one topic, and without

loss of generality that 𝑚 𝑗 ≥ 0.5 for all 𝑗 ∈ [𝑡] (i.e., that +1 is a

majority opinion on all topics).

Formally, some voter 𝑖 supports (approves of) a proposal 𝑝 if

𝑑𝐻 (𝑣𝑖 , 𝑝,𝑤) < 1/2, opposes (disapproves of) 𝑝 if 𝑑𝐻 (𝑣𝑖 , 𝑝,𝑤) > 1/2,
and is indifferent to 𝑝 if 𝑑𝐻 (𝑣𝑖 , 𝑝,𝑤) = 1/2. A proposal is strictly
majority-supported if more people support it than oppose it and

weakly majority-supported if no more people oppose it than sup-

port it. Our definition of majority support matches [13] but differs

from [20] (where indifferent voters count towards the proposal’s

support).

5.1 External Weights
In the unweighted case, it is straightforward to argue that for any

IWM, there exists a weakly majority-supported proposal within

distance ≤ 1

2
+ 1

2𝑡
because at least one proposal in every complemen-

tary pair (𝑝, 𝑝) gets weak majority support (and at least one pair

satisfies the distance bound for both proposals). A slightly better

guarantee of distance < 1

2
holds by a more difficult proof [13, 20].

For external weights, the complementary pairs argument no longer

gives a bound close to
1

2
if no subset of topic weights sum up close

to
1

2
. One may hope to reduce to the unweighted case by splitting

topics into multiple equal-weight topics and use the < 1

2
bound

there, but the resulting majority-supported proposals may have

different values for an original topic’s clones, making it hard to

translate to proposals in the original instance. Despite these set-

backs, we surprisingly find that the < 1

2
guarantee still holds for

external weights. Our proof, deferred to Section C.1.2, simplifies

and adapts the argument in [13]. We also guarantee strict majority

support if there is a strict majority in at least one relevant topic,
roughly meaning topics with high enough weight to be the tipping

point in a vote (see Section C.1.1 for a formal definition).

Theorem 11. For any I = (P,𝑤) and 𝑝𝐼𝑊𝑀 , there is a weakly ma-
jority supported proposal 𝑝 with 𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 ,𝑤) < 1/2. If majority
is strict in any relevant topic, “weak” can be replaced with “strict”.

5.2 Internal Weights
We now explore a model where individuals can have unique weight

vectors, expressing not only diverse preferences on issue outcomes

but also differing opinions on relative topic importance.

Internal Weights Model. In the internal weights model, an

instance I = (P,𝑊 ) consists of a preference profile P and a weight

profile𝑊 with rows𝑤1, . . . ,𝑤𝑛 where each weight vector𝑤𝑖 cor-

responds to voter 𝑖 , is non-negative, and sums to 1. The average
weight vector is defined as 𝑤̃ := 1

𝑛

∑𝑛
𝑖=1𝑤𝑖 . Zero entries in the av-

erage weight vector correspond to issues that no voters placed

any weight on (and hence can be ignored). We assume no such

topics exist without loss of generality. We define the majority for

a given topic 𝑗 to be𝑚 𝑗 :=
1

𝑛𝑤̃𝑗

∑𝑛
𝑖=1𝑤𝑖, 𝑗 · I(𝑣𝑖, 𝑗 = +1). This is the

fraction of voter weight placed on that issue that prefers +1. Note
that this agrees with our previous definition for external weights

(where it was just the fraction of voters that prefer +1 on that topic).

The average majority for a given preference profile is defined as

𝑚̃ :=
∑𝑡
𝑗=1 𝑤̃ 𝑗𝑚 𝑗 . This naturally weights consensus on issues pro-

portionally to how important those issues are to the population.

Under external weights, we could give a constant upper bound

(Theorem 11) on the minimum distance of somemajority-supported

proposal from an IWM, independent of the weight profile. As we

will see in Theorems 12 and 13, the severity of Anscombe’s Paradox

under internal weights is closely related to the maximum average

topic weight 𝑤̃𝑚𝑎𝑥 (the maximum entry in 𝑤̃ ). Formally, we will

upper bound the worst-case IWM distance 𝑔ℓ for instances with
maximum average topic weight 𝑤̃𝑚𝑎𝑥 = ℓ ∈ (0, 1) and selections of

𝑝𝐼𝑊𝑀 for the instance:

𝑔ℓ := max

I=(P,𝑊 ), 𝑝𝐼𝑊𝑀
𝑠.𝑡 .𝑤̃𝑚𝑎𝑥=ℓ

(
min

𝑝 weakly majority-supported

𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 , 𝑤̃)
)

We first give a simple upper bound on 𝑔ℓ for ℓ ∈ (0, 1) derived
from a partition-based algorithm. Surprisingly, we then show that

this seemingly weak upper bound is tight for a large portion of

the range 𝑤̃𝑚𝑎𝑥 ∈ (0, 1). Our lower-bound constructions more

strongly imply the existence of instances where all weakly majority-

supported proposals are far from all IWM’s. Fig. 3 provides a sum-

mary of the bounds we give on 𝑔𝑤̃𝑚𝑎𝑥 .

Partition-based upper bounds. Theorem 12 guarantees both

the existence of reasonable majority-supported proposals and pro-

vides an algorithm to efficiently recover them.

Theorem 12. We have the following upper bounds on 𝑔ℓ :
• If ℓ ∈ (0, 1/3), then 𝑔ℓ ≤ 1/2 + ℓ/2;
• If ℓ ∈ [1/3, 1/2], then 𝑔ℓ ≤ 1 − ℓ ;
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Figure 3: A summary of our bounds on 𝑔𝑤̃𝑚𝑎𝑥 .

• If ℓ ∈ (1/2, 1), then 𝑔ℓ ≤ ℓ .
In each case, we can compute a weakly majority-supported proposal
𝑝 with 𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 , 𝑤̃) at most the given bound in polynomial time.

The full proof is deferred to Section C.2.1, but the intuition

is as follows: for any proposal, either it or its complement will

get weak majority support (potentially both), and for any 𝑝𝐼𝑊𝑀 ,

𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 , 𝑤̃) = 1 − 𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 , 𝑤̃). Therefore, we construct 𝑝
that keeps max{𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 , 𝑤̃), 𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 , 𝑤̃)} small. This is ul-

timately equivalent to the partition optimization problem with the

𝑡 entries in the average weight vector as inputs. Our bounds are

constructive and give the pair (𝑝, 𝑝) achieving the bound.

Lower bounds. By definition, 𝑔ℓ ≤ 1, so the upper bounds in

Theorem 12 might seem fairly weak. However, in Theorem 13, we

show that they are actually tight for many values of ℓ . This implies

that when 𝑤̃𝑚𝑎𝑥 is large, 𝑔𝑤̃𝑚𝑎𝑥 can get arbitrarily close to 1.

Theorem 13. The following lower bounds for 𝑔ℓ hold:
• If ℓ = 1/(2𝑘 + 1) with 𝑘 ∈ Z≥0, then 𝑔ℓ ≥ 1/2 + ℓ/2;
• If ℓ ∈ (1/2, 1), then 𝑔ℓ ≥ ℓ .

We conjecture that the upper bounds in Theorem 12 are tight

for the remaining values of ℓ , but leave this to future work. The

proof of Theorem 13 is deferred to Section C.2.2, but we provide

the construction for ℓ ∈ (1/2, 1) and some intuition here. In the

instance below, we choose 𝑥 large enough such that 𝑤̃𝑚𝑎𝑥 = ℓ and

the first issue holds a strict majority of the weight for all voters.

There are 𝑥 copies of the first voter, and 𝑥 + 1 copies of the second.

P =
(𝑥) ×

(𝑥 + 1) ×

[
+1 +1
-1 +1

]
W =

(𝑥) ×
(𝑥 + 1) ×

[
𝑥+1
𝑥

· ℓ 1 − 𝑥+1
𝑥

· ℓ
𝑥
𝑥+1 · ℓ 1 − 𝑥

𝑥+1 · ℓ

]
In this instance, all voters are essentially “single-issue voters”

on the first topic, but the second type of voters split their weight

slightly more evenly between the two topics. +1 is the weighted
majority opinion on the first topic, but any proposal with+1 for that
topic will not get majority support because voters of the second type

will oppose it. Notably, 1 is the unique IWM in our constructions,

implying there is no majority-supported proposal close to any IWM.

Theorem 13 quashes any hope of improving on Theorem 12

and proving a similar result to the external weights setting (where

𝑔ℓ < 1/2 held for any weights profile). Once voters can have distinct

weight vectors, increasing 𝑤̃𝑚𝑎𝑥 can make the distance between

all majority-supported proposals and IWM proposals arbitrarily

large. We conclude this section by characterizing a group of voting

instances in which Anscombe’s Paradox will not occur.

Condition precluding Anscombe’s Paradox. We find that

generalizations of Wagner’s Rule of Three-Fourths hold in both the

external and internal weights settings:

Theorem 14. If 𝑚̃ ≥ 3/4 then Anscombe’s paradox will not occur.
Additionally, if 𝑚 𝑗 ≥ 3/4 for all 𝑗 ∈ [𝑡] in the external weights
setting, then Ostrogorski’s paradox will not occur.

Our proof (deferred to Section C.3) follows Wagner’s original

proof strategy of counting agreement with an IWM in an instance in

twoways: column-wise and row-wise, but is modified to account for

weights. We get the second part of our claim by using the fact that,

under external weights, Ostrogorski’s paradox occurs if and only if

there is a subset of issues inducing an instance where Anscombe’s

paradox occurs.

6 CONCLUSION AND FUTUREWORK
We explored how best to represent the will of voters on multiple,

separable issues when optimizing for two potentially conflicting

ideals: agreement with issue-wise majority and success in pairwise

proposal comparisons. Additionally, we augmented previous multi-

issue voting models to account for non-uniform and individualized

issue importance. We demonstrated that determining whether an

IWM is a Condorcet winner is co-NP hard, but provided an effi-

ciently checkable condition under which Ostrogorski’s paradox

does not occur. We then examined instances where an IWM loses

to the opposing proposal (i.e., Anscombe’s paradox occurs) and

showed how our two weighting models alter our ability to recon-

cile the two objectives. While we now have a rich understanding of

the interaction of these two majoritarian ideals, one could optimize

for different notions of representation in the proposal selection. It

would be interesting to study variants of maximizing total voter

“satisfaction” — the total weight voters have on topics that they

agree with the final proposal on (a weighted version of an objective

proposed in [20]). On the technical side, our work leaves open a

number of interesting questions and gaps: (i) Our Theorem 11 for

external weights is only existential. In contrast, in the unweighted

setting, [13] also provide a polynomial-timemethod to derandomize

the probabilistic argument. Extending this approach to the weighted

setting appears generally more challenging but likely feasible in

pseudo-polynomial time with slightly more involved techniques.

(ii) Paper [13] also shows a hardness result for the unweighted case:

telling whether a proposal achieves more agreement with an IWM

than guaranteed by the probabilistic argument is NP-hard. It would

be interesting to get a similar result for every fixed weights vec-

tor𝑤 . (iii) We have only succeeded in proving that our bounds in

Theorem 12 are tight for some portion of the range 𝑤̃𝑚𝑎𝑥 ∈ (0, 1).
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A COMPLEXITY OF DETERMINING A
CONDORCETWINNER

In this section, we show that UNANIM is NP-hard. This was previ-

ously known [14, Theorem 2], but the proof there is a more com-

plicated reduction from Independent Set. In contrast, our proof

proceeds by recasting the problem in terms of selecting a subset

of column vectors whose sum is negative in all coordinates. This

alternate view enables a more natural reduction from Exact Cover

By 3-Sets. Afterward, we put all the pieces together to give a self-

contained formal proof of Theorem 1. We conclude the section by

providing a similar “choosing a subset of vectors” formulation for

MAJOR, which we believe could be interesting more broadly.

To prove that UNANIM is NP-hard, we note that UNANIM admits

an elegant reformulation: write P = (𝑐1, . . . , 𝑐𝑡 ) in terms of its

issue/column vectors, then selecting a proposal 𝑝 ∈ B𝑡 amounts to

choosing the subset of issues where 𝑝 differs from 1. A voter 𝑖 ∈ [𝑛]
prefers 𝑝 ≻𝑖 1 iff the sum of the selected vectors is strictly negative

in coordinate 𝑖 , so UNANIM asks to select vectors such that the sum

is negative in all 𝑛 coordinates. Hence, UNANIM is equivalent to the

following problem, which we find of independent interest:

Problem “NEGATIVE-SUM-SUBSET” (NSS)
Input: Collection 𝐶 of 𝑡 dimension-𝑛 vectors over ±1.
Output: Does there exist𝐶′ ⊆ 𝐶 s.t v :=

∑
𝑐∈𝐶′ 𝑐 is negative

in all coordinates: v𝑖 < 0 for all 𝑖 ∈ [𝑛]?

Lemma 15. UNANIM = NSS is NP-hard.

Proof. We reduce from the problem Exact Cover By 3-Sets

(X3C), which is well-known to be NP-hard [21]. An instance of

X3C is given by a ground set 𝑆 of size 3𝑠 and a set 𝑋 of size-3

subsets of S (also called triples); it is a yes-instance if and only if

there exists a subset 𝑋 ′ ⊆ 𝑋 that forms an exact cover of 𝑆 (i.e.,

the triples in 𝑋 ′
cover each element of 𝑆 exactly once); note that

|𝑋 ′ | = 𝑠 must hold if so.

Consider an instance of X3C, we want to construct an instance

of NSS such that the former is a yes-instance if and only if the

latter one is.

We can assume without loss of generality that there is a triple

{𝑎, 𝑏, 𝑐} ∈ 𝑋 such that no other element of 𝑋 contains any of 𝑎, 𝑏,

or 𝑐 . Indeed, if not, we can add three new elements to 𝑆 and a set

comprising them to 𝑋 . The modified instance is a yes-instance if

and only if the original instance is.

Now, to create an instance of NSS, we construct |𝑋 | + 𝑠 − 1

dimension-(3𝑠 + 1) vectors over ±1. The first 3𝑠 coordinates cor-
respond to the elements of the ground set. For each set 𝑥 ∈ 𝑋 ,

we construct a vector with −1 in coordinates that correspond to

elements of 𝑥 as well as in the last coordinate (in other coordinates,

we have +1). We refer to these vectors as set vectors. In addition, we

construct 𝑠 − 1 vectors with −1 in the first 3𝑠 coordinates and +1 in
the last coordinate; we refer to these vectors as dummy vectors.

We claim that this is a yes-instance of NSS if and only if the

original instance of X3C was a yes-instance.

(⇐) Suppose we started with a yes-instance of X3C, so let 𝑋 ′ ⊆
𝑋 be an exact cover. Recall that this implies |𝑋 ′ | = 𝑠 . Take the 𝑠

set vectors corresponding to 𝑋 ′
as well as all 𝑠 − 1 dummy vectors.

Summing up these vectors, in the last coordinate, we get 𝑠 · (−1) +
(𝑠 − 1) · (+1) = −1. In every other coordinate, we have 𝑠 − 1

entries −1 from the dummy vectors, one entry −1 from the vector

corresponding to the triple that covers the respective element, and

𝑠 − 1 entries +1 from the other selected set vectors, making for a

total sum of (𝑠 − 1) · (−1) + 1 · (−1) + (𝑠 − 1) · (+1) = −1. Hence,
the resulting instance is a yes-instance of NSS.

(⇒) Conversely, suppose the resulting instance is a yes-instance
of NSS. Hence, pick some of the vectors so that the sum in each

coordinate is negative. We will show that, among picked vectors,

the set vectors correspond to an exact cover. Suppose we picked

𝑡 set vectors. Then, we picked at most 𝑡 − 1 dummy vectors (as

otherwise, the sum in the last coordinate would be non-negative).

Note that this implies 𝑡 > 0.

Assume for a contradiction that the set vectors among selected

vectors do not correspond to a cover. Then, there is some coordi-

nate among the first 3𝑠 in which all selected set vectors have +1.
However, in that case, the sum of the vectors cannot be negative

in that coordinate, as we have 𝑡 entries +1 from set vectors and at

most 𝑡 − 1 entries −1 from dummy vectors, a contradiction.

On the other hand, assume for a contradiction that the selected

set vectors do correspond to a cover, but it is not an exact cover,

so some element is covered more than once. In particular, each

element is covered at least once, and at least one element element

is covered more than once, so the sum of the sizes of the triples

that the selected set vectors correspond to has to be at least 3𝑠 + 1,

meaning that we had to pick at least 𝑠 +1 = ⌈ 3𝑠+1
3

⌉ set vectors. Now,
recall that there is some element 𝑎 (without loss of generality, the

element corresponding to the first coordinate) that is only contained

in one triple in X.
4
Then, in our chosen collection of vectors, we

have at most one set vector with −1 in the first coordinate and,

hence, at least 𝑠 set vectors with +1 in this coordinate. Hence,

considering only set vectors, the sum in this coordinate is at least

1 · (−1) +𝑠 · (+1) = 𝑠−1. Hence, even if all 𝑠−1 dummy vectors were

picked, the sum in this coordinate is at least 𝑠 −1+ (𝑠 −1) · (−1) = 0,

and hence non-negative, a contradiction.

Hence, the set vectors among picked vectors correspond to an

exact cover, so the original instance of X3C is a yes-instance, com-

pleting the proof. □

Wenow give a self-contained formal proof of Theorem 1, restated

below for convenience.

Theorem 1. Deciding whether an instance I = P admits a Con-
dorcet winner is co-NP-hard in the unweighted setting with odd 𝑛.

Proof. In the unweighted setting with odd 𝑛, checking for the

existence of a Condorcet winner is equivalent to checking whether

the (unique) issue-wise majority proposal is a Condorcet winner

(by Lemma 2). It is enough to show hardness for the case where

the issue-wise majority proposal is 1.5 Hence, we want to show

that the following problem is co-NP-hard: “Given a voting instance

I = P in the unweighted setting with odd 𝑛 where 1 is the issue-
wise majority proposal, determine whether 1 is a Condorcet winner.”
This is equivalent to showing that the ‘negated’ problem is NP-hard:

4
In fact, there are three such elements, but we do not need this fact.

5
This is, in fact, equivalent to the general case by negating/flipping issues where −1 is
the majority opinion, but we do not need this distinction to prove hardness.



“Given a voting instance I = P in the unweighted setting with odd

𝑛 where 1 is the issue-wise majority proposal, determine whether

1 is not a Condorcet winner.” Not being a Condorcet winner is

equivalent to there existing a proposal 𝑝 ∈ B𝑡 such that 𝑝 ≻I 1.
Hence, the negated problem is precisely MAJOR, which is NP-hard

by Lemma 3, completing the proof. □

We end by pointing out that it is also possible to formulate

MAJOR as a vector problem. We found it clearest not to do so in our

proofs, but the problem resulting in doing so is elegant and might

see other applications. Namely, the following problem is equivalent

to MAJOR, and hence NP-hard:

Problem
“MORE-NEGATIVE-THAN-POSITIVE-SUM-SUBSET”
Input: Collection 𝐶 of 𝑡 dimension-𝑛 vectors over ±1, s.t. 𝑛
is odd and each vector’s entries sum up to a positive amount.

Output: Does there exist𝐶′ ⊆ 𝐶 s.t. v :=
∑
𝑐∈𝐶′ 𝑐 is negative

in more coordinates than it is positive:

∑
𝑖∈[𝑛] sgn(v𝑖 ) < 0?

B AN OSTROGORSKI-FREE DOMAIN
B.1 For External Weights Single-Switch

Prevents Ostrogorski’s Paradox
In this section, we prove that, under external weights, the single-

switch condition guarantees that all IWM proposals are Condorcet

winners, i.e., Ostrogorski’s paradox does not occur. To this end, we

first show that every issue-wise majority proposal does not lose

against its opposite, i.e., Anscombe’s paradox does not occur. This

was already known for the unweighted model [25]. We, however,

found the proof in [25] relatively tricky to parse: in part because of

certain missing/unclear details and in part because of the relatively

involved case distinctions in the second part of the proof. We adapt

this proof to external weights and also simplify and streamline it,

removing the need for case distinctions by noting symmetries and

wisely manipulating sgn functions. This yields a shorter and clearer
argument that highlights better where the assumption about our

proposal being an IWM comes into play, which was not immediate

from the original presentation.

Lemma 16. Consider an external-weights single-switch instance
I = (P,𝑤). Then, for any issue-wise majority proposal 𝑝 , we have
𝑝 ≽I 𝑝 .

Proof. Without loss of generality, assume that ones form a

prefix or a suffix on every row of P.
6
For each 1 ≤ 𝑖 ≤ 𝑡 define

𝑒𝑖 ∈ B𝑡 such that 𝑒𝑖, 𝑗 = +1 if 𝑗 ≤ 𝑖 , and 𝑒𝑖, 𝑗 = −1 otherwise. It

follows that every row in P belongs to the set ∪𝑡𝑖=1{𝑒𝑖 , 𝑒𝑖 }. Given
a vector u ∈ B𝑡 write #P (u) := |{𝑖 ∈ [𝑛] | 𝑣𝑖 = u}| for the
number of voters in P whose vote is u, in which case we say that

those voters are of type u. For 1 ≤ 𝑖 ≤ 𝑡 , define 𝑥𝑖 := #P (𝑒𝑖 ) −
#P (𝑒𝑖 ) to be the number of voters in P with vote 𝑒𝑖 minus the

number of voters in P with vote 𝑒𝑖 . We want to show that 𝑝 ≽I 𝑝 ,

which amounts to

∑𝑛
𝑖=1 sgn(⟨𝑣𝑖 , 𝑝 − 𝑝⟩𝑤) ≥ 0, which is equivalent

6
Note that assuming this and, at the same time, that 1 is an issue-wise majority proposal

would lose generality.

𝑒′
1

𝑒′
2

𝑒′
3

𝑒′
4

𝑒0 -1 -1 -1

𝑒1 +1 -1 -1 -1
𝑒2 +1 +1 -1 -1
𝑒3 +1 +1 +1 -1

Figure 4: Matrix in the proof of Lemma 16 for 𝑡 = 3. The
helper 𝑒0 and 𝑒′

4
are depicted above/to the right.

to

∑𝑛
𝑖=1 sgn(⟨𝑣𝑖 , 𝑝⟩𝑤) ≥ 0. Since voters can only be of the 2𝑡 types,

this is equivalent to:

𝑡∑︁
𝑖=1

(#P (𝑒𝑖 ) · sgn(⟨𝑒𝑖 , 𝑝⟩𝑤) + #P (𝑒𝑖 ) · sgn(⟨𝑒𝑖 , 𝑝⟩𝑤)) ≥ 0

Since ⟨𝑒𝑖 , 𝑝⟩𝑤 = −⟨𝑒𝑖 , 𝑝⟩𝑤 , this is the same as:

𝑡∑︁
𝑖=1

𝑥𝑖 · sgn(⟨𝑒𝑖 , 𝑝⟩𝑤) ≥ 0 (1)

To prove this, we are given the fact that 𝑝 is an issue-wise majority

proposal. Recall that for 𝑗 ∈ [𝑡] we defined𝑏 𝑗 :=
∑𝑛
𝑖=1 𝑣𝑖, 𝑗 =

∑𝑡
𝑖=1 𝑥𝑖 ·

𝑒𝑖, 𝑗 , in which case what we know amounts to 𝑏 𝑗 · 𝑝 𝑗 ≥ 0 for all

𝑗 ∈ [𝑡].
To begin the proof, note that the type votes 𝑒1, . . . , 𝑒𝑡 form a 𝑡 × 𝑡

matrix with one row for each vote. Let 𝑒′
1
, . . . , 𝑒′𝑡 be the columns of

this matrix. For uniformity in the reasoning that follows, it will be

helpful to define 𝑒′𝑡+1 := 𝑒′
1
= −1 and 𝑒0 := 𝑒𝑡 = −1. See Fig. 4 for an

illustration. With these added conventions, for any 𝑗 ∈ [𝑡] we have
that 𝑒′𝑗 and 𝑒

′
𝑗+1 differ only in coordinate 𝑗 , which is +1 in 𝑒′𝑗 and

−1 in 𝑒′𝑗+1, and, moreover, 𝑒 𝑗 and 𝑒 𝑗−1 differ only in coordinate 𝑗 ,

which is +1 in 𝑒 𝑗 and −1 in 𝑒 𝑗−1. Let us also extend the definition

of 𝑏 to make 𝑏𝑡+1 well-defined.
As a result, for all 𝑖 ∈ [𝑡] we have that 𝑏𝑖 − 𝑏𝑖+1 = 2 · 𝑥𝑖 and

⟨𝑒𝑖 − 𝑒𝑖−1, 𝑝⟩𝑤 = 2 ·𝑤𝑖 · 𝑝𝑖 . Moreover, by definition, 𝑏𝑡+1 = −𝑏1 and
⟨𝑒𝑡 , 𝑝⟩𝑤 = −⟨𝑒0, 𝑝⟩𝑤 , which together imply that𝑏𝑡+1·sgn(⟨𝑒𝑡 , 𝑝⟩𝑤) =
𝑏1 · sgn(⟨𝑒0, 𝑝⟩𝑤).

Armed as such, we substitute in Eq. (1) to get that we need to

show that:

𝑡∑︁
𝑖=1

𝑏𝑖 − 𝑏𝑖+1
2

· sgn(⟨𝑒𝑖 , 𝑝⟩𝑤) ≥ 0 ⇐⇒

𝑡∑︁
𝑖=1

(𝑏𝑖 − 𝑏𝑖+1) · sgn(⟨𝑒𝑖 , 𝑝⟩𝑤) ≥ 0 ⇐⇒

𝑡∑︁
𝑖=1

𝑏𝑖 · sgn(⟨𝑒𝑖 , 𝑝⟩𝑤) −
𝑡∑︁
𝑖=1

𝑏𝑖+1 · sgn(⟨𝑒𝑖 , 𝑝⟩𝑤) ≥ 0

The last term in the second sum is 𝑏𝑡+1 · sgn(⟨𝑒𝑡 , 𝑝⟩𝑤) = 𝑏1 ·
sgn(⟨𝑒0, 𝑝⟩𝑤), so the second sum stays the same if we change its

summation bounds from (1, 𝑡) to (0, 𝑡 − 1). Doing so and then

rewriting in terms of 𝑖 + 1 instead of 𝑖 , the second sum equals∑𝑡
𝑖=1 𝑏𝑖 · sgn(⟨𝑒𝑖−1, 𝑝⟩𝑤). Combining the two sums and then factor-

ing out the 𝑏𝑖 yields:

𝑡∑︁
𝑖=1

𝑏𝑖 · (sgn(⟨𝑒𝑖 , 𝑝⟩𝑤) − sgn(⟨𝑒𝑖−1, 𝑝⟩𝑤)) ≥ 0



To show that this is true, we will just show that each term is non-

negative. Consider a fixed 𝑖 ∈ [𝑡], then we would like to show that

𝑏𝑖 · (sgn(⟨𝑒𝑖 , 𝑝⟩𝑤) − sgn(⟨𝑒𝑖−1, 𝑝⟩𝑤)) ≥ 0. This happens if and only

if:

sgn(𝑏𝑖 ) · (sgn(⟨𝑒𝑖 , 𝑝⟩𝑤) − sgn(⟨𝑒𝑖−1, 𝑝⟩𝑤)) ≥ 0 ⇐⇒
sgn(𝑏𝑖 ) · sgn(⟨𝑒𝑖 , 𝑝⟩𝑤) ≥ sgn(𝑏𝑖 ) · sgn(⟨𝑒𝑖−1, 𝑝⟩𝑤) ⇐⇒

sgn(𝑏𝑖 · ⟨𝑒𝑖 , 𝑝⟩𝑤) ≥ sgn(𝑏𝑖 · ⟨𝑒𝑖−1, 𝑝⟩𝑤)

Because the sign function is monotonic, it hence suffices to show

that 𝑏𝑖 · ⟨𝑒𝑖 , 𝑝⟩𝑤 ≥ 𝑏𝑖 · ⟨𝑒𝑖−1, 𝑝⟩𝑤 ⇐⇒ 𝑏𝑖 · ⟨𝑒𝑖 − 𝑒𝑖−1, 𝑝⟩𝑤 ≥ 0 ⇐⇒
𝑏𝑖 · (2 ·𝑤𝑖 · 𝑝𝑖 ) ≥ 0, which is true since 𝑏𝑖 · 𝑝𝑖 ≥ 0. □

The general statement that Ostrogorski’s paradox does not occur

will now follow easily by combining Lemma 16 with the following:

Lemma 17. Ostrogroski’s paradox occurs for an instanceI = (P,𝑤)
in the external-weights model if and only if Anscombe’s paradox
occurs on an instance I′ obtained from I by removing (possibly zero)
issues from I and renormalizing the weights to sum up to 1.

Proof. We prove the two directions separately:

(⇐) Assume Anscombe’s paradox occurs on an instance I′

obtained from I by removing a subset of issues 𝑅 ⊆ [𝑡] from I
and renormalizing the weights to sum up to 1. Then, by definition,

there is an IWM proposal 𝑝′
𝐼𝑊𝑀

for I′
such that 𝑝′

𝐼𝑊𝑀
≻I′ 𝑝′

𝐼𝑊𝑀
.

Complete 𝑝′
𝐼𝑊𝑀

into an IWM proposal 𝑝𝐼𝑊𝑀 for I and define 𝑝∗
to agree with 𝑝𝐼𝑊𝑀 in topics in 𝑅 and disagree in topics in [𝑡] \ 𝑅.
Then, Ostrogorski’s paradox occurs for I: proposal 𝑝𝐼𝑊𝑀 is an

IWM and 𝑝∗ ≻I 𝑝𝐼𝑊𝑀 by construction because 𝑝′
𝐼𝑊𝑀

≻I′ 𝑝′
𝐼𝑊𝑀

.

(⇒) Assume Ostrogroski’s paradox occurs for I. Let 𝑝𝐼𝑊𝑀 and

𝑝∗ be such that 𝑝𝐼𝑊𝑀 is an IWM proposal for I and 𝑝∗ ≻I 𝑝𝐼𝑊𝑀 .

Define 𝑅 ⊆ [𝑡] to be the set of topics in which 𝑝∗ and 𝑝𝐼𝑊𝑀 agree,

and createI′
fromI by removing issues in 𝑅 and renormalizing the

weights to sum up to 1. Moreover, restrict 𝑝𝐼𝑊𝑀 to topics in [𝑡] \ 𝑅
to get an IWM proposal 𝑝′

𝐼𝑊𝑀
for I′

. Then, Anscombe’s paradox

occurs for I′
: proposal 𝑝′

𝐼𝑊𝑀
is an IWM and 𝑝′

𝐼𝑊𝑀
≻I′ 𝑝′

𝐼𝑊𝑀
by

construction because 𝑝∗ ≻I 𝑝𝐼𝑊𝑀 . □

Theorem 4. In the external-weights model, every issue-wise majority
proposal of a single-switch instance is a Condorcet winner.

Proof. Assume this was not the case and consider a single-

switch instance I in the external-weights model for which there ex-

ists an issue-wise majority proposal that is not a Condorcet winner

(equivalently, Ostrogorski’s paradox occurs for I). By Lemma 17,

Anscombe’s paradox occurs on an instance I′
obtained from I

by removing (possibly zero) issues from I and renormalizing the

weights to sum up to 1. Since I is single-switch, so is I′
. Hence,

Anscombe’s paradox occurs in a single-switch instance, contradict-

ing Lemma 16. □

B.2 Recognizing Single-Switch Profiles
In this section, we first prove Lemma 5, restated below for conve-

nience. Then, we delve into the task of recognizing single-switch-no-

flips profiles, providing an ample guided discussion of the relation

between our simpler 𝑂 (𝑛𝑡) algorithm and related work, including

the task of recognizing single-crossing preferences. As a bonus,

we discuss a simpler and, at the same time, more efficient algo-

rithm for recognizing single-crossing preferences, running in time

𝑂 (𝑛𝑡
√︁
log𝑛).

Lemma 5. Consider a profile P admitting an SSW presentation P′ =
(𝑐1, . . . , 𝑐𝑡 ). Then, P′

𝑟 := (𝑐2, . . . , 𝑐𝑡 , 𝑐1) is also a SSW presentation
of P. Furthermore, any 𝑡 (circularly) consecutive columns in P′′

:=

(𝑐1, . . . , 𝑐𝑡 , 𝑐1, . . . , 𝑐𝑡 ) form an SSW presentation of P.

Proof. It is enough to show this for the case where P has 𝑛 = 1

rows, in which case 𝑐1, . . . , 𝑐𝑡 ∈ B. Let us assume 𝑐1 = 1, as the

other case is analogous. Since P′
is an SSW presentation of P, let

1 ≤ 𝑘 ≤ 𝑡 be such that P′
starts with 𝑘 ones and the rest are −1’s.

As a result, P′
𝑟 by definition starts with 𝑘 − 1 ones, and the rest are

−1’s, implying that P′
𝑟 is an SSW presentation of P′

, and hence

also of P by transitivity.

To get the part about P′′
, apply the previous reasoning for P′

𝑟 re-

peatedly, each time taking the first column, negating it, and moving

it to the end. Doing so 2𝑡 times leads back to the original pre-

sentation, and along the way, we get the advertised single-switch

presentations. □

Recognizing single-switch-no-flips profiles. We now focus

on deciding whether a given preference profile P is single-switch-

no-flips. A first way to do so requires rather involved machinery,

by reducing to the Consecutive Ones Problem (C1P). In the C1P

problem, the input is an 𝑛 × 𝑡 matrix with ±1 entries. The goal

is to permute its columns so that the ones on each row form a

consecutive interval. Solving C1P on a matrix with a negated copy

of itself appended underneath corresponds to requiring a solution

for the original matrix where not only ones are consecutive, but

also −1’s, meaning that ones form a prefix or a suffix on each row.

C1P can be solved in 𝑂 (𝑛𝑡) time [5], hence giving an immediate

solution to check whether P is single-switch-no-flips within the

same time. However, linear-time C1P solvers are complicated and

notoriously error-prone: most available implementations fail on

at least some edge cases [17]. Moreover, reducing to C1P does not

utilize the additional structure present in our problem and hence

does not shed light on the structure of all solutions, as we set

out to do. We note that this way of checking whether a profile

is single-switch-no-flips has previously appeared in [15], where

the authors use it to solve the equivalent problem of recognizing

voter/candidate-extremal-interval preferences.

A second way to recognize single-switch-no-flips profiles re-

duces to the problem of recognizing single-crossing preferences. In
this problem, the input consists of a set 𝐴, of size denoted by 𝑛, and

a list (≻1, . . . ,≻𝑡 ) of linear orders over 𝐴. The goal is to permute

this list to obtain a new list (≻′
1
, . . . ,≻′

𝑡 ) such that for any 𝑎, 𝑎′ ∈ 𝐴

with 𝑎 ≠ 𝑎′ the set { 𝑗 ∈ [𝑡] : 𝑎 ≻′
𝑗 𝑎

′} forms a prefix or a suffix.

The reduction is not too difficult: start with a preference profile P
and define𝐴 = ∪𝑖∈[𝑛] {𝑎0𝑖 , 𝑎1𝑖 } and a list (≻1, . . . ,≻𝑡 ) of linear orders
over 𝐴 as follows. For each 𝑗 ∈ [𝑡], order ≻𝑗 ranks the elements in

𝐴 as {𝑎0
1
, 𝑎1

1
} ≻𝑗 {𝑎0

2
, 𝑎1

2
} ≻𝑗 . . . ≻𝑗 {𝑎0𝑛, 𝑎1𝑛}, breaking the tie inside

each bracket as follows: for each 𝑖 ∈ [𝑛], rank 𝑎0𝑖 ≻𝑗 𝑎1𝑖 if 𝑣𝑖, 𝑗 = 1,

and 𝑎1𝑖 ≻𝑗 𝑎0𝑖 otherwise. One can check that permutations of the

list with the required property correspond to permutations of the

columns of P such that the ones on each row form a prefix or a

suffix. Recognizing single-crossing preferences can be achieved in



𝑂 (𝑛𝑡 log𝑛)) time [16, Algorithm 4], meaning that our problem also

can. In contrast to the C1P approach, this algorithm has a reason-

able implementation. Moreover, by the standard fact that, when it

exists, the single-crossing permutation is unique up to reversal, we

get that the SSWNF presentation is unique up to reversal whenever

it exists (we will give a self-contained proof later on, so we omit

the details here for brevity).

The previous approach can be modified to run in time 𝑂 (𝑛𝑡)
by identifying and adapting its super-linear components. Most

prominently, [16, Algorithm 4] computes 𝑂 (𝑡) times the Kendall

Tau distance between certain orders ≻𝑖 and ≻𝑗 with 𝑖, 𝑗 ∈ [𝑡], which
is defined as the number of pairs of elements on which ≻𝑖 and ≻𝑗
disagree: 𝑑𝐾𝑇 (≻𝑖 ,≻𝑗 ) := {(𝑎, 𝑎′) ∈ 𝐴2

: 𝑎 ≻𝑖 𝑎′ and 𝑎′ ≻𝑖 𝑎}|. This
is done in time 𝑂 (𝑛 log𝑛) by finding the number of inversions

of a permutation. However, for our particular construction of the

orders (≻1, . . . ,≻𝑡 ), disagreements between orders can only occur

on pairs of the form (𝑎0
𝑘
, 𝑎1
𝑘
) with 𝑘 ∈ [𝑛], and the number of such

disagreements is precisely the Hamming distance 𝑑𝐻 (𝑐𝑖 , 𝑐 𝑗 ), which
can be computed in time 𝑂 (𝑛). The algorithm also sorts a list of

𝑂 (𝑡) integers with values bounded by 𝑂 (𝑛2). To get the right time

complexity, this is done depending on whether 𝑛 or 𝑡 is larger,

either in time 𝑂 (𝑡 log 𝑡) or using Counting Sort in time 𝑂 (𝑛2 + 𝑡).
We note that using Radix Sort would have sufficed to make this

𝑂 (𝑛 + 𝑡) without the need for a case distinction.
7
For our usage,

the values in the list are instead bounded by 𝑂 (𝑛), so Counting

Sort suffices directly (this is because Kendall Tau distances can be

quadratic in 𝑛, while Hamming distances only linear in 𝑛). This

completes the required modifications. We note, moreover, that their

algorithm proceeds in two stages: first, a candidate list (≻′
1
, . . . ,≻′

𝑡 )
is determined, and then it is checked whether it satisfies the single-

crossing condition. Moreover, should a solution exist, the candidate

list is the unique one up to reversing the list. The second stage is,

perhaps surprisingly, the more difficult one to achieve efficiently,

and its correctness proof is the subtler part of the argument. For our

purposes, however, the first stage suffices since, given the candidate

solution, it is easy to check whether ones on each row form a prefix

or a suffix in additional time 𝑂 (𝑛𝑡).
It is possible to give a self-contained 𝑂 (𝑛𝑡) algorithm for our

problem following the outline above (without going through the

reduction to single-crossing preferences). However, the resulting

algorithm is still arguably not the simplest. Instead, in the following

we present a simpler,𝑂 (𝑛𝑡) direct algorithm for recognizing single-

switch-no-flips profiles P = (𝑐1, . . . , 𝑐𝑡 ). The algorithm combines

insights from [16, Section 4.2] with a simple new observation. We

defer further elaboration on the connection with single-crossing

preferences until the end of the section for clarity. Our algorithm

proceeds as follows: First, find an index 𝑥 maximizing 𝑑𝐻 (𝑐1, 𝑐𝑥 ).
Then, sort (using Counting Sort) the columns based on their Ham-

ming distance from 𝑐𝑥 to get a profile P′ = (𝑐′
1
, . . . , 𝑐′𝑡 ) where

𝑑𝐻 (𝑐𝑥 , 𝑐′𝑖 ) ≤ 𝑑𝐻 (𝑐𝑥 , 𝑐′𝑖+1) for 𝑖 ∈ [𝑡 − 1] (i.e., ties in Hamming dis-

tance can be broken arbitrarily). We claim that either P′
is the

unique SSWNF presentation of P (up to reversing the order of the

7
With this small modification, and if counting inversions is performed with the

𝑂 (𝑛
√︁
log𝑛) algorithm of [12], single-crossing preferences can be recognized in the

better time𝑂 (𝑛𝑡
√︁
log𝑛) . We do not give the details here in order not to dilute the

message. Instead, we discuss a simpler 𝑂 (𝑛𝑡
√︁
log𝑛) algorithm at the end of the

section based on similar ideas.

columns), or there is no such presentation. The algorithm runs in

𝑂 (𝑛𝑡) time. We prove all required claims in the following theorem:

Theorem 7. There is a simple𝑂 (𝑛𝑡) algorithm computing (or decid-
ing the inexistence of) an SSWNF presentation of a profileP. Moreover,
if it exists, this presentation is unique up to reversing column order.

Proof. We first repeat the full algorithm briefly:

(1) Say P = (𝑐1, . . . , 𝑐𝑡 );
(2) Find an index 𝑥 maximizing 𝑑𝐻 (𝑐1, 𝑐𝑥 );
(3) Sort (using Counting Sort) the columns based on their Ham-

ming distance from 𝑐𝑥 to get a profile P′ = (𝑐′
1
, . . . , 𝑐′𝑡 )

where 𝑑𝐻 (𝑐𝑥 , 𝑐′𝑖 ) ≤ 𝑑𝐻 (𝑐𝑥 , 𝑐′𝑖+1) for 𝑖 ∈ [𝑡 − 1];
(4) Check whether ones form a prefix or a suffix on each row

of P′
. If yes, return P′

, else return “not single-switch-no-

flips.”

Each step of the algorithm runs in time 𝑂 (𝑛𝑡), so it attains the
required time-bound. It remains to show that: (i) if no solution

exists, then this is correctly reported; (ii) if P∗ = (𝑐∗
1
, . . . , 𝑐∗𝑡 ) is

an arbitrary SSWNF presentation of P, then the algorithm returns

either P∗
or its reverse (which note further implies that the solution

is unique up to reversal). Part (i) follows immediately from the last

step in the algorithm. To show part (ii), we will need an auxiliary

claim:

Claim 18. Assume 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑡 , then 𝑑𝐻 (𝑐∗𝑖 , 𝑐∗𝑗 ) ≤ 𝑑𝐻 (𝑐∗𝑖 , 𝑐∗𝑘 )
with equality iff 𝑐∗𝑗 = 𝑐∗

𝑘
. Similarly, 𝑑𝐻 (𝑐∗𝑖 , 𝑐∗𝑘 ) ≤ 𝑑𝐻 (𝑐∗𝑗 , 𝑐∗𝑘 ) with

equality iff 𝑐∗𝑖 = 𝑐∗𝑗 .

Proof. We will only prove the first part, as the second follows

analogously. First, observe that for any 𝑢, 𝑣 ∈ B𝑛 we can write

𝑑𝐻 (𝑢, 𝑣) =
∑𝑛
ℓ=1 I(𝑢ℓ ≠ 𝑣ℓ ). Hence, it suffices to show that for each

1 ≤ ℓ ≤ 𝑛 we have I(𝑐∗𝑖,ℓ ≠ 𝑐∗𝑗,ℓ ) ≤ I(𝑐∗𝑖,ℓ ≠ 𝑐∗
𝑘,ℓ
) and then sum up

those inequalities. This amounts to showing that 𝑐∗𝑖,ℓ ≠ 𝑐∗𝑗,ℓ =⇒
𝑐∗𝑖,ℓ ≠ 𝑐∗

𝑘,ℓ
. Assume the contrary: 𝑐∗

𝑘,ℓ
= 𝑐∗𝑖,ℓ ≠ 𝑐∗𝑗,ℓ . This means

that on row ℓ of P∗
columns 𝑖 < 𝑗 < 𝑘 read either +1,−1,+1

or −1,+1,−1, which either way means that ones do not form a

prefix or a suffix on this row, contradicting that P∗
is an SSWNF

presentation ofP. To get the equality case, note that we have shown

𝑑𝐻 (𝑐∗𝑖 , 𝑐∗𝑗 ) ≤ 𝑑𝐻 (𝑐∗𝑖 , 𝑐∗𝑘 ) by summing inequalities, so equality occurs

iff all summed inequalities are tight; i.e., for all 1 ≤ ℓ ≤ 𝑛 we have

I(𝑐∗𝑖,ℓ ≠ 𝑐∗𝑗,ℓ ) = I(𝑐∗𝑖,ℓ ≠ 𝑐∗
𝑘,ℓ
), which amounts to 𝑐∗𝑖,ℓ ≠ 𝑐∗𝑗,ℓ ⇐⇒

𝑐∗𝑖,ℓ ≠ 𝑐∗
𝑘,ℓ
, and in turn to 𝑐∗𝑖,ℓ = 𝑐∗𝑗,ℓ ⇐⇒ 𝑐∗𝑖,ℓ = 𝑐∗

𝑘,ℓ
, which holds iff

𝑐∗𝑗,ℓ = 𝑐∗
𝑘,ℓ
. As a result, equality occurs iff for all 1 ≤ ℓ ≤ 𝑛 we have

𝑐∗𝑗,ℓ = 𝑐∗
𝑘,ℓ
, i.e., 𝑐∗𝑗 = 𝑐∗

𝑘
. □

Armed as such, we can show that the column 𝑐𝑥 maximizing

𝑑𝐻 (𝑐1, 𝑐𝑥 ) found by the algorithm satisfies 𝑐𝑥 ∈ {𝑐∗
1
, 𝑐∗𝑡 }. To see

this, let 𝑦 be such that 𝑐1 = 𝑐∗𝑦 , then any column 𝑐𝑥 that maxi-

mizes 𝑑𝐻 (𝑐1, 𝑐𝑥 ) equals a column 𝑐∗𝑧 that maximizes 𝑑𝐻 (𝑐∗𝑦, 𝑐∗𝑧). By
Claim 18, it follows that 𝑐𝑧 ∈ {𝑐∗

1
, 𝑐∗𝑡 }, so 𝑐𝑥 ∈ {𝑐∗

1
, 𝑐∗𝑡 }.

In the following, we will show that if 𝑐𝑥 = 𝑐∗
1
, then the out-

put of the algorithm is P′ = P∗
, and if 𝑐𝑥 = 𝑐∗𝑡 , then P′ =

the reverse of P∗
, completing the proof.

The equality parts of Claim 18 give that two columns in P∗
have

the same Hamming distance from 𝑐∗
1
(or 𝑐∗𝑡 ), if and only if they are



equal. Since 𝑐𝑥 ∈ {𝑐∗
1
, 𝑐∗𝑡 }, this means that two columns in P have

the same Hamming distance from 𝑐𝑥 if and only if they are equal.
8

The algorithm constructs P′
by ordering the columns of P in

non-decreasing order of Hamming distance from 𝑐𝑥 . By the previ-

ous, equal Hamming distances correspond to identical columns, so

P′
as defined by us to satisfy 𝑑𝐻 (𝑐𝑥 , 𝑐′𝑖 ) ≤ 𝑑𝐻 (𝑐𝑥 , 𝑐′𝑖+1) for 𝑖 ∈ [𝑡−1]

is actually unique no matter the tie-breaking for equal distances.
9

If 𝑐𝑥 = 𝑐∗
1
, note that (𝑐′

1
, . . . , 𝑐′𝑡 ) = (𝑐∗

1
, . . . , 𝑐∗𝑡 ) satisfies𝑑𝐻 (𝑐𝑥 , 𝑐′𝑖 ) ≤

𝑑𝐻 (𝑐𝑥 , 𝑐′𝑖+1) for 𝑖 ∈ [𝑡 − 1]. By the uniqueness of (𝑐′
1
, . . . , 𝑐′𝑡 ), this

means that (𝑐∗
1
, . . . , 𝑐∗𝑡 ) is the output of our algorithm, i.e., P′ = P∗

.

If 𝑐𝑥 = 𝑐∗𝑡 , the reasoning is analogous, leading to P′ = the reverse

of P∗
. □

Better recognition for single-crossing preferences. Our
𝑂 (𝑛𝑡) algorithm for recognizing single-switch-no-flips profiles can

be easily modified to recognize single-crossing preferences: Con-

sider an input consisting of a set 𝐴 and a list (≻1, . . . ,≻𝑡 ) of linear
orders over 𝐴. First, find an index 𝑥 maximizing 𝑑𝐾𝑇 (≻1,≻𝑥 ). Then,
sort (using Radix Sort) the list according to the Kendall Tau distance

from≻𝑥 to get a list (≻′
1
, . . . ,≻′

𝑡 ) where𝑑𝐾𝑇 (≻𝑥 ,≻′
𝑖 ) ≤ 𝑑𝐾𝑇 (≻𝑥 ,≻′

𝑖+1
) for 𝑖 ∈ [𝑡 − 1] (i.e., ties can be broken arbitrarily). The resulting

list is either the unique permutation of the input list witnessing

the single-crossing property (up to reversal), or there is no such

permutation. After identifying this candidate solution, one checks

whether the single-crossing property is satisfied using the second

stage of [16, Algorithm 4], namely [16, Algorithm 2]: the solution

is valid if and only if 𝑑𝐾𝑇 (≻′
1
,≻′

𝑖 ) + 𝑑𝐾𝑇 (≻′
𝑖 ,≻′

𝑖+1) = 𝑑𝐾𝑇 (≻′
1
,≻′

𝑖+1)
for all 2 ≤ 𝑖 < 𝑡 . If the 𝑂 (𝑛

√︁
log𝑛) algorithm of [12] is used for

counting permutation inversions, the previous yields a simpler, and

at the same time, more efficient algorithm for recognizing single-

crossing preferences, running in time 𝑂 (𝑛𝑡
√︁
log𝑛). The proof of

correctness of this algorithm follows the same outline as the proof

of Theorem 7.
10
We also note that our algorithm is, in fact, a more

efficient implementation of [16, Algorithm 3]. The latter tries all

𝑂 (𝑡) options for ≻′
1
and, for each one, sorts by Kendall Tau distance

from ≻′
1
to get a candidate solution, which is then verified as in

our case using [16, Algorithm 2]. Our improvement was to notice

that ≻′
1
can be determined efficiently without trying out all options

for it, hence removing a linear factor from the time complexity. In

contrast, instead of efficiently determining ≻′
1
, [16, Algorithm 4]

takes a more intricate approach.

Theorem 19. Single-crossing preferences can be recognized in time
𝑂 (𝑛𝑡

√︁
log𝑛), including producing a witnessing permutation for yes-

instances (which is the unique solution up to reversal).

B.3 Forbidden Subprofiles Characterization of
Single-Switch Preferences

In this section, we prove Theorem 9, which establishes the forbidden

subprofiles characterization of single-switch profiles. Afterward,

8
Note that this hinges on our assumption that P admits P∗

as an SSWNF presentation

(and would be false in general).

9
Fact which again is only true because in this part of the proof we assumed that P is

single-switch-no-flips.

10
This is no accident: one can reduce from recognizing single-crossing preferences

to recognizing single-switch-no-flips profiles by introducing a voter for each pair

of distinct elements in𝐴. This incurs a quadratic computational cost but suffices to

recover correctness.

we give further details about how our recognition algorithm for

single-crossing preferences in Theorem 19 can be bootstrapped to

also produce a forbidden subinstance without sacrificing runtime,

similarly to the proof of Theorem 10.

To begin with proving Theorem 9, a profile P is single-switch

if and only if P′
is single-switch-no-flips, where P′

is the profile

obtained from P by flipping columns so that the first row is all

−1’s. As a result, it suffices to understand how short proofs of non-

membership look for the class of single-switch-no-flips preferences.

To this end, [36] considered the profiles:

P1 =

[
+1 +1 -1 -1
+1 -1 +1 -1

]
P2 =


+1 -1 -1
-1 +1 -1
-1 -1 +1


and showed that P′

is single-switch-no-flips if and only if it does

not contain as subprofiles P1, P2 and the profiles obtainable from

them by flipping any subset of rows. In total, one can check that

this leads to 5 non-equivalent profiles P1, . . . ,P5, where P1,P2

are the ones above and P2+𝑖 for 1 ≤ 𝑖 ≤ 3 is P2 with the first 𝑖

rows flipped. The original presentation lists the 5 profiles explicitly,

but since both single-switch and single-switch-no-flips preferences

are closed under flipping rows, we find our account cleaner. For

the interested reader, we note that the result of [36] can also be

recovered from [9], where it is shown that non-membership to

the class of single-crossing preferences is always witnessed by

one of two small subinstances (this can be done using as a lens the

reduction to single-crossing preferences recognition in Section B.2).

Lemma 20. A profile P is single-switch if and only if P′ does not
contain as a subprofile any of P1, . . . ,P5. Here P′ denotes the profile
obtained from P by flipping columns so that the first row is all −1’s.

This already gives short proofs for non-membership, but for our

purposes, we would like a characterization in terms of the subpro-

files of P, not of P′
. This can be easily achieved given the previous:

consider a non-single-switch profile P, then, by the previous, P′

contains one of P1, . . . ,P5, say P𝑖 . Note that P𝑖 has no row that

is all −1’s, so P𝑖 is, in fact, a subprofile of P′
without its first row

(which is all −1’s). As a result, if we define P𝑎
𝑖 to be P𝑖 with a

row of −1’s appended to the top, then P′
also contains P𝑎

𝑖 as a

subprofile. Given how P′
was obtained from P by flipping a subset

of columns, P contains a version of P𝑎
𝑖 with accordingly-flipped

columns. Namely, if we let Π𝑎𝑖 be the set of profiles that can be ob-

tained from P𝑎
𝑖 by flipping any subset of columns, then P contains

some X ∈ Π𝑎𝑖 as a subprofile. Moreover, X is not single-switch, as

X′ = P𝑎
𝑖 and P𝑎

𝑖 is not single-switch-no-flips (here X′
denotes X

with columns flipped to make its first row all −1’s). As a result, we
get the following:

Lemma 21. A profile P is single-switch if and only if it contains no
profile X ∈ ∪5

𝑖=1
Π𝑎𝑖 as a subprofile.

This result can be compressed into a more elegant form by lever-

aging the closure of single-switch preferences under flipping rows

and columns and the way P3, . . . ,P5 were obtained from P2, as

follows, which is precisely Theorem 9, restated below for conve-

nience:

Theorem 9. A profile P is single-switch if and only if it does not
contain as a subprofile P𝑎

1
,P𝑎

2
and any profile that can be obtained



from them by flipping rows and columns:

P𝑎
1
=


-1 -1 -1 -1
+1 +1 -1 -1
+1 -1 +1 -1

 P𝑎
2
=


-1 -1 -1
+1 -1 -1
-1 +1 -1
-1 -1 +1


Finding forbidden subinstances of single-crossing prefer-

ences. Our idea to use a fast black-box recognition algorithm to

bootstrap a fast algorithm for finding a forbidden subprofile extends

beyond our usage for single-switch preferences in Theorem 10. The

same idea can be used for the class of single-crossing preferences,

where non-membership to the class is witnessed by one of two

small forbidden subinstances with (𝑡, 𝑛) ∈ {(4, 4), (3, 6)}, as shown
in [9]. Given our𝑂 (𝑛𝑡

√︁
log𝑛) recognition algorithm in Theorem 19,

we can apply very similar reasoning to the proof of Theorem 10

(except now we need to split into 6 + 1 = 7 groups) to get the

following result, which, to the best of our knowledge, is new, even

if we were to replace our improved time bound with that of the

previously-known fastest algorithm, namely [16, Algorithm 4]:

Theorem 22. Given a no-instance of the problem of recognizing
single-crossing preferences, a forbidden subinstance can be determined
in time 𝑂 (𝑛𝑡

√︁
log𝑛).

C ANSCOMBE’S PARADOX
C.1 External Weights
This section of the appendix centers on Theorem 11. In Section C.1.1,

we formalize the definition of relevant topics and discuss how to

determine the set of relevant topics for a given instance I = (P,𝑤)
efficiently. Section C.1.2 then proves Theorem 11. Throughout this

section of the appendix, we use the notation 𝑤 (𝑆) = ∑
𝑗∈𝑆 𝑤 𝑗 for

any 𝑆 ⊆ [𝑡].

C.1.1 Relevant Topics. A subset of the topics,𝑇 ⊆ [𝑡], is aminimal
topic group under weight vector𝑤 if𝑤 (𝑇 ) > 1

2
and for all 𝑗 ∈ 𝑇 we

have that 𝑤 (𝑇 \ { 𝑗}) ≤ 1

2
. Then we call a topic 𝑗 ∈ [𝑡] a relevant

topic under 𝑤 if it is in some minimal topic group under 𝑤 . We

denote the set of all relevant topics under𝑤 as 𝑅𝑤 .

In proving Theorem 28 (see Section C.1.2), we define 𝐵𝑚 =

{𝑝 ∈ B𝑡 : ⟨𝑝, 𝑝𝐼𝑊𝑀 ⟩𝑤 > 0} and select a proposal from it uni-

formly at random. Note that we can equivalently write 𝐵𝑚 = {𝑝 ∈
B𝑡 : 𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 ,𝑤) < 1/2}. We then claim that the only topics

𝑗 ∈ [𝑡] such that Pr(𝑝 𝑗 = (𝑝𝐼𝑊𝑀 ) 𝑗 ) − Pr(𝑝 𝑗 ≠ (𝑝𝐼𝑊𝑀 ) 𝑗 ) > 0 are

relevant topics. We prove this claim below.

Claim 23. For 𝑝 selected uniformly at random from 𝐵𝑚 , Pr(𝑝 𝑗 =
(𝑝𝐼𝑊𝑀 ) 𝑗 ) > 1

2
if and only if 𝑗 ∈ 𝑅𝑤 .

Proof. Fix some 𝑗 ∈ [𝑡]. We denote the number of proposals

with +(𝑝𝐼𝑊𝑀 ) 𝑗 for 𝑗 and −(𝑝𝐼𝑊𝑀 ) 𝑗 for 𝑗 in 𝐵𝑚 by 𝑁+, 𝑁− respec-

tively.

(⇐) Assume 𝑗 ∈ 𝑅𝑤 . Consider the bijection 𝑞 : B𝑡 → B𝑡 that
flips the 𝑗 th entry of the proposal. If 𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 ,𝑤) < 1/2−𝑤 𝑗 and

𝑝 𝑗 = (𝑝𝐼𝑊𝑀 ) 𝑗 then 𝑝 ∈ 𝐵𝑚 and so is𝑞(𝑝), so these cancel each other
out when comparing 𝑁+ −𝑁− . Note too that if 𝑝 𝑗 = −(𝑝𝐼𝑊𝑀 ) 𝑗 and

𝑝 ∈ 𝐵𝑚 then certainly 𝑞(𝑝) is as well. So we only have to consider

the case where 𝑝 = (𝑝𝐼𝑊𝑀 ) 𝑗 , 𝑝 ∈ 𝐵𝑚 but𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 ,𝑤) ≥ 1/2−𝑤 𝑗 .

We know such a case must exist because 𝑗 ∈ 𝑅𝑤 . So, this means 𝑗 is

in some minimal topic group,𝑇 . Let 𝑝 be the proposal where all top-

ics in 𝑇 are set to their value in 𝑝𝐼𝑊𝑀 , and all remaining topics are

set to their value in−𝑝𝐼𝑊𝑀 . By definition ofminimal topic group, we

have that𝑤 (𝑇 ) ≤ 1/2+𝑤 𝑗 , so𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 ,𝑤) = 1−𝑤 (𝑇 ) ≥ 1/2−𝑤 𝑗 .

Then 𝑑𝐻 (𝑞(𝑝), 𝑝𝐼𝑊𝑀 ,𝑤) ≥ 1/2, so 𝑞(𝑝) ∉ 𝐵𝑚 . So we have that

𝑁+ > 𝑁− . Hence Pr(𝑝 𝑗 = (𝑝𝐼𝑊𝑀 ) 𝑗 ) > 1/2.

(⇒) Assume Pr(𝑝 𝑗 = ((𝑝𝐼𝑊𝑀 ) 𝑗 ) > 1/2.We know that all 𝑝 ∈ 𝐵𝑚
with 𝑝 𝑗 = −(𝑝𝐼𝑊𝑀 ) 𝑗 have 𝑞(𝑝) ∈ 𝐵𝑚 , so this means there must

exist some 𝑝 ∉ 𝐵𝑚 with 𝑝 𝑗 = −(𝑝𝐼𝑊𝑀 ) 𝑗 such that 𝑞(𝑝) ∈ 𝐵𝑚 . Find

the 𝑝 with the fewest indices agreeing with 𝑝𝐼𝑊𝑀 such that this

holds. Then the set of topics that 𝑞(𝑝) agrees with 𝑝𝐼𝑊𝑀 on forms

a minimal topic group for𝑤 . To see this, let 𝑇 be the set of topics

that 𝑞(𝑝) agrees with 𝑝𝐼𝑊𝑀 on. We know that 𝑤 (𝑇 ) > 1/2 and

𝑤 (𝑇 \ { 𝑗}) ≤ 1/2 because 𝑝 ∉ 𝐵𝑚, 𝑞(𝑝) ∈ 𝐵𝑚 . Take any other

𝑘 ∈ 𝑇, 𝑘 ≠ 𝑗 . Assume for sake of contradiction that𝑊 (𝑇 \𝑘) > 1/2.
Then we could have taken 𝑝′ ∉ 𝐵𝑚 to be equal to 𝑝 at all indices

except flipped for 𝑘 . Then 𝑝′ ∉ 𝐵𝑚 and 𝑞(𝑝′) ∈ 𝐵𝑚 , but 𝑝
′
has

one fewer index agreeing with 𝑝𝐼𝑊𝑀 than 𝑝 . This contradicts the

minimality in our selection of 𝑝 . Hence 𝑇 is a valid minimal topic

group, and thus 𝑗 ∈ 𝑅𝑤 . □

As Theorem 11 shows, relevant topics are useful for determining

whether a proposal with majority support and with weighted agree-

ment of > 1/2 with the issue-wise majority exists. How, then can

we discern whether specific topics are relevant? This is essentially

equivalent to determining whether or not a voter is a dummy voter

in a weighted majority game. While this can be shown to be NP-

hard with respect to general input𝑤 [31], we have the constraint

that all elements of𝑤 are bounded in [0, 1]. We say that𝑤 has poly-
nomial precision if all of its elements can be expressed as rational

numbers with a common denominator that is polynomial in 𝑛 and

𝑡 . If additionally we assume that𝑤 has polynomial precision then

we can give a polynomial time algorithm for determining the set of

relevant topics. In order to do this we show the following claim:

Claim 24 (Relevance Monotonicity). Being a relevant topic is a
monotonic property with respect to topic weight.

Proof. Fix topics 𝑖, 𝑗 such that𝑤 𝑗 ≥ 𝑤𝑖 . We want to show that

if 𝑖 is a relevant topic then 𝑗 is also a relevant topic. Assume 𝑖 is

relevant, then there exists some 𝑆 ⊆ [𝑡] \ {𝑖} such that𝑤 (𝑆) ≤ 1/2
but𝑤 (𝑆 ∪ {𝑖}) > 1/2. We have two cases:

(1) j ∉ S. In this case we can reuse 𝑆 as proof of 𝑗 ’s relevance.

We have that𝑤 (𝑆) ≤ 1/2 and𝑤 (𝑆 ∪ { 𝑗}) =𝑤 (𝑆) +𝑤 ( 𝑗) ≥
𝑤 (𝑆) +𝑤 (𝑖) =𝑤 (𝑆 ∪ {𝑖}) > 1/2.

(2) j ∈ S. In this case we define 𝑆 ′ = (𝑆\{ 𝑗})∪{𝑖} (we just swap
in 𝑖 for 𝑗 ). Then we have that𝑤 (𝑆 ′) =𝑤 (𝑆) −𝑤 ( 𝑗) +𝑤 (𝑖) ≤
𝑤 (𝑆) ≤ 1/2.We also can see that𝑤 (𝑆 ′∪{ 𝑗}) =𝑤 (𝑆∪{𝑖}) >
1/2.

Therefore, we have shown that if 𝑖 is relevant, then 𝑗 is also relevant.

This is equivalent to saying that if 𝑗 is irrelevant, 𝑖 is irrelevant as

well. □



Claim 24 implies that there is a “lowest weight relevant topic”

such that all topics with weight less than it are irrelevant, and

all topics with greater weight must be relevant. In order to find

the lowest weight relevant topic we can run binary search over

the topics sorted by weight. For each topic choice 𝑗 , we can run

knapsack on the remaining topics to look for a set such that
1

2
−

𝑤 𝑗 < 𝑤 (𝑆) ≤ 1/2 as proof of its relevance. Assuming that all

weights are integral, which we can achieve by temporarily scaling

all of the weights and the respective bounds up, then there is an

exact algorithm for knapsack that runs in polynomial time with

respect to |𝑤 | = 𝑡 and the max weight item. As we only have

to scale up the weights a polynomial factor with respect to 𝑛𝑡

(due to our assumption on their precision), the max weight item is

also polynomial in 𝑛𝑡 . Therefore, the whole algorithm together is

polynomial in 𝑛𝑡 . As any preference profile input has size at least

𝑛 × 𝑡 (just considering number of entries), this is a polynomial size

operation with respect to the size of our overall problem input.

C.1.2 Existence of Representative Non-Losing Proposals in the Exter-
nal Weights Setting. In this section, we prove Theorem 11, restated

here:

Theorem 11. For any I = (P,𝑤) and 𝑝𝐼𝑊𝑀 , there is a weakly ma-
jority supported proposal 𝑝 with 𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 ,𝑤) < 1/2. If majority
is strict in any relevant topic, “weak” can be replaced with “strict”.

At a high level, our proof structure is the following (the same

structure as used in [13]): For every voter, we define two bijective

relations between proposals. Then, we piece these together to con-

struct a third relation that “swaps” a proposal’s weighted similarity

to the voter with its weighted similarity to 𝑝𝐼𝑊𝑀 . We then define

two quantities that we take the expectation of. One can easily be

shown to be non-negative, and we use the defined relations for

each voter to show the equality of these expectations. The non-

negativity of the second expectation then implies the existence of a

majority-supported proposal, 𝑝 ∈ B𝑡 , with 𝑑𝐻 (𝑝𝐼𝑊𝑀 , 𝑝,𝑤) < 1/2.

C.1.3 Structure-Preserving Maps. We define three different pro-

posal transformations for each given voter. Fix some voter 𝑣 and

let 𝐵∗ ⊆ B𝑡 be the set of proposals 𝑝 such that ⟨𝑝𝐼𝑊𝑀 , 𝑝⟩𝑤 ≠ 0 and

⟨𝑣, 𝑝⟩𝑤 ≠ 0. We partition proposals in 𝐵∗
into four categories: 𝑇𝑖, 𝑗

where 𝑖, 𝑗 ∈ {−1,+1} and 𝑖 = 𝑠𝑔𝑛(⟨𝑝, 𝑝𝐼𝑊𝑀 ⟩𝑤) and 𝑗 = 𝑠𝑔𝑛(⟨𝑣, 𝑝⟩𝑤).
We construct the following “mask” for use in our transformations:

𝑣 ⊙ 𝑝𝐼𝑊𝑀 where ⊙ is the elementwise (Hadamard) product. This

mask has +1 for topics on which 𝑣 and 𝑝𝐼𝑊𝑀 agree, and −1 for

topics on which they disagree. Then we define two transformations

𝑓 +𝑣 , 𝑓
−
𝑣 : 𝐵∗ → 𝐵∗

as follows:

𝑓 +𝑣 (𝑝) = 𝑝 ⊙ (𝑣 ⊙ 𝑝𝐼𝑊𝑀 ), 𝑓 −𝑣 (𝑝) = 𝑝 ⊙ −(𝑣 ⊙ 𝑝𝐼𝑊𝑀 )
𝑓 +𝑣 flips a proposal on indices where 𝑣 and 𝑝𝐼𝑊𝑀 disagree, while

𝑓 −𝑣 flips a proposal on indices where 𝑣 and 𝑝𝐼𝑊𝑀 agree. Note that

the Hadamard product is commutative and for any vector 𝑚 ∈
B𝑡 ,𝑚 ⊙𝑚 = 1. Additionally, for any vectors 𝑎, 𝑏, 𝑐 ∈ B𝑡 we have
that ⟨𝑎, 𝑏 ⊙ 𝑐⟩𝑤 = ⟨𝑎 ⊙ 𝑏, 𝑐⟩𝑤 . From the first two properties, we

can immediately see that 𝑓 +𝑣 , 𝑓
−
𝑣 are both self-inverse and hence

bijective.

Lemma 25. 𝑓 +𝑣 maps proposals of type 𝑇𝑖, 𝑗 to proposals of type 𝑇𝑗,𝑖
for 𝑖, 𝑗 ∈ {0, 1}. Moreover, for any 𝑝 ∈ 𝐵∗ we have that ⟨𝑣, 𝑓 +𝑣 (𝑝)⟩𝑤 =

⟨𝑝, 𝑝𝐼𝑊𝑀 ⟩𝑤 .

Proof. Fix some 𝑝 ∈ 𝐵∗
. Then:

⟨𝑣, 𝑓 +𝑣 (𝑝)⟩𝑤 = ⟨𝑣, 𝑝 ⊙ 𝑣 ⊙ 𝑝𝐼𝑊𝑀 ⟩𝑤 = ⟨𝑣 ⊙ 𝑝 ⊙ 𝑣, 𝑝𝐼𝑊𝑀 ⟩
= ⟨𝑝, 𝑝𝐼𝑊𝑀 ⟩𝑤

As 𝑓 +𝑣 (𝑝) ∈ 𝐵∗
, using the shown equality with one more ap-

plication of 𝑓 +𝑣 and the fact that 𝑓 +𝑣 is self-inverse gives us that

⟨𝑓 +𝑣 (𝑝), 𝑝𝐼𝑊𝑀 ⟩𝑤 = ⟨𝑣, 𝑓 +𝑣 (𝑓 +𝑣 (𝑝))⟩𝑤 = ⟨𝑣, 𝑝⟩𝑤 . Hence, applying 𝑓 +𝑣
has the effect of swapping a proposal’s weighted agreement with 𝑣

with its weighted agreement with 𝑝𝐼𝑊𝑀 . Therefore, 𝑓 +𝑣 maps𝑇𝑖, 𝑗 to

𝑇𝑗,𝑖 . □

Lemma 26. 𝑓 −𝑣 maps proposals of type 𝑇𝑖, 𝑗 to proposals of type
𝑇(− 𝑗 ),(−𝑖 ) for 𝑖, 𝑗 ∈ {−1,+1}. For any𝑝 ∈ 𝐵∗ we have that ⟨𝑣, 𝑓 −𝑣 (𝑝)⟩𝑤 =

−⟨𝑝𝐼𝑊𝑀 , 𝑝⟩𝑤 .

Proof. Fix some 𝑝 ∈ 𝐵∗
. Then:

⟨𝑣, 𝑓 −𝑣 (𝑝)⟩𝑤 = ⟨𝑣, 𝑝 ⊙ −(𝑣 ⊙ 𝑝𝐼𝑊𝑀 )⟩𝑤 = ⟨𝑣 ⊙ 𝑝 ⊙ −𝑣, 𝑝𝐼𝑊𝑀 ⟩𝑤
= −⟨𝑝, 𝑝𝐼𝑊𝑀 ⟩𝑤

Then again, as 𝑓 −𝑣 (𝑝) ∈ 𝐵∗
, using the shown equality with one

more application of 𝑓 −𝑣 and the fact that its self-inverse gives us

that −⟨𝑓 −𝑣 (𝑝), 𝑝𝐼𝑊𝑀 ⟩𝑤 = ⟨𝑣, 𝑓 −𝑣 (𝑓 −𝑣 (𝑝))⟩𝑤 = ⟨𝑣, 𝑝⟩𝑤 . Hence we

have that 𝑓 − swaps and negates a proposal’s weights agreement

with 𝑣 with its weighted agreement with 𝑝𝐼𝑊𝑀 . Therefore it indeed

maps 𝑇𝑖, 𝑗 to 𝑇(− 𝑗 ),(−𝑖 ) . □

Now we combine our two bijective maps into a single map

𝑓𝑣 : 𝐵
∗ → 𝐵∗

defined as follows:

𝑓𝑣 (𝑝) =
{
𝑓 +𝑣 (𝑝) if 𝑝 is of type 𝑇−1,−1 or 𝑇+1,+1

𝑓 −𝑣 (𝑝) if 𝑝 is of type 𝑇−1,+1 or 𝑇+1,−1

It follows from 𝑓 +𝑣 and 𝑓 −𝑣 being self-inverse and Lemmas 25 and 26

that 𝑓𝑣 is also self-inverse.

Corollary 27. 𝑓𝑣 maps proposals of type 𝑇𝑖, 𝑗 to proposals of type
𝑇𝑖, 𝑗 . For any proposal 𝑝 of type𝑇−1,−1 or𝑇+1,+1 we have ⟨𝑣, 𝑓𝑣 (𝑝)⟩𝑤 =

⟨𝑝, 𝑝𝐼𝑊𝑀 ⟩𝑤 and for any proposal 𝑝 of type 𝑇−1,+1 or 𝑇+1,−1 we have
that ⟨𝑣, 𝑓𝑣 (𝑝)⟩𝑤 = −⟨𝑝, 𝑝𝐼𝑊𝑀 ⟩𝑤 .

Proof. This follows directly from the definition of 𝑓𝑣 as well as

Lemmas 25 and 26. □

C.1.4 Thought Experiments. Now we will detail our two quantities

of interest through two thought experiments and show that their

expectations are equivalent and non-negative. We define a subset

of B𝑡 denoted as 𝐵𝑚 = {𝑝 ∈ B𝑡 : ⟨𝑝, 𝑝𝐼𝑊𝑀 ⟩𝑤 > 0}. Equivalently, for
all 𝑝 ∈ 𝐵𝑚 , 𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 ,𝑤) < 1/2. As 𝑤 is externally fixed, this is

some known set. We also note that the number of +1s minus the

number of -1s for a given topic 𝑗 in the preference profile can be

written as 𝑛 ·𝑚 𝑗 − 𝑛(1 −𝑚 𝑗 ) = 𝑛(2𝑚 𝑗 − 1). Finally, let 𝑅𝑤 be the

set of all relevant topics under weight vector𝑤 (for a discussion of

relevant topics, see Section C.1.1).

Thought Experiment 1. Our first thought experiment keeps a

global counter 𝑋 initialized to 0 and samples a proposal 𝑝 ∈ 𝐵𝑚
uniformly at random. For each voter 𝑖 ∈ [𝑛], we add ⟨𝑣𝑖 , 𝑝⟩𝑤 to 𝑋

— equivalently, for each voter we go topic by topic and add𝑤 𝑗 to 𝑋



for each topic 𝑗 voter 𝑖 agrees with 𝑝 on, and subtract𝑤 𝑗 from 𝑋

for each topic 𝑗 voter 𝑖 disagrees with 𝑝 on.

Theorem 28. E[𝑋 ] ≥ 0. If there exists some 𝑗 ∈ 𝑅𝑤 such that
𝑚 𝑗 > 0.5 then E[𝑋 ] > 0.

Proof. We can write 𝑋 in terms of variables 𝑋𝑖, 𝑗 that take on 1

if 𝑣𝑖 𝑗 = 𝑝 𝑗 and -1 otherwise as 𝑋 =
∑𝑛
𝑖=1

∑𝑡
𝑗=1𝑤 𝑗𝑋𝑖, 𝑗 . Then we can

evaluate E[𝑋 ] more easily:

E[𝑋 ] =
𝑛∑︁
𝑖=1

𝑡∑︁
𝑗=1

𝑤 𝑗E[𝑋𝑖, 𝑗 ] =
𝑡∑︁
𝑗=1

𝑤 𝑗

𝑛∑︁
𝑖=1

E[𝑋𝑖, 𝑗 ]

=

𝑡∑︁
𝑗=1

𝑤 𝑗 · 𝑛(2𝑚 𝑗 − 1) (Pr(𝑝 𝑗 = +1) − Pr(𝑝 𝑗 = −1))

We arrive at the last line because if 𝑝 𝑗 = +1 then

∑𝑛
𝑖=1 𝑋𝑖, 𝑗 =∑

𝑖∈[𝑛] : 𝑣𝑖,𝑗=+1 1 +
∑
𝑖∈[𝑛] : 𝑣𝑖,𝑗=−1 −1 = 𝑛(2𝑚 𝑗 − 1) and similarly if

𝑝 𝑗 = −1 then ∑𝑛
𝑖=1 𝑋𝑖, 𝑗 = −𝑛(2𝑚 𝑗 − 1). Note that we can rewrite

the sum with only the terms where there is a strict majority of +1

(so𝑚 𝑗 > 0.5), because all terms where𝑚 𝑗 = 0.5 evaluate to 0:

E[𝑋 ] =
∑︁
𝑗∈[𝑡 ]
𝑚 𝑗>0.5

𝑤 𝑗𝑛(2𝑚 𝑗 − 1) (Pr(𝑝 𝑗 = +1) − Pr(𝑝 𝑗 = −1))

=
∑︁
𝑗∈[𝑡 ]
𝑚 𝑗>0.5

𝑤 𝑗𝑛(2𝑚 𝑗 − 1) (Pr(𝑝 𝑗 = (𝑝𝐼𝑊𝑀 ) 𝑗 ) − Pr(𝑝 𝑗 ≠ (𝑝𝐼𝑊𝑀 ) 𝑗 ))

We arrive at the last line by noting that for all 𝑗 with 𝑚 𝑗 > 0.5,

(𝑝𝐼𝑊𝑀 ) 𝑗 must be +1 as it is the unique majority for that issue.

Now we observe that Pr(𝑝 𝑗 = (𝑝𝐼𝑊𝑀 ) 𝑗 ) ≥ Pr(𝑝 𝑗 ≠ (𝑝𝐼𝑊𝑀 ) 𝑗 )
for all 𝑗 ∈ [𝑡]. Fix some 𝑗 ∈ [𝑡]. Then for any 𝑝 ∈ 𝐵𝑚 such that

𝑝 𝑗 ≠ (𝑝𝐼𝑊𝑀 ) 𝑗 , we know that there exists a 𝑝′ ∈ 𝐵𝑚 that matches

𝑝 on all entries except 𝑗 , where 𝑝′𝑗 = (𝑝𝐼𝑊𝑀 ) 𝑗 . 𝑝′ is indeed in 𝐵𝑚

because ⟨𝑝′, 𝑝𝐼𝑊𝑀 ⟩𝑤 = ⟨𝑝, 𝑝𝐼𝑊𝑀 ⟩𝑤 + 2𝑤 𝑗 > 1/2. Note that this

mapping from 𝑝 to 𝑝′ is injective, so we have that there are at

least as many proposals in 𝐵𝑚 with a (𝑝𝐼𝑊𝑀 ) 𝑗 for issue 𝑗 as there

are with a −(𝑝𝐼𝑊𝑀 ) 𝑗 . Hence, when selecting a proposal from 𝐵𝑚
uniformly at random, the probability that it has a (𝑝𝐼𝑊𝑀 ) 𝑗 for issue
𝑗 is at least the probability that it has a −(𝑝𝐼𝑊𝑀 ) 𝑗 .
We also claim that Pr(𝑝 𝑗 = (𝑝𝐼𝑊𝑀 ) 𝑗 ) > Pr(𝑝 𝑗 ≠ (𝑝𝐼𝑊𝑀 ) 𝑗 ) if

and only if 𝑗 ∈ 𝑅𝑤 . To see a proof of this claim, please refer to

Section C.1.1 Claim 23. Therefore, we know that for all 𝑗 ∉ 𝑅𝑤 ,

Pr(𝑝 𝑗 = (𝑝𝐼𝑊𝑀 ) 𝑗 ) − Pr(𝑝 𝑗 ≠ (𝑝𝐼𝑊𝑀 ) 𝑗 ) = 0. Then we can rewrite

our expectation only in terms of the relevant topics:

E[𝑋 ] =
∑︁
𝑗∈𝑅𝑤
𝑚 𝑗>0.5

𝑤 𝑗𝑛(2𝑚 𝑗 − 1) (Pr(𝑝 𝑗 = (𝑝𝐼𝑊𝑀 ) 𝑗 ) − Pr(𝑝 𝑗 ≠ (𝑝𝐼𝑊𝑀 ) 𝑗 ))

For any relevant topic 𝑗 ,𝑤 𝑗 is strictly positive (otherwise 𝑗 would

not be in a minimal topic group) and as just mentioned Pr(𝑝 𝑗 =
(𝑝𝐼𝑊𝑀 ) 𝑗 ) −Pr(𝑝 𝑗 ≠ (𝑝𝐼𝑊𝑀 ) 𝑗 ) is strictly positive as well. 𝑛(2𝑚 𝑗 −1)
must be positive in all of our terms because we only consider 𝑗 ∈ 𝑅𝑤
such that𝑚 𝑗 > 0.5. Therefore, every term in the sum is positive. If

no relevant topic has𝑚 𝑗 > 0.5 then E[𝑋 ] = 0. Otherwise, we have

that there exists at least one term left in the sum, and E[𝑋 ] > 0. □

Thought Experiment 2. For our second thought experiment we

again sample 𝑝 ∈ 𝐵𝑚 uniformly at random and maintain a global

counter 𝑌 initialized to 0. Each voter 𝑖 compares 𝑣𝑖 with 𝑝 . If they

approve of 𝑝 then they add ⟨𝑝, 𝑝𝐼𝑊𝑀 ⟩𝑤 to 𝑌 , and if they disapprove

of 𝑝 then they subtract ⟨𝑝, 𝑝𝐼𝑊𝑀 ⟩𝑤 from 𝑌 . If they are neutral (so

𝑑𝐻 (𝑣𝑖 , 𝑝,𝑤) = 1/2) then they leave 𝑌 unchanged.

Theorem 29. E[𝑋 ] = E[𝑌 ]

Proof. First we write 𝑌 =
∑
𝑖∈[𝑛] 𝑌𝑖 where 𝑌𝑖 is ⟨𝑝, 𝑝𝐼𝑊𝑀 ⟩𝑤

if voter 𝑖 approves of 𝑝 , −⟨𝑝, 𝑝𝐼𝑊𝑀 ⟩𝑤 if voter 𝑖 disapproves of 𝑝 ,

and 0 if voter 𝑖 is neutral. Then E[𝑌 ] = ∑
𝑖∈[𝑛] E[𝑌𝑖 ] by linearity

of expectation. From the first thought experiment, we have that

E[𝑋 ] = ∑
𝑖∈[𝑛] E[⟨𝑣𝑖 , 𝑝⟩𝑤] by definition of 𝑋 . Hence, to show that

E[𝑋 ] = E[𝑌 ], it suffices to show that for all 𝑖 ∈ [𝑛] we have that
E[𝑌𝑖 ] = E[⟨𝑣𝑖 , 𝑝⟩𝑤].

Fix some voter 𝑖 ∈ [𝑛]. Let 𝐵+ and 𝐵− be the sets of proposals in

𝐵𝑚 that voter 𝑖 approves of and disapproves of, respectively. Note

that if 𝑖 is neutral about 𝐵𝑚 then ⟨𝑣𝑖 , 𝑝⟩𝑤 = 0. Then we have that:

E[⟨𝑣𝑖 , 𝑝⟩𝑤] = |𝐵𝑚 |−1
∑︁
𝑝∈𝐵𝑚

⟨𝑣𝑖 , 𝑝⟩𝑤

= |𝐵𝑚 |−1 ©­«
∑︁
𝑝∈𝐵+

⟨𝑣𝑖 , 𝑝⟩𝑤 +
∑︁
𝑝∈𝐵−

⟨𝑣𝑖 , 𝑝⟩𝑤
ª®¬

Then, because 𝑓𝑣𝑖 is self-inverse, we can write:

E[⟨𝑣𝑖 , 𝑝⟩𝑤] = |𝐵𝑚 |−1 ©­«
∑︁
𝑝∈𝐵+

⟨𝑣𝑖 , 𝑓𝑣𝑖 (𝑓𝑣𝑖 (𝑝))⟩𝑤 +
∑︁
𝑝∈𝐵−

⟨𝑣𝑖 , 𝑓𝑣𝑖 (𝑓𝑣𝑖 (𝑝))⟩𝑤
ª®¬

= |𝐵𝑚 |−1 ©­«
∑︁
𝑝∈𝐵+

⟨𝑓𝑣𝑖 (𝑝), 𝑝𝐼𝑊𝑀 ⟩𝑤 −
∑︁
𝑝∈𝐵−

⟨𝑓𝑣𝑖 (𝑝), 𝑝𝐼𝑊𝑀 ⟩𝑤ª®¬
In the last line we use the fact that for 𝑝 ∈ 𝐵+, 𝑝 ∈ 𝑇+1,+1 because
𝑝 ∈ 𝐵𝑚 so ⟨𝑝, 𝑝𝐼𝑊𝑀 ⟩𝑤 > 0 and 𝑝 ∈ 𝐵+ implies that ⟨𝑣𝑖 , 𝑝⟩𝑤 > 0.

By Corollary 27, we know that 𝑓𝑣𝑖 (𝑝) is then also in 𝑇+1,+1, and
hence that ⟨𝑣𝑖 , 𝑓𝑣𝑖 (𝑓𝑣𝑖 (𝑝))⟩𝑤 = ⟨𝑓𝑣𝑖 (𝑝), 𝑝𝐼𝑊𝑀 ⟩𝑤 . Similarly, we have

that for 𝑝 ∈ 𝐵− , 𝑝 ∈ 𝑇+1,−1 because 𝑝 ∈ 𝐵𝑚 so ⟨𝑝, 𝑝𝐼𝑊𝑀 ⟩𝑤 > 0 and

𝑝 ∈ 𝐵− implies that ⟨𝑣𝑖 , 𝑝⟩𝑤 < 0. Then 𝑓𝑣𝑖 (𝑝) is also in 𝑇+1,−1, so
⟨𝑣𝑖 , 𝑓𝑣𝑖 (𝑓𝑣𝑖 (𝑝))⟩𝑤 = −⟨𝑓𝑣𝑖 (𝑝), 𝑝𝐼𝑊𝑀 ⟩𝑤 . As 𝑓𝑣𝑖 is a bijection on both

𝐵+ and 𝐵− , summing over a function of 𝑓𝑣𝑖 (𝑝) for all 𝑝 ∈ 𝐵+ (𝐵−) is
equivalent to summing over that function of 𝑝 for all 𝑝 ∈ 𝐵+ (𝐵−):

E[⟨𝑣𝑖 , 𝑝⟩𝑤] = |𝐵𝑚 |−1 ©­«
∑︁
𝑝∈𝐵+

⟨𝑝, 𝑝𝐼𝑊𝑀 ⟩𝑤 −
∑︁
𝑝∈𝐵−

⟨𝑝, 𝑝𝐼𝑊𝑀 ⟩𝑤ª®¬
= E[𝑌𝑖 ]

Therefore, we have shown that E[𝑋 ] = E[𝑌 ]. □

Finally, we can prove Theorem 11:

Proof. By Theorem 29, we know that E[𝑌 ] = E[𝑋 ], and by

Theorem 28 we have that this quantity is always non-negative and

is strictly positive when in there exists some relevant topic 𝑗 such

that𝑚 𝑗 > 0.5. We call this condition the strict majority guarantee.

Then there exists some proposal 𝑝 ∈ 𝐵𝑚 such that 𝑌 ≥ 0, or 𝑌 > 0

if we have the strict majority guarantee.

We now rewrite𝑌 in away thatmakes the connection tomajority-

supported proposals more explicit. We can write 𝑌 = ⟨𝑝, 𝑝𝐼𝑊𝑀 ⟩𝑤 ·



((# voters supporting 𝑝) − (# voters opposing 𝑝)). As 𝑝 ∈ 𝐵𝑚 , we

know that ⟨𝑝, 𝑝𝐼𝑊𝑀 ⟩𝑤 > 0. Hence we have that:

(# voters supporting 𝑝) − (# voters opposing 𝑝) = 𝑌

⟨𝑝, 𝑝𝐼𝑊𝑀 ⟩
≥ 0

where the inequality is strict if we have the strict majority guar-

antee. As the number of approving voters is at least the number

of disapproving voters, 𝑝 is weakly majority-supported. With the

strict majority guarantee, 𝑌 > 0 so we have that the number of

approving voters is strictly greater than the number of disapproving

voters, and 𝑝 is strictly majority-supported. □

C.2 Internal Weights: Non-Losing Proposals
In this section of the appendix, we provide proofs and further dis-

cussion of the results presented in Section 5.2. In Section C.2.1 we

provide intuition and proof for our upper bounds on 𝑔ℓ in Theo-

rem 12, and in Section C.2.2 we provide proof for our lower bounds

on𝑔ℓ in Theorem 13. Finally in Section C.3 we prove the generalized

Rule of Three-Fourths. Throughout this section of the appendix,

we use the notation that𝑤 (𝑆) = ∑
𝑗∈𝑆 𝑤 𝑗 for any 𝑆 ⊆ [𝑡].

C.2.1 Efficiently Finding Reasonable Non-Losing Proposals in Indi-
vidual Weight Setting. As discussed in the body, for any proposal

𝑝 ∈ B𝑡 , at least one of 𝑝, 𝑝 is weakly majority-supported. Therefore,

one way to get a simple upper bound on 𝑔ℓ is to construct 𝑝 given

any 𝑝𝐼𝑊𝑀 and take max{𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 , 𝑤̃), 𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 , 𝑤̃)}. Hence,
to get a tighter upper bound, we would like to construct 𝑝 such that

this quantity is small. As 𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 , 𝑤̃) = 1−𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 , 𝑤̃), this
problem corresponds to the partition problem, because we want

to partition the topics into two sets such that their average weight

sums are as close as possible. We formalize this intuition below.

Theorem 12. We have the following upper bounds on 𝑔ℓ :
• If ℓ ∈ (0, 1/3), then 𝑔ℓ ≤ 1/2 + ℓ/2;
• If ℓ ∈ [1/3, 1/2], then 𝑔ℓ ≤ 1 − ℓ ;
• If ℓ ∈ (1/2, 1), then 𝑔ℓ ≤ ℓ .

In each case, we can compute a weakly majority-supported proposal
𝑝 with 𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 , 𝑤̃) at most the given bound in polynomial time.

Proof. Fix some instance I = (P,𝑊 ) with average weight

vector 𝑤̃max. We will case on 𝑤̃𝑚𝑎𝑥 and construct a subset of topics,

𝑇 , for later use in creating the proposal complement pair of interest.

• If 𝑤̃max ∈ (0, 1/3), construct a set 𝑆 ⊆ [𝑡] by starting with

𝑆 = [𝑡] and then removing topics until we cannot remove

anymore without the total weight going below 1/2. We

know that 𝑤̃ (𝑆) ≤ 1/2 + 𝑤̃𝑚𝑎𝑥 , as otherwise we could

remove another topic without the weight dipping below

1/2 (as all topics have weight at most 𝑤̃𝑚𝑎𝑥 ). If 𝑤̃ (𝑆) ≤
1/2 + 𝑤̃𝑚𝑎𝑥/2 then let 𝑇 = 𝑆 . Otherwise, we have that

𝑤̃ (𝑆) > 1/2 + 𝑤̃𝑚𝑎𝑥/2. Take any topic 𝑗 ∈ 𝑆 and let 𝑆 ′ :=
𝑆 \ { 𝑗} and 𝑆 ′′ = [𝑡] \ 𝑆 ′. Then 𝑤̃ (𝑆 ′) = 𝑤̃ (𝑆) − 𝑤̃ 𝑗 and

𝑤̃ (𝑆 ′′) = 𝑡 − 𝑤̃ (𝑆 ′). By construction of 𝑆 we know that

𝑤̃ (𝑆 ′) < 1/2. We can also lower bound it by using our

lower bound on 𝑤̃ (𝑆) and upper bounding 𝑤̃ 𝑗 by 𝑤̃𝑚𝑎𝑥 :

𝑤̃ (𝑆 ′) ≥ 1/2 + 𝑤̃𝑚𝑎𝑥/2 − 𝑤̃𝑚𝑎𝑥 = 1/2 − 𝑤̃𝑚𝑎𝑥/2. Then we

have that 𝑤̃ (𝑆 ′′) ≥ 1/2 and 𝑤̃ (𝑆 ′′) ≤ 1/2 + 𝑤̃𝑚𝑎𝑥/2. Then
let 𝑇 = 𝑆 ′′. Hence, in all cases 1/2 ≤ 𝑤̃ (𝑇 ) ≤ 1/2 + 𝑤̃𝑚𝑎𝑥/2.

• If 𝑤̃𝑚𝑎𝑥 ∈ [1/3, 1/2], let 𝑇 = [𝑡] \ { 𝑗𝑚𝑎𝑥 } where 𝑗𝑚𝑎𝑥 ∈ [𝑡]
is the index of some maximum weight topic. Then 1/2 ≤
𝑤̃ (𝑇 ) = 1 − 𝑤̃𝑚𝑎𝑥 .

• If 𝑤̃𝑚𝑎𝑥 ∈ (1/2, 1) then let 𝑇 = { 𝑗𝑚𝑎𝑥 }. Then 1/2 ≤ 𝑤̃ (𝑇 ) =
𝑤̃𝑚𝑎𝑥 .

We construct a proposal 𝑝 as follows: for all 𝑗 ∈ 𝑇 , set 𝑝 𝑗 =

(𝑝𝐼𝑊𝑀 ) 𝑗 , and for all 𝑗 ∈ [𝑡] \ 𝑇 set 𝑝 𝑗 = −(𝑝𝐼𝑊𝑀 ) 𝑗 . Then we

have that 𝑝 agrees with 𝑝𝐼𝑊𝑀 on all topics in 𝑇 and disagrees

with 𝑝𝐼𝑊𝑀 on all other topics. Then 𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 , 𝑤̃) = 1 − 𝑤̃ (𝑇 )
and 𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 , 𝑤̃) = 𝑤̃ (𝑇 ). We know that at least one of these is

weakly majority-supported. Hence,

min

𝑝 weakly majority-supported

𝑑𝐻 (𝑝, 𝑝𝐼𝑊𝑀 , 𝑤̃) ≤ max{𝑤̃ (𝑇 ), 1 − 𝑤̃ (𝑇 )}

= 𝑤̃ (𝑇 )
We arrive at the second line because 𝑤̃ (𝑇 ) ≥ 1/2. This bound holds
for any selection of I with the same maximum average weight

and for any selection of 𝑝𝐼𝑊𝑀 for I. Hence, 𝑔𝑤̃𝑚𝑎𝑥 ≤ 𝑤̃ (𝑇 ), which
gives us the desired bounds. Additionally, either 𝑝 or 𝑝 are weakly

majority-supported and have the desired distance from 𝑝𝐼𝑊𝑀 . De-

termining 𝑇 , constructing 𝑝, 𝑝 , and checking their support takes

time 𝑂 (𝑛𝑡) altogether. □

We note that if one wants to find a weakly majority-supported

proposal with distance as close as possible to 1/2 from a designated

𝑝𝐼𝑊𝑀 using the proposal complement pair technique, this can also

be done in polynomial time with an additional assumption on the

average weight vector. Specifically, we assume that𝑊 has polyno-
mial precision, so all of its elements can be expressed as rational

numbers with a common denominator that is polynomial in 𝑛 and

𝑡 . We first scale up all elements of 𝑤̃ by the common denominator,

so that they are all integers. By our assumption, we know that

their scaled-up counterparts are polynomial in 𝑛 and 𝑡 . We then

use the standard reduction from partition to knapsack and run the

pseudo-polynomial DP for knapsack. Finally, we check which one

of 𝑝 or 𝑝 (or both) has weak majority support.

C.2.2 Arbitrarily Low Agreement with the IWM. We provide the

full proof for Theorem 13 here:

Theorem 13. The following lower bounds for 𝑔ℓ hold:
• If ℓ = 1/(2𝑘 + 1) with 𝑘 ∈ Z≥0, then 𝑔ℓ ≥ 1/2 + ℓ/2;
• If ℓ ∈ (1/2, 1), then 𝑔ℓ ≥ ℓ .

Proof. We will actually show something slightly stronger than

just upper bounding 𝑔ℓ in this proof. In both ranges of ℓ , our con-

structions will be such that 1 is the unique IWM for the instance.

Hence, the fact that any non-losing proposal is far away from 1 not
only implies the bound on 𝑔ℓ , it also implies that there are instances

where any non-losing proposal is far away from any IWM for that

instance.

Small ℓ. Fix some 𝑘 ∈ N+
and let ℓ = 1/(2𝑘 + 1). We illustrate

the construction below for 𝑘 = 1 for clarity and then describe the

generalization to larger 𝑘 .

P =

5 ×
5 ×
5 ×
4 ×


-1 +1 +1
+1 -1 +1
+1 +1 -1
+1 +1 +1

 W =

5 ×
5 ×
5 ×
4 ×


3/5 1/5 1/5
1/5 3/5 1/5
1/5 1/5 3/5
1/3 1/3 1/3





The generalization is as follows: we have 𝑡 = 2𝑘 + 1 topics and

𝑡 + 1 types of voters. Denote type 𝑖’s preference and weight vectors

as 𝑣𝑖 and 𝑤 𝑖
respectively. There are 2𝑡 − 1 copies of each of the

first 𝑡 types, and 𝑡 + 1 copies of the last type of voter. The voters of

type 𝑡 + 1 prefer the all-ones vector and consider all issues to be

equally important: 𝑣𝑡+1 = +1 and𝑤𝑡+1 = (1/𝑡, 1/𝑡, . . . , 1/𝑡). Voters
of type 𝑖 ∈ {1, . . . , 𝑡} are single-issue voters on issue 𝑖 and prefer

the negative outcome, although they do place some importance on

the other issues:

𝑣𝑖𝑗 =

{
−1 if 𝑖 = 𝑗

+1 o.w.

𝑤 𝑖
𝑗 =

{
𝑡

2𝑡−1 if 𝑖 = 𝑗
1

2𝑡−1 o.w.

We say that they are single-issue voters because they vote for a

proposal if and only if it agrees with their position on that issue.

Note that by symmetry of the weight matrix, all topics have the

same weight in the average weight vector. As there are 𝑡 = 2𝑘 + 1

topics, 𝑤̃ 𝑗 = 1/(2𝑘 + 1) = ℓ for all 𝑗 ∈ [𝑡]. Therefore, ℓ is indeed
𝑤̃𝑚𝑎𝑥 of this profile. Additionally, all of the weights are nonnegative,

and every weight vector type sums to 1, as
𝑡

2𝑡−1 + (𝑡 − 1) · 1

2𝑡−1 = 1.

Now we show that +1 is the unique IWM for this preference

and weight profile. For any given topic, the total weight on +1
is (𝑡 − 1) · (2𝑡 − 1) · 1

2𝑡−1 + (𝑡 + 1) · 1

𝑡
, and the weight on −1 is

(2𝑡 − 1) · 𝑡
2𝑡−1 = 𝑡 . We have that (𝑡 − 1) · (2𝑡 − 1) · 1

2𝑡−1 + (𝑡 + 1) · 1
𝑡
=

𝑡 + 1

𝑡
> 𝑡 . Therefore, +1 is the strict majority opinion on all topics.

Fix any 𝑝 ∈ B𝑡 such that 𝑑𝐻 (𝑝, 1, 𝑤̃) < 1/2 + ℓ/2. Given our

construction, this means that at least 𝑘 + 1 of the 2𝑘 + 1 topics

are set to +1 in the proposal. Note that for all 𝑖 ∈ [𝑡] such that

𝑝𝑖 = +1, all voters of type 𝑖 vote no on 𝑝 . As there are at least 𝑘 + 1

of these indices, we have that at least 𝑘 + 1 types of voters vote

against 𝑝 . This corresponds to at least (2𝑡 − 1) · (𝑘 + 1) voters. The
proposal can then get at most all of the remaining votes, which

amount to (2𝑡 − 1) ·𝑘 + (𝑡 + 1) votes. We have that (2𝑡 − 1) (𝑘 + 1) =
(2𝑡 − 1)𝑘 + (2𝑡 − 1) > (2𝑡 − 1)𝑘 + (𝑡 + 1) because 𝑡 ≥ 3. Therefore,

𝑝 receives strictly more votes against it than for it. Hence, any

non-losing proposal must have distance at least 1/2 + ℓ/2 from 1.
Big ℓ. Fix some ℓ ∈ (1/2, 1). We will construct a preference and

weight profile, P,W, such that 𝑤̃𝑚𝑎𝑥 = ℓ , 1 is the sole IWM, and

any non-losing proposal 𝑝 has 𝑑𝐻 (𝑝, 1, 𝑤̃) ≥ ℓ . Let 𝑥 ∈ N+
be such

that 𝑥 > max

{
ℓ

1−ℓ ,
1

2ℓ−1
}
. Note that both of the denominators are

strictly positive because of our bounds on ℓ .

P =
𝑥 ×

𝑥 + 1 ×

[
+1 +1
-1 +1

]
W =

𝑥 ×
𝑥 + 1 ×

[
𝑥+1
𝑥

· ℓ 1 − 𝑥+1
𝑥

· ℓ
𝑥
𝑥+1 · ℓ 1 − 𝑥

𝑥+1 · ℓ

]
First we show that all elements ofW are in [0, 1]. It suffices just

to show that this is true for the weights on the first issue, as every

row sums to 1 and there are only two issues. More specifically, we

will show all voters place weight in the range (0.5, 1) on the first

topic. First we upper bound:

ℓ (𝑥 + 1)
𝑥

< 1 ⇐⇒ ℓ𝑥 + ℓ < 𝑥 ⇐⇒ ℓ < 𝑥 (1 − ℓ) ⇐⇒ ℓ

1 − ℓ
< 𝑥

where the final inequality holds by our definition of 𝑥 . Additionally,

ℓ𝑥

𝑥 + 1

> 0.5 ⇐⇒ 2ℓ𝑥 > 𝑥 + 1 ⇐⇒ 𝑥 >
1

2ℓ − 1

where again the final inequality holds by our definition of 𝑥 . Putting

everything together we have that:

0.5 <
ℓ𝑥

𝑥 + 1

≤ ℓ (𝑥 + 1)
𝑥

< 1

Not only does this confirm that W is a valid weight profile, it also

informs us that both types of voters in this scenario are single issue

voters on the first issue — they vote for a proposal if and only if it

agrees with their preference on the first issue. Additionally, it gives

us that 𝑤̃1 = 𝑤̃𝑚𝑎𝑥 . We have that

𝑤̃1 =

(
𝑥 · ℓ (𝑥 + 1)

𝑥
+ (𝑥 + 1) · ℓ𝑥

𝑥 + 1

)
1

2𝑥 + 1

=
ℓ (𝑥 + 1) + ℓ𝑥

2𝑥 + 1

= ℓ

Hence, 𝑤̃𝑚𝑎𝑥 = ℓ as desired.

Next, we show that 1 is the sole IWM for this profile. Clearly

+1 is the unanimous majority opinion for the second topic. For the

first topic, we have that +1 is the unique majority opinion if there

is strictly more total weight on +1 than on −1 for that topic:

𝑥 · ℓ (𝑥 + 1)
𝑥

> (𝑥 + 1) · ℓ𝑥

𝑥 + 1

⇐⇒ 𝑥 + 1 > 𝑥

Therefore, +1 is the strict majority for both issues and as such 1 is
the unique IWM for this profile.

Finally, we claim that any non-losing proposal 𝑝 must have

𝑝1 = −1. To see this, recall that all voters are single-issue voters on

the first topic. All 𝑥 + 1 voters with −1 as their preference for the
first topic would vote against 𝑝 if 𝑝1 = +1. As they form a majority

of voters, the proposal would lose. Therefore, 𝑑𝐻 (𝑝, 1, 𝑤̃) ≥ 𝑤̃1 = ℓ .

It is also worth noting that this preference profile is single-switch,

but Ostrogorski’s paradox happens: (−1,+1) ≻I (+1,+1). This
instance highlights that the single-switch condition does not help
for the internal weights setting. □

C.3 Internal Weights: Condition Precluding
Anscombe’s Paradox

Here we include the full proof for our generalized Rule of Three-

Fourths, Theorem 14:

Theorem 14. If 𝑚̃ ≥ 3/4 then Anscombe’s paradox will not occur.
Additionally, if 𝑚 𝑗 ≥ 3/4 for all 𝑗 ∈ [𝑡] in the external weights
setting, then Ostrogorski’s paradox will not occur.

Proof. Fix an instance I = (P,𝑊 ) in the internal weights

setting such that𝑚̃ ≥ 3/4. Notice if𝑊 has identical rows, then this is

equivalent to the external weights setting. We assume without loss

of generality that the IWM proposal we are interested in verifying

gets weak majority support is 1. This is indeed without loss of

generality because if our original 𝑝𝐼𝑊𝑀 has a −1 for some topic, 𝑗 ,

we know that𝑚 𝑗 = 0.5 (as we assume for all of Section 5 that𝑚 𝑗 ≥
0.5, so for −1 to be a majority, the column must be exactly split). We

can then flip all entries in that column of the preference profile —

this is equivalent to having voters express their preferences on the

negated version of the issue. Then (𝑝𝐼𝑊𝑀 ) 𝑗 = +1 as well because
its decision on the negated version of issue 𝑗 is the opposite of its

former decision. Moreover, the fraction of weight on +1 in that

column is still 0.5. So all issue majorities are unchanged, and hence



the average majority is also unchanged. Therefore, assume 𝑝𝐼𝑊𝑀 =

1.
We first define a variable𝑊ones counting the total weight placed

on +1 in a preference profile, and show that if𝑊ones ≥ 3𝑛
4
then 1 is

weakly majority-supported (hence Anscombe’s paradox does not

occur). Then we will show that𝑊ones = 𝑛 · 𝑚̃.

Let𝑊ones :=
∑𝑛
𝑖=1 1 − 𝑑𝐻 (𝑣𝑖 , 1,𝑤𝑖 ). We claim that if

𝑊ones ≥
( ⌊𝑛

2

⌋
+ 1

) (
1

2

)
+

⌊
𝑛 − 1

2

⌋
then 1 is weakly majority-supported. Assume for the sake of con-

tradiction that this is not the case. For any voter 𝑖 that opposes 1,
we have that 𝑑𝐻 (𝑣𝑖 , 1,𝑤𝑖 ) > 1/2. As 1 is not even weakly majority-

supported, we know that more than half of the voters (at least

⌊𝑛/2⌋+1) oppose 1. The remaining atmost𝑛−⌊𝑛/2⌋−1 = ⌊(𝑛−1)/2⌋
voters still must have a non-negative distance from 1. Hence we
can upper bound𝑊ones:

𝑊𝑜𝑛𝑒𝑠 =
∑︁
𝑖∈[𝑛]

𝑖 opposes 1

1 − 𝑑𝐻 (𝑣𝑖 , 1,𝑤𝑖 ) +
∑︁
𝑖∈[𝑛]

𝑖 supports 1

1 − 𝑑𝐻 (𝑣𝑖 , 1,𝑤𝑖 )

<
∑︁
𝑖∈[𝑛]

𝑖 opposes 1

1/2 +
∑︁
𝑖∈[𝑛]

𝑖 supports 1

1

≤
( ⌊𝑛

2

⌋
+ 1

) (
1

2

)
+

⌊
𝑛 − 1

2

⌋

Hence, we have that𝑊ones <
( ⌊
𝑛
2

⌋
+ 1

) (
1

2

)
+

⌊
𝑛−1
2

⌋
, a contra-

diction. We now upper bound the RHS as follows:( ⌊𝑛
2

⌋
+ 1

) (
1

2

)
+

⌊
𝑛 − 1

2

⌋
≤

(𝑛
2

+ 1

)
1

2

+
(
𝑛 − 1

2

)
=

3𝑛

4

Hence, if𝑊ones ≥ 3𝑛
4
then our previous condition is satisfied, and

the issue-wise majority is non-losing.

Now we’ll show the claimed relationship between 𝑚̃ and𝑊ones:

𝑛 · 𝑚̃ = 𝑛

𝑡∑︁
𝑗=1

𝑤̃ 𝑗𝑚 𝑗 = 𝑛

𝑡∑︁
𝑗=1

𝑤̃ 𝑗

(
1

𝑛𝑤̃ 𝑗

𝑛∑︁
𝑖=1

𝑤𝑖, 𝑗 · I(𝑣𝑖, 𝑗 = +1)
)

=

𝑡∑︁
𝑗=1

𝑛∑︁
𝑖=1

𝑤𝑖, 𝑗 · I(𝑣𝑖, 𝑗 = +1) =𝑊ones

Therefore we have that𝑊ones ≥ 3𝑛
4

⇐⇒ 𝑚̃ ≥ 3

4
.

To prove the second claim of the theorem, we fix a new instance

I′ = (P,𝑤) in the external weights model such that𝑚 𝑗 ≥ 3/4 for
all 𝑗 ∈ [𝑡]. Therefore, 1 is the unique IWM. Assume for sake of

contradiction that Ostrogorski’s paradox occurs, so there is some

proposal 𝑝 ≠ 1 such that 𝑝 ≻I′ 1. Then we know by Lemma 17 that

there exists a sub-instanceI′′
in which Anscombe’s paradox occurs,

where I′′
is obtained by restricting I′

to some subset of issues

𝑇 ⊆ [𝑡] and renormalizing the external weight vector. Note that

the majorities on the topics in 𝑇 are unchanged from the original

profile. Hence, the average majority in I′
is at least 3/4, because

each individual issue majority is at least 3/4. This is a contradiction
to the claim proven above. Therefore, Ostragorski’s paradox does

not occur in I′
. □
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