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ABSTRACT The most natural way to decide the final outcome in all of these

We consider voting on multiple independent binary issues. In addi-
tion, a weighting vector for each voter defines how important they
consider each issue. The most natural way to aggregate the votes
into a single unified proposal is issue-wise majority (IWM): taking
a majority opinion for each issue. However, in a scenario known as
Ostrogorski’s Paradox, an IWM proposal may not be a Condorcet
winner, or it may even fail to garner majority support in a special
case known as Anscombe’s Paradox.

We show that it is co-NP-hard to determine whether there exists a
Condorcet-winning proposal even without weights. In contrast, we
prove that the single-switch condition provides an Ostrogorski-free
voting domain under identical weighting vectors. We show that ver-
ifying the condition can be achieved in linear time and no-instances
admit short, efficiently computable proofs in the form of forbidden
substructures. On the way, we give the simplest linear-time test
for the voter/candidate-extremal-interval condition in approval vot-
ing and the simplest and most efficient algorithm for recognizing
single-crossing preferences in ordinal voting.

We then tackle Anscombe’s Paradox. Under identical weight
vectors, we can guarantee a majority-supported proposal agreeing
with IWM on strictly more than half of the overall weight, while
with two distinct weight vectors, such proposals can get arbitrarily
far from IWM. The severity of such examples is controlled by the
maximum average topic weight Wy, ,: a simple bound derived from
a partition-based approach is tight on a large portion of the range
Wmax € (0,1). Finally, we extend Wagner’s rule to the weighted
setting: an average majority across topics of at least %’s precludes
Anscombe’s paradox from occurring.
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1 INTRODUCTION

There are numerous scenarios in which people must decide on a
slate of binary issues and come up with a single outcome for each
topic. When political parties form a platform, they must aggregate
their base’s opinions and provide a unified set of stances on nu-
merous separate issues. Similarly, when voters head to the ballot
box for local elections, they typically vote yes or no on a series of
initiatives. The election results in one outcome for each individual
topic. On a smaller scale, a group of flatmates might decide on a
series of unrelated topics and generate a plan for living together.
For example: Should the kitchen be cleaned once a week or twice a
week? Should we get the red couch or the yellow couch?

scenarios is to take the majority opinion on each individual topic
and aggregate them into a unified party platform, legislative agenda,
or roommate contract. However, this approach can yield a surpris-
ingly undesirable outcome: a majority of the voters may actually be
more unhappy with this result than if the opposite decision were
made on every issue (known as Anscombe’s Paradox [1]). How can
this arise? Consider a setting with 5 voters and 3 independent bi-
nary issues. The following table illustrates the preferences of each
voter on each of the 3 issues: +1 is in favor and —1 is against:

‘ Issue1 Issue2 Issue3
o1 | +1 -1 -1

v | -1 +1 =
vy | -1 -1 +1
oy |+ +1 +1
os |+ +1 +1

Now, assume each voter would only vote in favor of proposals
that they agree with on more than half of the issues (in the paper,
a voter will abstain when agreeing with a proposal on exactly
half of the issues). Taking the majority on each topic yields the
proposal (+1, +1, +1). However, voters 1, 2, and 3 all disagree with
a majority of this proposal. Therefore, if we posed this proposal for
a vote, a majority of voters would vote against it. If, instead, we
posed the opposite proposal (-1, -1, —1), then voters 1, 2, and 3
would support it, and it would win the majority vote. Hence, in this
scenario, the proposal comprising the minority opinion on each
topic wins the majority vote, whereas the proposal comprising the
majority opinions fails to get majority support.

An equivalent view on the previous scenario positions Anscombe’s
paradox in a broader context: instead of assuming a vote on a
single proposal with people voting for/against it, let us assume
that the vote happens between two competing proposals p and
p’ and each voter votes for whichever of p and p’ agrees with
their views on more topics, abstaining in case of equality. Seen
as such, Anscombe’s paradox is the situation where an issue-wise
majority (IWM) proposal p loses the majority vote against p’ = p,
defined as the opposite proposal of p. A less extreme variant of the
paradox, known as Ostrogorski’s paradox [34] happens when an
IWM proposal p loses against some proposal p’, not necessarily p.
Settling on the IWM proposal in such cases can lead to daunting
situations where one of its opposers calls a final vote between p
and p’ that “surprisingly” unveils general dissatisfaction with what
was otherwise a perfectly democratically chosen outcome.

Consequently, multi-issue aggregation mechanisms need to bal-
ance the tension between two majoritarian processes: majority on
the individual topics and majority when proposals are compared to
one another. In terms of the first, the chosen proposal should ideally



stay somewhat close to IWM. In terms of the second, the chosen
proposal should not be easily refuted by calling a vote against some
other proposal.

Even when voters consider the issues to be of equal importance
in their decision-making, we get paradoxical situations. However, in
reality, voters rarely consider all issues to be equally important and
often disagree on their importance; e.g., a Pew Research study from
June 2023 indicated that in the United States, there were massive
differences in perceived issue importance along partisan lines [35].
Some voting advice applications already attempt to account for
personalized issue-importance, such as Smartvote [2]. Data from
these applications can not only help assess how the current parties
are aligning with the populace [4], it can also suggest potential new
party platforms. Such pre-existing infrastructure to get data on both
voter opinions and issue importance underscores the pertinence of
issue weights to modeling this problem setting.

1.1 Our Contribution

We study the aggregation of opinions on multiple independent
binary issues with respect to two measures of majoritarianism:
agreement with issue-wise majority and success in pairwise pro-
posal comparisons. Our analysis considers two weighting models:
external weights and internal weights. In the former, the policy-
maker sets a weight to each issue reflecting its relative importance,
and voters use weighted agreement when comparing any two pro-
posals. The latter is the same, but each voter is free to choose their
own weighting vector. We use the “unweighted setting” to refer to
the edge case where issues are equally-weighted.

1.1.1  Condorcet winners. In the first part of the paper, we focus on
the complexity of determining a Condorcet-winning proposal: a pro-
posal that does not lose in a direct vote against any other proposal.
Under external weights, we find that any Condorcet winner has to
be an IWM proposal, while this does not extend to internal weights.
However, even in the unweighted setting with an odd number of
voters, where the IWM proposal is unambiguous, checking whether
this proposal is a Condorcet winner is co-NP-hard (answering an
open question in [13]).

An Ostrogorski-free domain. To mitigate this hardness result,
it would be appealing to identify a large set of instances for which
IWM proposals are Condorcet winners (i.e., Ostrogorski’s paradox
does not occur). If membership to this set could also be efficiently
verified, this would allow for practically certifying “safe instances”
where issue-wise majority is the right choice. We achieve this by
the single-switch condition of Laffond and Lainé [25]: a preference
matrix over =+1 is single-switch if it admits a single-switch presenta-
tion — a way to permute and potentially negate some columns such
that +1 entries on each row form a prefix or a suffix. They show that
for the unweighted case, this condition implies that Ostrogorski’s
paradox does not occur. We extend and simplify their analysis to
show that the same holds under external weights (but not always
for internal weights). We then provide a linear-time algorithm for
checking whether the preference matrix is single-switch and prove
that no-instances admit short proofs of this fact in the form of small
forbidden subinstances (that can also be identified in linear time by
a black-box reduction to the recognition problem which we have
not encountered before).

Secondary implications. Along the way, in this part, we make
multiple secondary contributions: (i) we uncover an interesting
topological connection: the set of single-switch presentations of a
single-switch matrix can be compactly represented as the union of
two mirror-image Mdbius strips; (ii) our recognition algorithm for
single-switch matrices proceeds by reducing to checking whether
the columns of a matrix can be permuted so that the ones on each
row form a prefix or a suffix — while a linear-time algorithm is
known for this [15],! it relies on rather complex machinery — we
instead give a much simpler direct algorithm with the same guaran-
tees; (iii) our simpler algorithm can be adapted to yield the simplest
and at the same time most efficient algorithm for checking the
single-crossing condition in ranked social choice [16]. Similarly to
the single-switch condition, the latter also admits a characteriza-
tion in terms of small forbidden substructures [9], and finding such
forbidden substructures can be achieved within the same time com-
plexity using our black-box technique, a result which to the best of
our knowledge is new.

1.1.2  Representative majority-supported proposals. Settling on a
Condorcet-winning proposal would be ideal, especially under ex-
ternal weights where such proposals are by default IWM proposals,
but in the absence of Condorcet winners, a compromise is needed.
In fact, the hardness of checking whether an IWM proposal is a
Condorcet winner can be seen positively: it is computationally de-
manding to find the proposal that defeats it, so we need not fear a
vote being called against the defeating proposal. Hence, it is rea-
sonable to relax the demanding Condorcet condition: the chosen
proposal should, at the least, not lose against its opposite — or, in
the language of our first formulation of Anscombe’s paradox above,
should garner majority support. In the second part of the paper,
we explore existence guarantees for majority-supported propos-
als that are as close as possible to an IWM proposal prywum. So far,
this has been studied in the unweighted model [13, 20]: a weakly
majority-supported proposal agreeing in strictly more than half of
the issues with pry v exists and can be found in polynomial time,
while achieving better guarantees is NP-hard. The word “weakly”
can be dropped if majority is strict/unambiguous on at least one
issue, i.e., some column of the preference matrix has differing num-
bers of +1’s and —1’s. We will be interested in the more complex
weighted case.

External weights. We provide a matching guarantee to the un-
weighted case, showing that there always exists a weakly majority-
supported proposal with strictly more than half the total weight
in topics agreeing with prywar. Under a simple condition on certain
higher-weight issues, we can also drop the word “weakly””

Internal weights. In sharp contrast, with as few as two different
weight vectors, we construct families of instances where the dis-
tance between every weakly majority-supported proposal and the
unique IWM proposal gets arbitrarily large. The severity of such
examples is controlled by the maximum average topic weight Wy,ax:
we give a simple bound derived from a partition-based approach
that is tight on a large portion of the range wy,qx € (0, 1).

More paradox-free instances. Finally, we generalize Wagner’s
Rule of Three-Fourths [38] for both external and internal weights:
if the average weighted majority on the issues is at least %, then

1Under the name of recognizing voter/candidate-extremal-interval preferences.



Anscombe’s Paradox cannot occur. Without loss of generality, if
+1 is a majority opinion on each topic, this translates to the total
weight of +1’s in the preference matrix being at least % of the total
weight. A stronger condition precludes Ostrogorski’s paradox under
external weights: if on each column the relative weight of +1’s is
at least % of that column’s total weight. This surprisingly simple
check is a counterpart to the single-switch condition, once again
giving a convenient characterization for a whole class of instances
in which returning an IWM proposal is always a good choice.

1.2 Further Related Work

Variations on the question of how best to reach consensus on a
series of issues have been studied thoroughly. We first go over
models where all topics are considered equally important.

Approval voting is a popular mechanism that is frequently used
for single-winner and multi-winner elections alike [6, 18]. Here,
each participant indicates their approval for a subset of candidates.
In contrast to our setting, not expressing the approval of a candidate
does not give the same signal as voting for the “no” stance on an
issue (which is a vote for the logical negation of the issue) [24].

Another related field of study is judgment aggregation, where
a series of judges have viewpoints on multiple topics, but there is
external logical consistency required between the topics [30]. As in
our problem, a reasonable method of reaching consensus is to take
the majority opinion on each topic. However, the outcome may fail
to be logically consistent — this is the Discursive Dilemma, and can
occur with as few as 3 judges and 3 topics [23]. There has been
some investigation into conditions that avoid this paradox, like
List’s unidimensional alignment [29],% and other similar paradoxes
under the name of compound majority paradoxes [32].

Our problem can also be viewed as a special instance of voting in
combinatorial domains: multiple referenda with separable topics [8].
Multiple works explored generalizations of Anscombe’s paradox
and gave further impossibility results [3, 22], e.g., relating to the
Pareto optimality of aggregation rules [33].

Significant work has also been done to characterize when such
paradoxes cannot occur. Wagner proposed the Rule of Three-Fourths
[38], preventing Anscombe’s paradox, as well as a generalization
[39]. Laffond and Lainé showed that if no two voters disagree on
too many issues, then Anscombe’s is prevented [26], and for single-
switch preferences, Ostrogorski’s does not occur [25].

We now survey proposals to augment various voting systems
with weights, allowing voters to express their degrees of interest
or investment in the topics. Storable voting allows participants to
delay using their vote in a given election, and accumulate votes to
use in later elections that they have more stake in [11]. Quadratic
voting proposes a somewhat similar system in which people are
given an allotment of vote credits, and before a given election can
buy a certain number of votes [27]. Both of these systems main-
tain that voters will use more votes for elections in which they
feel strongly and believe they are likely to be pivotal in. Uckelman
introduces a framework using goalbases to express cardinal (nu-
meric) preferences over a combinatorial voting domain [37]. This,

2The unidimensional alignment condition might appear to closely resemble the single-
switch condition, as it essentially requires that the transposed preference matrix be
single-switch. However, this is not equivalent, as rows and columns play different
roles — issue-wise majority aggregates along columns, not rows.

however, loses information by abstracting away the separability of
issues: for us, the cardinal preferences are induced by the weighted
Hamming distance. Lang also considers augmenting combinatorial
voting with preference weights and provides several computational
complexity results [28]. Satisfaction approval voting [7] modifies
approval voting by spreading a voter’s total weight equally over all
of the candidates they approve of. Finally, there is recent interest
in studying how voters have varying stakes in elections and how
to accommodate these stakes to limit distortion [10, 19].

2 MODEL AND NOTATION

For any non-negative integer m, write [m] := {1,..., m}. Given a
real number x, write sgn(x) € {—1,0, 1} for its sign. Note that for
any two reals x, y, we have that sgn(x - y) = sgn(x) - sgn(y).

We consider a setting with n voters and ¢ independent, binary
issues/topics. The decision space for each issue is B := {+1}. Each
voter i € [n] is modeled as a dimension-t vector v; € B indicating
for each issue j € [t] the opinion/preference v;; € B of voter i
on issue j. We call the matrix P = (v;j)ie[n],je[s] the preference
profile. We also write P = (cy,...,c;), wherecy,...,c; € B are the
columns of the matrix.

For each issue j € [t], we are consistent with previous litera-
ture [13, 20, 38, 39] and define the majority m; € [0, 1] on issue j
to be the fraction of voters that prefer +1 on it; i.e., the number of
+1’s in ¢;, divided by n. If m; > 0.5, then the majority opinion on
issue jis +1;if m; < 0.5, then it is —1, and if m; = 0.5, then both +1
and —1 are majority opinions on issue j. Equivalently, if we write
b; for the sum of the entries in c; (i.e., the column’s +1-balance), a
majority opinion on issue j is any o € B satisfying b; - 0 > 0.

A proposal is a vector p € B’ that consists of a decision for each
issue. We write p for the complement of proposal p, which simply
flips each bit of p; i.e., p = —p. An issue-wise majority (IWM) is a
proposal p where the decision on each topic is a majority opinion
for the topic.

We study two weighting models: external weights and internal
weights. In the former, an externally supplied vector of non-negative
weights w = (wy, ..., w;) summing up to 1 is available, denoting
the importance of each issue as seen collectively by the voters.
The internal weights model generalizes this by having each voter
i € [n] report an individual vector of weights w; = (w;1, ..., Wi;);
i.e., there need no longer be consensus on the importance of any
fixed issue. For internal weights, we write W for the matrix with
rows wi, ..., w,. We call the voting instance the pair 7 = (P, W)
for internal weights and 7 = (#, w) for external weights. We will
also talk about the unweighted model, which is simply external
weights with w = (1/¢,...,1/t), and directly write 7 = P for it.
For the remainder of this section, we assume external weights —
the internal weights model requires substantial additional notation
so we postpone it to later on.

For any positive integer m, given two vectors u,o € B™ and a
vector of weights w € [0, 1]™ with unit sum, we write dy (u, v, w) :=
2 wj - I(u; # v;) for the w-weighted Hamming distance between
u and v. We omit the w argument when referring to the unweighted
Hamming distance. For convenience, we write (i, 0),, := Z;":I wj -
u; -v; for the standard w-weighted inner/dot-product. One can easily
show that (u,0),, =1 -2 -dyg(u,0, w).



Fix an instance 7 = (P, w) in the external weights model. For
each voter i with vote v; we define their individual preference
relation *; between proposals. In particular, given two propos-
als p,p’ € B, voter i weakly prefers p over p’, written p ;
p’, iff dg(vi, p,w) < dy (v, p’, w). Note that this is equivalent to
i, PYw = (03 p Yy = Vi, p — p')w = 0. We write >; and ~;
for the strict and symmetric parts of ’;, respectively. We define
the collective preference relation ’» 7 between proposals: given two
proposals p, p’ € B, the voters collectively weakly prefer p over
p’, written p =7 p’,iff {i € [n]: p =i p'} 2 |{i € [n]: p" =i p}.
Note that this is equivalent to )., sgn({v;, p — p’)w) = 0. We write
> and =~ for the strict and symmetric parts of * r, respectively.
A proposal p € B! is a Condorcet winner if for any other proposal
p' €B' wehavep =7 p'.

For a voting instance 7, Ostrogorski’s paradox occurs if some
IWM proposal prwaris not a Condorcet winner, Anscombe’s paradox
occurs if for some IWM proposal prwy we have prwas > 1 prwm, and
the Condorcet paradox happens if there is no Condorcet-winning
proposal.

3 COMPLEXITY OF DETERMINING A
CONDORCET WINNER

In this section, we prove that it is co-NP-hard to determine whether
an instance 7 admits a Condorcet-winning proposal, even in the
unweighted setting with odd n:

Theorem 1. Deciding whether an instance I = P admits a Con-
dorcet winner is co-NP-hard in the unweighted setting with odd n.

This could be surprising given the following observation of [25]
for the unweighted model, which we extend to external weights:

Lemma 2. Consider an external-weights instance I such that p € B!
is a Condorcet winner for I. Then, p is an IWM for I.

PRrRoOOF. Assume the contrary, then there is an issue j € [t] such
that p;-b; < 0. Consider the proposal p* obtained from p by flipping
pj- Then, p* =1 p, a contradiction. O

Lemma 2 shows that one can restrict the search space for Con-
dorcet winners to IWM proposals. In the unweighted setting with
odd n, there is a single such proposal, which we can assume with-
out loss of generality to be 1 € B. Nevertheless, even under these
conditions, we will show that checking whether 1 is a Condorcet
winner is co-NP-hard, or, equivalently, checking whether 1 is not a
Condorcet winner is NP-hard. The latter occurs if and only if there
is a proposal p € B’ such that p > 1, which, recall, means that
strictly more voters i € [n] prefer p >; 1 than 1 >; p. Hence, it
suffices to prove that the following problem is NP-hard:

Problem “MAjor”

Input: Instance 7 = % in the unweighted setting with odd
n such that 1 is the issue-wise majority.

Output: Does there exist a proposal p € BY s.t. p > 1?

To show its hardness, we need the following auxiliary problem:

Problem “UNaNIM”

Input: Voting instance 7 = P in the unweighted setting.
Output: Does there exist a proposal p € B’ s.t. p >; 1 for
all i € [n] (to be read “p unanimously defeats 1”)?

UNANIM is NP-hard [14, Theorem 2], but the proof in [14] is
relatively complicated: we give a simpler one in Section A by noting
the equivalence to choosing a subset of columns of P that sum up to
anegative amount on each row (we also give a similar reformulation
of MAJOR for the interested reader).

Lemma 3. MAjJoR is NP-hard.

Proor. We reduce from the NP-hard problem UNanmm. Con-
sider an instance 7 = ¥ of UNANIM with n voters. If there is an
issue j € [t] disapproved by all voters in #, then P is a yes-instance
of UNANIM: all voters prefer the proposal with +1 in all coordinates
except the j-th to proposal 1. This case can be easily detected in
polynomial time, so we henceforth assume the contrary.

We build an instance 7' = P’ of MaJoOR from P by adding n — 1
voters approving all issues. For £’ to be a valid instance for MAJor
we need that 2n — 1 is odd (which it is) and that 1 is the issue-wise
majority. The latter holds because at least n — 1 + 1 = n voters
approve of each issue: the n — 1 added ones and at least one from
the first n by our assumption. It remains to show that a proposal
p € B! unanimously defeats 1 in P iff it majority-defeats 1 in P’.

Assume p € B’ unanimously defeats 1 in #. Then, each of the
first n voters in P’ prefers p to 1. Since there are onlyn — 1 < n
other voters in #’, a majority of the voters in P’ prefer p to 1.

Conversely, assume p € B’ majority-defeats 1 in #’. Clearly,
p # 1 has to hold, so all of the n — 1 added voters prefer 1 to p. To
counteract this, since p >z 1, the first n voters in $’ must prefer
p to 1, meaning that p unanimously defeats 1 in P. O

For completeness, we put the pieces together to give a self-
contained proof of Theorem 1 in Section A.

4 AN OSTROGORSKI-FREE DOMAIN

As we have seen, at least for external weights, a Condorcet-winning
proposal has to be an issue-wise majority proposal. Yet, we proved
that determining whether one of them is actually Condorcet-winning
is co-NP-hard, even in the unweighted case with odd n, where there
is only one such proposal to check. To mitigate this hardness result,
it would be useful if we could identify a large set of instances for
which IWM proposals are guaranteed to be Condorcet-winning,
i.e., Ostrogorski’s paradox does not occur. Laffond and Lainé [25]
introduced the single-switch condition, which achieves exactly this
goal for the unweighted setting. Furthermore, they showed that
it is the most general condition preventing Ostrogorski’s paradox
among conditions that do not consider the multiplicities of the votes
(i.e., conditions defining a domain) or whether a vote is negated
or not (i.e., they only look at the set {{v;,0;} | i € [n]} and not
at how many times each v; or o; is repeated). In particular, if an
instance in the unweighted model is not single-switch, then it is
possible to add copies of some of the votes v; (or their negations
;) so that some issue-wise majority proposal is not a Condorcet
winner. Two important questions underpinning their condition are:
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(a) Profile P. (b) Single-switch presentation of P.
Figure 1: The profile # in Fig. 1a is single-switch because its
columns can be permuted and flipped as in Fig. 1b to ensure
that ones on each row form a prefix or a suffix.

(i) Does it still guarantee the existence of a Condorcet winner in
the (at least externally) weighted setting? (ii) Is it possible to check
whether it applies in polynomial time? If not, are there short proofs
of this fact? In this section, we answer all these questions in the
affirmative.

A preference profile (matrix) P = (cy,...,¢;) is single-switch
(SSW) if we can flip (multiply by —1 all entries in) some columns
and then permute the columns to get a new profile ' such that +1
entries on every row form either a prefix or a suffix, in which case
we say that £’ is an SSW presentation of . We allow flipping no
columns or leaving all columns in their original place. Intuitively,
issues are arranged along a left-right axis. Left-wing voters approve
a prefix of issues, with the length depending on their tolerance,
while right-wing voters similarly approve a suffix of issues.® See
Fig. 1 for an illustration of the notion. A voting instance 7 is single-
switch if its preference profile P is single-switch.

4.1 For External Weights Single-Switch
Prevents Ostrogorski’s Paradox

We find that, assuming external-weights, the single-switch condi-
tion guarantees that all IWM proposals are Condorcet winners. To
show this, we first show that every issue-wise majority proposal
does not lose against its opposite, i.e., Anscombe’s paradox does
not occur. We do this by streamlining and adapting the argument
in [25] (which was only for the unweighted model). Because the
single-switch condition is closed under removing issues, the gen-
eral statement then follows easily by noting that, under external
weights, Ostrogorski’s paradox happens if and only if there is a
subset of issues inducing an instance where Anscombe’s paradox
happens. The details are deferred to Section B.1.

Theorem 4. In the external-weights model, every issue-wise majority
proposal of a single-switch instance is a Condorcet winner.

4.2 Recognizing Single-Switch Profiles

The result in the previous section is particularly appealing: in the
external-weights model, if the preferences are single-switch, any
issue-wise majority proposal is a Condorcet winner. This bypasses
our previous hardness result in the case of single-switch preferences.
However, this is only useful provided one can quickly tell whether a
given profile P is single-switch or not. In this section, we show that

3This shares similarities with several related concepts, such as single-peaked and
single-crossing preferences. However, unlike most other notions, we allow issues to
be flipped before ordering them, as they can be logically negated without changing
meaning.

this can be determined in linear time, i.e., O(nt). For yes-instances,
our algorithm also determines an SSW presentation #’ (implicitly
also the permutation and flips used to obtain it). Given #’, we also
characterize the set of all SSW presentations as the union of two
“orbits” around P’ and its column-reversal. These orbits can be
attractively interpreted topologically as two mirror-image Mobius
strips. To begin, we need the following observation following easily
from the case n = 1. See Section B.2 for the proof.

Lemma 5. Consider a profile P admitting an SSW presentation P’ =
(c1,...,¢t). Then, P} := (cz,...,cr,€1) is also a SSW presentation
of P. Furthermore, any t (circularly) consecutive columns in P"" :=
(c1...5¢t, €15 ..., Cr) form an SSW presentation of P.

Hence, any SSW presentation #’ of a profile  corresponds
to a set of 2t such presentations that we call the orbit Op: of P’.
Formally, these are the 2t profiles that can be obtained by taking ¢
(circularly) consecutive columns in " in the above. Note that the
orbits of any two SSW presentations either coincide or are disjoint,
so the set of all orbits partitions the set of SSW presentations of
P. Also, the 2t profiles in Op/ are pairwise distinct, which can
be easily seen by considering the case n = 1, under which " is
circularly equivalent to a list of ¢t minus ones followed by t ones.
This reasoning additionally allows us to assign to each orbit a
representative, namely the profile with all —1’s on the first row:

Corollary 6. Every orbit contains exactly one profile where the first
row is all —1’s.

Orbits can be understood through a topological lens: For the
orbit Ops of P’ = (cy,...,c;) take an n X t rectangular piece of
paper and write the columns cy, . . ., ¢; on the front and ¢y, ..., ¢; on
the back, such that for each i € [t], column c; on the front aligns
with column ¢; on the back. Then, give the paper a length-wise
half-twist and glue the left and right sides to form a surface known
as a Mobius strip: see Fig. 2. Cutting along the width of the strip
between any two columns recovers an n X t piece of paper with
one SSW presentation on one side and its opposite on the other
side. In high-level terms, each orbit is topologically a Mébius strip.

To check whether a profile P is single-switch, by Corollary 6,
it suffices to check for presentations with all —1’s in the first row:
all other presentations are generated by the orbits of such presen-
tations. There is a simple strategy to achieve this: flip columns in
P to make the first row all —1’s, and then check whether columns
in the resulting profile can be permuted to ensure that ones on
each row form a prefix or a suffix. This amounts to recognizing
single-switch-no-flips profiles: A profile P is single-switch-no-flips
(SSWNF) if its columns can be permuted to get a new profile ’
such that +1 entries on every row form either a prefix or a suffix,
in which case we say that £’ is an SSWNF presentation of P.

Recognizing single-switch-no-flips profiles. Telling whether
a profile P = (cy,. .., c;) is single-switch-no-flips can be achieved
by appending a negated copy of # underneath [15] and running
a solver for the Consecutive Ones Problem (C1P), which can be
solved in O(nt) time [5], implying the same about our problem.
However, such solvers are complicated and notoriously error-prone:
most available implementations fail on at least some edge cases
[17]. Moreover, reducing to C1P does not utilize the additional
structure present in our problem and hence does not shed light
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Figure 2: Mobius strip of orbit Ops for P’ = (cy,...,c10). We
start with a rectangular piece of paper of length 10 and write
(c1,...,¢10) on the (green) front side and (cy,...,cq9) on the
(red) backside. We then give the paper a length-wise half-
turn and glue the endpoints (bold strip). This gives raise to a
surface with a single continuous side.

on the structure of all solutions, as we set out to do. We give a
much simpler algorithm achieving the O(nt) time-bound: Find an
index x maximizing dg(c1, ¢x). Then, sort (using Counting Sort) the
columns based on their Hamming distance from c, to get a profile
P’ =(ct,...,c;) where dy(cx, ;) < dy(cx,c},,) fori € [t—1] (ie,
ties in Hamming distance can be broken arbitrarily). We claim that
either #’ is the unique SSWNF presentation of # (up to reversing
the order of the columns), or there is no such presentation, so we
can easily check in additional O(nt) time whether the candidate
solution works. All required claims shown formally in Section B.2:

Theorem 7. There is a simple O(nt) algorithm computing (or decid-
ing the inexistence of) an SSWNF presentation of a profile . Moreover,
if it exists, this presentation is unique up to reversing column order.

Section B.2 also provides a much ampler discussion of related
work for this sub-problem, including the relation between our al-
gorithm and previous algorithms for recognizing single-crossing
preferences. As a bonus, it gives a similar simpler, more efficient
algorithm for recognizing single-crossing preferences, running in
time O(nt+/log n), improving state of the art [16, Algorithm 4].

Putting it together. To decide whether a profile P is single-
switch, we flip columns in P to get a profile ’ with only —1’s
in the first row and then use the algorithm in Theorem 7 to find
an SSWNF presentation "’ of £’ (and hence also P). If it exists,
this presentation is unique up to column reversal, so we can also
characterize the set of all SSW presentations of # by unioning the
orbits of £’ and its column-reversal. Note that these two orbits
may coincide for pathological input profiles $.

Theorem 8. There is an O(nt) algorithm computing (or deciding the
inexistence of) an SSW presentation of a profile P. If the algorithm
returns a presentation P, let P;’ be P”" with the order of the columns
reversed, then the set of all SSW presentations of P is Opr U Opy.

4.3 Forbidden Subprofiles Characterization of
Single-Switch Preferences

Whenever the single-switch condition is not satisfied, it would be
useful if there were a short proof of this fact: a small subprofile
that is not single-switch. Formally, a profile/matrix # contains
a profile/matrix $’ as a subprofile/submatrix if we can remove
(possibly zero) rows and columns from P to get $’ up to permuting
rows and columns. Note that existence is not immediate: there could
exist arbitrarily large matrices not satisfying the condition but all
of whose proper submatrices do. We show that this is not the case:
either the condition holds, or there is a 3 X 4 or 4 X 3 submatrix
witnessing that this is not the case, as in the following:

Theorem 9. A profile P is single-switch if and only if it does not
contain as a subprofile P{, Py and any profile that can be obtained
from them by flipping rows and columns:

-1 -1 -1 - ;1 :1 :1
Pr=[¥1 #1 == Pr=l =

+1=1 +1 -
-1+

We prove Theorem 9 in Section B.3 by combining a similar char-
acterization for single-switch-no-flips profiles given in [36] (under
the name voter/candidate-extremal-interval preferences) with our
insight that to go to the no-flips version it suffices to make one row
all —1’s. Henceforth, we call the 3 X 4 and 4 X 3 preference pro-
files in the theorem above forbidden subprofiles. Then, the theorem
says that P is single-switch if and only if it contains no forbidden
subprofiles. Note how this implies that single-switch profiles are
relatively rare: the probability that a random binary n X t matrix is
single-switch tends to zero as n and t tend to infinity.

Finding forbidden subprofiles. So far, we have seen that non-
membership to the class of single-switch preferences admits short
proofs, but can such proofs also be constructed efficiently? Given
some no-instance, it is straightforward to determine which forbid-
den subprofiles occur in it in time O(n*t* + n*t3). In contrast, our
recognition algorithm runs in time O(nt), but does not identify a
forbidden subprofile. We will now assume our O(nt) recognition
algorithm as a black box and show how to identify a forbidden
subprofile for a given no-instance # in time O(nt).

Let us first describe an O(n%t + nt?) approach: one at a time,
try to remove each row and each column of P, i.e., n + t removal
attempts; if doing so makes the resulting profile a yes-instance, undo
the removal, and otherwise let it persist. At the end, the ensuing
no-instance $’ is a subprofile of # whose proper subprofiles are yes-
instances, so #’ is a forbidden subprofile, completing the argument.

We now modify the previous idea to run in time O(nt) by remov-
ing multiple rows/columns at a time. We will first only remove rows,
and then, starting from the resulting profile, only columns. The
reasoning for columns is entirely analogous, so we only describe
the procedure for rows: partition the rows into 5 groups Gy, . .., Gs,
each of size roughly n/5. Because all forbidden subprofiles are of
size 34 or 4X 3, any occurrence of a forbidden subprofile in  only
uses rows from at most 4 of the 5 groups. Consequently, we can
find a group G; such that removing all rows in G; from % keeps the
property that £ is a no-instance. Doing so requires at most 5 calls



to the recognition algorithm, so it can be done in overall time O(nt).
Ignoring for brevity the cases where n is not divisible by 5, this
reasoning shows how to reduce n to 4n/5 in time O(nt). Applying
the same reasoning iteratively until n goes below 5 takes total time
O(nt) because the geometric series Y5, (4/5)" converges.

Theorem 10. Given a non-single-switch profile P, a forbidden sub-
profile of P can be determined in time O(nt).

We note that the previous idea applies more broadly; e.g., for
single-crossing preferences, which admit a characterization in terms
of two small forbidden subinstances [9], our O(nt+/log n) recogni-
tion algorithm can be bootstrapped to also produce a forbidden
subinstance for no-instances within the same time bound. A formal
statement and more details can be found in Section B.3.

5 ANSCOMBE’S PARADOX

When preferences are not single-switch, determining whether an
IWM proposal is a Condorcet winner is co-NP hard. In light of
this, we focus on the most diabolical subset of Ostrogorski paradox
instances: those inducing Anscombe’s paradox (where an IWM
proposal is defeated by its complement, or, equivalently, an IWM
proposal fails to get majority support). If Anscombe’s paradox oc-
curs, a natural question is: “How close can we get to any given
IWM while still requiring that the proposal gets majority support?”

We first explore this question under external weights, i.e., in
instances 7 = (P, w) where all voters share the same, unit-sum
weights vector w. Then, we introduce the necessary notation and
study it for internal weights. Finally, we give a simple characteriza-
tion of a broad swath of instances that avoid Anscombe’s paradox
entirely for internal weights. We assume throughout that t > 1, as
Anscombe’s paradox does not occur with one topic, and without
loss of generality that m; > 0.5 for all j € [t] (i.e, that +1is a
majority opinion on all topics).

Formally, some voter i supports (approves of) a proposal p if
dri (vi, p, w) < 1/2, opposes (disapproves of) p if dg (v;, p, w) > 1/2,
and is indifferent to p if dy (v;, p, w) = 1/2. A proposal is strictly
majority-supported if more people support it than oppose it and
weakly majority-supported if no more people oppose it than sup-
port it. Our definition of majority support matches [13] but differs
from [20] (where indifferent voters count towards the proposal’s

support).

5.1 External Weights

In the unweighted case, it is straightforward to argue that for any
IWM, there exists a weakly majority-supported proposal within
distance < 1 + 5- because at least one proposal in every complemen-
tary pair (p, p) gets weak majority support (and at least one pair
satisfies the distance bound for both proposals). A slightly better
guarantee of distance < % holds by a more difficult proof [13, 20].
For external weights, the complementary pairs argument no longer
gives a bound close to % if no subset of topic weights sum up close
to % One may hope to reduce to the unweighted case by splitting
topics into multiple equal-weight topics and use the < % bound
there, but the resulting majority-supported proposals may have
different values for an original topic’s clones, making it hard to

translate to proposals in the original instance. Despite these set-
backs, we surprisingly find that the < % guarantee still holds for
external weights. Our proof, deferred to Section C.1.2, simplifies
and adapts the argument in [13]. We also guarantee strict majority
support if there is a strict majority in at least one relevant topic,
roughly meaning topics with high enough weight to be the tipping
point in a vote (see Section C.1.1 for a formal definition).

Theorem 11. Forany I = (P, w) and prwum, there is a weakly ma-
Jjority supported proposal p with dg (p, prwm, w) < 1/2. If majority
is strict in any relevant topic, “weak” can be replaced with “strict”.

5.2 Internal Weights

We now explore a model where individuals can have unique weight
vectors, expressing not only diverse preferences on issue outcomes
but also differing opinions on relative topic importance.

Internal Weights Model. In the internal weights model, an
instance I = (P, W) consists of a preference profile  and a weight
profile W with rows wy, ..., w, where each weight vector w; cor-
responds to voter i, is non-negative, and sums to 1. The average
weight vector is defined as w := % i, wi. Zero entries in the av-
erage weight vector correspond to issues that no voters placed
any weight on (and hence can be ignored). We assume no such
topics exist without loss of generality. We define the majority for
a given topic j to be m; := n_iu, 2y wij - I(vij = +1). This is the
fraction of voter weight placed on that issue that prefers +1. Note
that this agrees with our previous definition for external weights
(where it was just the fraction of voters that prefer +1 on that topic).
The average majority for a given preference profile is defined as
m:= 25:1 w;m;. This naturally weights consensus on issues pro-
portionally to how important those issues are to the population.

Under external weights, we could give a constant upper bound
(Theorem 11) on the minimum distance of some majority-supported
proposal from an IWM, independent of the weight profile. As we
will see in Theorems 12 and 13, the severity of Anscombe’s Paradox
under internal weights is closely related to the maximum average
topic weight Wy, 4 (the maximum entry in w). Formally, we will
upper bound the worst-case IWM distance g, for instances with
maximum average topic weight Wp,ax = £ € (0, 1) and selections of
prwm for the instance:

gr = max min
I=(P.W), prwm \p weakly majority-supported
s.t.Wmax=t

du (p, prwm, w)

We first give a simple upper bound on g, for £ € (0, 1) derived
from a partition-based algorithm. Surprisingly, we then show that
this seemingly weak upper bound is tight for a large portion of
the range Wpax € (0,1). Our lower-bound constructions more
strongly imply the existence of instances where all weakly majority-
supported proposals are far from all IWM’s. Fig. 3 provides a sum-
mary of the bounds we give on g5, -

Partition-based upper bounds. Theorem 12 guarantees both
the existence of reasonable majority-supported proposals and pro-
vides an algorithm to efficiently recover them.

Theorem 12. We have the following upper bounds on g:
o Ift € (0,1/3), theng, < 1/2 + €/2;
o Ift € [1/3,1/2], theng, <1—¢;
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Figure 3: A summary of our bounds on g5, ..

o Ift € (1/2,1), theng, < ¢.

In each case, we can compute a weakly majority-supported proposal
p with dy (p, prwm, W) at most the given bound in polynomial time.

The full proof is deferred to Section C.2.1, but the intuition
is as follows: for any proposal, either it or its complement will
get weak majority support (potentially both), and for any prwar,
du (p, prwm, w) = 1 — du(p, prwm, w). Therefore, we construct p
that keeps max{dyg (p, prwm, W), dg (p, prwm, W)} small. This is ul-
timately equivalent to the partition optimization problem with the
t entries in the average weight vector as inputs. Our bounds are
constructive and give the pair (p, p) achieving the bound.

Lower bounds. By definition, g, < 1, so the upper bounds in
Theorem 12 might seem fairly weak. However, in Theorem 13, we
show that they are actually tight for many values of ¢. This implies
that when Wy, is large, gy, can get arbitrarily close to 1.

Theorem 13. The following lower bounds for g, hold:
o Ift =1/(2k + 1) withk € Zs, theng, > 1/2+ £/2;
o Ifte€(1/2,1), theng, > L.

We conjecture that the upper bounds in Theorem 12 are tight
for the remaining values of ¢, but leave this to future work. The
proof of Theorem 13 is deferred to Section C.2.2, but we provide
the construction for £ € (1/2,1) and some intuition here. In the
instance below, we choose x large enough such that Wy, = £ and
the first issue holds a strict majority of the weight for all voters.
There are x copies of the first voter, and x + 1 copies of the second.

C(x [+1 0w _o()x [2Hp o1-Xy
T+ x |-+ T+ x| 1-5 0

In this instance, all voters are essentially “single-issue voters”
on the first topic, but the second type of voters split their weight
slightly more evenly between the two topics. +1 is the weighted
majority opinion on the first topic, but any proposal with +1 for that
topic will not get majority support because voters of the second type
will oppose it. Notably, 1 is the unique IWM in our constructions,
implying there is no majority-supported proposal close to any IWM.

Theorem 13 quashes any hope of improving on Theorem 12
and proving a similar result to the external weights setting (where
gr < 1/2 held for any weights profile). Once voters can have distinct

weight vectors, increasing Wy, can make the distance between
all majority-supported proposals and IWM proposals arbitrarily
large. We conclude this section by characterizing a group of voting
instances in which Anscombe’s Paradox will not occur.

Condition precluding Anscombe’s Paradox. We find that
generalizations of Wagner’s Rule of Three-Fourths hold in both the
external and internal weights settings:

Theorem 14. Ifm > 3/4 then Anscombe’s paradox will not occur.
Additionally, if mj > 3/4 for all j € [t] in the external weights
setting, then Ostrogorski’s paradox will not occur.

Our proof (deferred to Section C.3) follows Wagner’s original
proof strategy of counting agreement with an IWM in an instance in
two ways: column-wise and row-wise, but is modified to account for
weights. We get the second part of our claim by using the fact that,
under external weights, Ostrogorski’s paradox occurs if and only if
there is a subset of issues inducing an instance where Anscombe’s
paradox occurs.

6 CONCLUSION AND FUTURE WORK

We explored how best to represent the will of voters on multiple,
separable issues when optimizing for two potentially conflicting
ideals: agreement with issue-wise majority and success in pairwise
proposal comparisons. Additionally, we augmented previous multi-
issue voting models to account for non-uniform and individualized
issue importance. We demonstrated that determining whether an
IWM is a Condorcet winner is co-NP hard, but provided an effi-
ciently checkable condition under which Ostrogorski’s paradox
does not occur. We then examined instances where an IWM loses
to the opposing proposal (i.e., Anscombe’s paradox occurs) and
showed how our two weighting models alter our ability to recon-
cile the two objectives. While we now have a rich understanding of
the interaction of these two majoritarian ideals, one could optimize
for different notions of representation in the proposal selection. It
would be interesting to study variants of maximizing total voter
“satisfaction” — the total weight voters have on topics that they
agree with the final proposal on (a weighted version of an objective
proposed in [20]). On the technical side, our work leaves open a
number of interesting questions and gaps: (i) Our Theorem 11 for
external weights is only existential. In contrast, in the unweighted
setting, [13] also provide a polynomial-time method to derandomize
the probabilistic argument. Extending this approach to the weighted
setting appears generally more challenging but likely feasible in
pseudo-polynomial time with slightly more involved techniques.
(ii) Paper [13] also shows a hardness result for the unweighted case:
telling whether a proposal achieves more agreement with an IWM
than guaranteed by the probabilistic argument is NP-hard. It would
be interesting to get a similar result for every fixed weights vec-
tor w. (iii) We have only succeeded in proving that our bounds in
Theorem 12 are tight for some portion of the range Wp,qx € (0, 1).
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A COMPLEXITY OF DETERMINING A
CONDORCET WINNER

In this section, we show that UNANIM is NP-hard. This was previ-
ously known [14, Theorem 2], but the proof there is a more com-
plicated reduction from Independent Set. In contrast, our proof
proceeds by recasting the problem in terms of selecting a subset
of column vectors whose sum is negative in all coordinates. This
alternate view enables a more natural reduction from Exact Cover
By 3-Sets. Afterward, we put all the pieces together to give a self-
contained formal proof of Theorem 1. We conclude the section by
providing a similar “choosing a subset of vectors” formulation for
MaJoR, which we believe could be interesting more broadly.

To prove that UNANIM is NP-hard, we note that UNANIM admits
an elegant reformulation: write # = (cy,...,¢;) in terms of its
issue/column vectors, then selecting a proposal p € B’ amounts to
choosing the subset of issues where p differs from 1. A voter i € [n]
prefers p >; 1 iff the sum of the selected vectors is strictly negative
in coordinate i, so UNANIM asks to select vectors such that the sum
is negative in all n coordinates. Hence, UNANIM is equivalent to the
following problem, which we find of independent interest:

Problem “NEGATIVE-SUM-SUBSET” (NSS)

Input: Collection C of t dimension-n vectors over +1.
Output: Does there exist C’ € Cs.t v := Y, . ¢ is negative
in all coordinates: v; < 0 for all i € [n]?

Lemma 15. UNANIM = NSS is NP-hard.

Proor. We reduce from the problem Exact Cover By 3-Sets
(X3C), which is well-known to be NP-hard [21]. An instance of
X3C is given by a ground set S of size 3s and a set X of size-3
subsets of S (also called triples); it is a yes-instance if and only if
there exists a subset X’ C X that forms an exact cover of S (i.e.,
the triples in X’ cover each element of S exactly once); note that
|X’| = s must hold if so.

Consider an instance of X3C, we want to construct an instance
of NSS such that the former is a yes-instance if and only if the
latter one is.

We can assume without loss of generality that there is a triple
{a, b, c} € X such that no other element of X contains any of a, b,
or c. Indeed, if not, we can add three new elements to S and a set
comprising them to X. The modified instance is a yes-instance if
and only if the original instance is.

Now, to create an instance of NSS, we construct [X| +s — 1
dimension-(3s + 1) vectors over +1. The first 3s coordinates cor-
respond to the elements of the ground set. For each set x € X,
we construct a vector with —1 in coordinates that correspond to
elements of x as well as in the last coordinate (in other coordinates,
we have +1). We refer to these vectors as set vectors. In addition, we
construct s — 1 vectors with —1 in the first 3s coordinates and +1 in
the last coordinate; we refer to these vectors as dummy vectors.

We claim that this is a yes-instance of NSS if and only if the
original instance of X3C was a yes-instance.

(&) Suppose we started with a yes-instance of X3C, so let X’ €
X be an exact cover. Recall that this implies |X’| = s. Take the s
set vectors corresponding to X as well as all s — 1 dummy vectors.

Summing up these vectors, in the last coordinate, we get s - (1) +
(s — 1) - (+1) = —1. In every other coordinate, we have s — 1
entries —1 from the dummy vectors, one entry —1 from the vector
corresponding to the triple that covers the respective element, and
s — 1 entries +1 from the other selected set vectors, making for a
total sumof (s —1) - (=1) + 1- (=1) + (s — 1) - (+1) = —1. Hence,
the resulting instance is a yes-instance of NSS.

(=) Conversely, suppose the resulting instance is a yes-instance
of NSS. Hence, pick some of the vectors so that the sum in each
coordinate is negative. We will show that, among picked vectors,
the set vectors correspond to an exact cover. Suppose we picked
t set vectors. Then, we picked at most t — 1 dummy vectors (as
otherwise, the sum in the last coordinate would be non-negative).
Note that this implies ¢t > 0.

Assume for a contradiction that the set vectors among selected
vectors do not correspond to a cover. Then, there is some coordi-
nate among the first 3s in which all selected set vectors have +1.
However, in that case, the sum of the vectors cannot be negative
in that coordinate, as we have t entries +1 from set vectors and at
most t — 1 entries —1 from dummy vectors, a contradiction.

On the other hand, assume for a contradiction that the selected
set vectors do correspond to a cover, but it is not an exact cover,
so some element is covered more than once. In particular, each
element is covered at least once, and at least one element element
is covered more than once, so the sum of the sizes of the triples
that the selected set vectors correspond to has to be at least 3s + 1,
meaning that we had to pick at least s+ 1 = [%] set vectors. Now,
recall that there is some element a (without loss of generality, the
element corresponding to the first coordinate) that is only contained
in one triple in X.% Then, in our chosen collection of vectors, we
have at most one set vector with —1 in the first coordinate and,
hence, at least s set vectors with +1 in this coordinate. Hence,
considering only set vectors, the sum in this coordinate is at least
1-(—=1)+s-(+1) = s—1. Hence, even if all s — 1 dummy vectors were
picked, the sum in this coordinate is at least s— 1+ (s — 1) - (1) =0,
and hence non-negative, a contradiction.

Hence, the set vectors among picked vectors correspond to an
exact cover, so the original instance of X3C is a yes-instance, com-
pleting the proof. m]

We now give a self-contained formal proof of Theorem 1, restated
below for convenience.

Theorem 1. Deciding whether an instance I = P admits a Con-
dorcet winner is co-NP-hard in the unweighted setting with odd n.

ProOF. In the unweighted setting with odd n, checking for the
existence of a Condorcet winner is equivalent to checking whether
the (unique) issue-wise majority proposal is a Condorcet winner
(by Lemma 2). It is enough to show hardness for the case where
the issue-wise majority proposal is 1.> Hence, we want to show
that the following problem is co-NP-hard: “Given a voting instance
I =P in the unweighted setting with odd n where 1 is the issue-
wise majority proposal, determine whether 1 is a Condorcet winner.”
This is equivalent to showing that the ‘negated’ problem is NP-hard:

“4In fact, there are three such elements, but we do not need this fact.
SThis is, in fact, equivalent to the general case by negating/flipping issues where —1 is
the majority opinion, but we do not need this distinction to prove hardness.



“Given a voting instance 7 = P in the unweighted setting with odd
n where 1 is the issue-wise majority proposal, determine whether
1 is not a Condorcet winner” Not being a Condorcet winner is
equivalent to there existing a proposal p € B such that p >7 1.
Hence, the negated problem is precisely MAJoR, which is NP-hard
by Lemma 3, completing the proof. O

We end by pointing out that it is also possible to formulate
MAJOR as a vector problem. We found it clearest not to do so in our
proofs, but the problem resulting in doing so is elegant and might
see other applications. Namely, the following problem is equivalent
to MAJOR, and hence NP-hard:

Problem
“MORE-NEGATIVE-THAN-POSITIVE-SUM-SUBSET”
Input: Collection C of t dimension-n vectors over +1, s.t. n
is odd and each vector’s entries sum up to a positive amount.
Output: Does there exist C” € Cs.t. v := ). ¢ is negative
in more coordinates than it is positive: };c[,; sgn(vi) < 0?

B AN OSTROGORSKI-FREE DOMAIN

B.1 For External Weights Single-Switch
Prevents Ostrogorski’s Paradox

In this section, we prove that, under external weights, the single-
switch condition guarantees that all IWM proposals are Condorcet
winners, i.e., Ostrogorski’s paradox does not occur. To this end, we
first show that every issue-wise majority proposal does not lose
against its opposite, i.e., Anscombe’s paradox does not occur. This
was already known for the unweighted model [25]. We, however,
found the proof in [25] relatively tricky to parse: in part because of
certain missing/unclear details and in part because of the relatively
involved case distinctions in the second part of the proof. We adapt
this proof to external weights and also simplify and streamline it,
removing the need for case distinctions by noting symmetries and
wisely manipulating sgn functions. This yields a shorter and clearer
argument that highlights better where the assumption about our
proposal being an IWM comes into play, which was not immediate
from the original presentation.

Lemma 16. Consider an external-weights single-switch instance
I = (P, w). Then, for any issue-wise majority proposal p, we have
p#1p

Proor. Without loss of generality, assume that ones form a
prefix or a suffix on every row of P.°® For each 1 < i < ¢ define
e; € B such thate;; = +1if j < i, and ¢;; = —1 otherwise. It
follows that every row in # belongs to the set U_ {e;, &}. Given
a vector u € B! write #p(u) := |{i € [n] | v; = u}| for the
number of voters in £ whose vote is u, in which case we say that
those voters are of type u. For 1 < i < t, define x; = #p(e;) —
#p(€;) to be the number of voters in  with vote e; minus the
number of voters in  with vote e;. We want to show that p =7 p,
which amounts to )1, sgn({v;, p — p)) = 0, which is equivalent

©Note that assuming this and, at the same time, that 1 is an issue-wise majority proposal
would lose generality.

’ ’ ’ ’
€1 €, 63 €,

e | -1 =1 =1
e [+1 =1 =1 =1
ey |[+1 +1 =1 -1
ey |+1 +#1 41 -1

Figure 4: Matrix in the proof of Lemma 16 for ¢t = 3. The
helper ¢; and e; are depicted above/to the right.

to X1y sgn({vi, p)w) = 0. Since voters can only be of the 2t types,
this is equivalent to:

t
D" (#p(er) - sgn({ei phw) + # (@) - sgn((@, phw)) = 0
i=1
Since (e;, p)w = —({ei, P, this is the same as:
t
D i+ sgn({ei phw) 2 0 (1)
i=1
To prove this, we are given the fact that p is an issue-wise majority
proposal. Recall that for j € [t] we defined b; := 37 v;; = Yi_; xi-
e j, in which case what we know amounts to b; - p; > 0 for all
Jjeltl
To begin the proof, note that the type votes ey, ..., e; formatxt

matrix with one row for each vote. Let ef, ... ., e; be the columns of
this matrix. For uniformity in the reasoning that follows, it will be
helpful to define ¢;, := e] = —1and e; :=¢; = —1. See Fig. 4 for an

illustration. With these added conventions, for any j € [¢] we have
that ej’. and e} 4+ differ only in coordinate j, which is +1 in e} and
—1in e} +1» and, moreover, e; and e;_; differ only in coordinate j,
which is +1in ej and —1 in e;_;. Let us also extend the definition
of b to make b;;; well-defined.

As a result, for all i € [t] we have that b; — b;y; = 2 - x; and
(e; — €i_1, P)w = 2 - w; - p;. Moreover, by definition, b;y; = —b; and
(er, P)w = —(eo, P)w, Which together imply that b;,1-sgn({es, p)w) =
by - sgn({eo, p)w)-

Armed as such, we substitute in Eq. (1) to get that we need to
show that:

t
MU (e 20 =
i=1
¢
(bi = bis1) - sgn({ei, p)w) 20 &
1

t t
D bi - sgn({ei ph) = Y biv - sgn({ei, phw) 2 0
i=1 i=1

The last term in the second sum is byy; - sgn({es, p)w) = b1 -
sgn({eg, p)w), so the second sum stays the same if we change its
summation bounds from (1,¢) to (0, — 1). Doing so and then
rewriting in terms of i + 1 instead of i, the second sum equals
> bi - sgn({ei—1, p)w). Combining the two sums and then factor-
ing out the b; yields:

t
D bi- (sgn({ess p)w) = sgn((ei—1, pw)) = 0
i=1



To show that this is true, we will just show that each term is non-
negative. Consider a fixed i € [¢], then we would like to show that
b; - (sgn({ei, p)w) — sgn({ei-1, p)w)) = 0. This happens if and only
if:

sgn(b;) - (sgn({es, p)w) — sgn({ei-1,p)w)) 20 &
sgn(b;) - sgn({es, p)w) = sgn(b;) - sgn({ei-1,p)w) =
sgn(b; - {ei, p)w) = sgn(b; - {ei—1, p)w)

Because the sign function is monotonic, it hence suffices to show
that b; - (ei, p)w = bi - {ei-1, p)w & bi-(ei—ei_1,p)w 20 &
b; - (2-wj - p;) > 0, which is true since b; - p; > 0. O

The general statement that Ostrogorski’s paradox does not occur
will now follow easily by combining Lemma 16 with the following:

Lemma 17. Ostrogroski’s paradox occurs for an instance I = (P, w)
in the external-weights model if and only if Anscombe’s paradox
occurs on an instance I’ obtained from I by removing (possibly zero)
issues from I and renormalizing the weights to sum up to 1.

Proor. We prove the two directions separately:

(&) Assume Anscombe’s paradox occurs on an instance 7’
obtained from 7 by removing a subset of issues R C [¢] from 7
and renormalizing the weights to sum up to 1. Then, by definition,
there is an IWM proposal p},,,,, for I such that p},,, =7/ Pl
Complete pyy,,,, into an IWM proposal prwum for I and define p.
to agree with prws in topics in R and disagree in topics in [t] \ R.
Then, Ostrogorski’s paradox occurs for 1: proposal prwam is an
IWM and p. >7 prwm by construction because m =1 Plwm-

(=) Assume Ostrogroski’s paradox occurs for 7. Let pywym and
p. be such that prwas is an IWM proposal for 7 and p. >7 prwm.
Define R C [t] to be the set of topics in which p, and prwum agree,
and create 7’ from 7 by removing issues in R and renormalizing the
weights to sum up to 1. Moreover, restrict prw s to topics in [¢] \ R
to get an IWM proposal p},,,,, for 7. Then, Anscombe’s paradox

occurs for I': proposal p,,\, is an IWM and p,, 0 =17 Pryu PY
construction because p. >1 prwm. O

Theorem 4. In the external-weights model, every issue-wise majority
proposal of a single-switch instance is a Condorcet winner.

Proor. Assume this was not the case and consider a single-
switch instance 7 in the external-weights model for which there ex-
ists an issue-wise majority proposal that is not a Condorcet winner
(equivalently, Ostrogorski’s paradox occurs for 7). By Lemma 17,
Anscombe’s paradox occurs on an instance 7’ obtained from 7
by removing (possibly zero) issues from 7 and renormalizing the
weights to sum up to 1. Since 7 is single-switch, so is 7. Hence,
Anscombe’s paradox occurs in a single-switch instance, contradict-
ing Lemma 16. o

B.2 Recognizing Single-Switch Profiles

In this section, we first prove Lemma 5, restated below for conve-
nience. Then, we delve into the task of recognizing single-switch-no-
flips profiles, providing an ample guided discussion of the relation
between our simpler O(nt) algorithm and related work, including
the task of recognizing single-crossing preferences. As a bonus,

we discuss a simpler and, at the same time, more efficient algo-
rithm for recognizing single-crossing preferences, running in time

O(nt+/logn).

Lemma 5. Consider a profile P admitting an SSW presentation P’ =
(c1,-..,¢). Then, P = (ca, ..., C1) is also a SSW presentation
of P. Furthermore, any t (circularly) consecutive columns in P"" :=
(c1...5¢t, €15 ..., Cr) form an SSW presentation of P.

Proor. It is enough to show this for the case where  hasn =1
rows, in which case ¢y,...,¢c; € B. Let us assume ¢; = 1, as the
other case is analogous. Since P’ is an SSW presentation of P, let
1 < k <t be such that P’ starts with k ones and the rest are —1’s.
As a result, P/ by definition starts with k — 1 ones, and the rest are
—1’s, implying that #; is an SSW presentation of #’, and hence
also of P by transitivity.

To get the part about P/, apply the previous reasoning for P, re-
peatedly, each time taking the first column, negating it, and moving
it to the end. Doing so 2t times leads back to the original pre-
sentation, and along the way, we get the advertised single-switch
presentations. O

Recognizing single-switch-no-flips profiles. We now focus
on deciding whether a given preference profile P is single-switch-
no-flips. A first way to do so requires rather involved machinery,
by reducing to the Consecutive Ones Problem (C1P). In the C1P
problem, the input is an n X t matrix with +1 entries. The goal
is to permute its columns so that the ones on each row form a
consecutive interval. Solving C1P on a matrix with a negated copy
of itself appended underneath corresponds to requiring a solution
for the original matrix where not only ones are consecutive, but
also —1’s, meaning that ones form a prefix or a suffix on each row.
C1P can be solved in O(nt) time [5], hence giving an immediate
solution to check whether % is single-switch-no-flips within the
same time. However, linear-time C1P solvers are complicated and
notoriously error-prone: most available implementations fail on
at least some edge cases [17]. Moreover, reducing to C1P does not
utilize the additional structure present in our problem and hence
does not shed light on the structure of all solutions, as we set
out to do. We note that this way of checking whether a profile
is single-switch-no-flips has previously appeared in [15], where
the authors use it to solve the equivalent problem of recognizing
voter/candidate-extremal-interval preferences.

A second way to recognize single-switch-no-flips profiles re-
duces to the problem of recognizing single-crossing preferences. In
this problem, the input consists of a set A, of size denoted by n, and
alist (>1,...,>;) of linear orders over A. The goal is to permute
this list to obtain a new list (~/,...,>}) such that for any a,a’ € A
with a # a’ the set {j € [t] : a >} a’} forms a prefix or a suffix.
The reduction is not too difficult: start with a preference profile
and define A = Uje[n) {a?, a;}andalist (-1, ..., >;) of linear orders
over A as follows. For each j € [¢t], order ~; ranks the elements in
Aas{d},al} >»; {aS, a3} >; ... >; {a), a;.}, breaking the tie inside
each bracket as follows: for each i € [n], rank a(l.) > a} ifo;j =1,
and a] >; a otherwise. One can check that permutations of the
list with the required property correspond to permutations of the
columns of P such that the ones on each row form a prefix or a
suffix. Recognizing single-crossing preferences can be achieved in



O(ntlogn)) time [16, Algorithm 4], meaning that our problem also
can. In contrast to the C1P approach, this algorithm has a reason-
able implementation. Moreover, by the standard fact that, when it
exists, the single-crossing permutation is unique up to reversal, we
get that the SSWNF presentation is unique up to reversal whenever
it exists (we will give a self-contained proof later on, so we omit
the details here for brevity).

The previous approach can be modified to run in time O(nt)
by identifying and adapting its super-linear components. Most
prominently, [16, Algorithm 4] computes O(t) times the Kendall
Tau distance between certain orders >; and >~ ; with i, j € [¢], which
is defined as the number of pairs of elements on which ; and >;
disagree: dgr (>, >;) := {(a,a’) € A% 1 a >; @’ and @’ >; a}|. This
is done in time O(nlogn) by finding the number of inversions
of a permutation. However, for our particular construction of the
orders (>1,...,>), disagreements between orders can only occur
on pairs of the form (ag, a}c) with k € [n], and the number of such
disagreements is precisely the Hamming distance dy (c;, ¢;), which
can be computed in time O(n). The algorithm also sorts a list of
O(t) integers with values bounded by O(n?). To get the right time
complexity, this is done depending on whether n or t is larger,
either in time O(t log t) or using Counting Sort in time O(n? + t).
We note that using Radix Sort would have sufficed to make this
O(n + t) without the need for a case distinction.” For our usage,
the values in the list are instead bounded by O(n), so Counting
Sort suffices directly (this is because Kendall Tau distances can be
quadratic in n, while Hamming distances only linear in n). This
completes the required modifications. We note, moreover, that their
algorithm proceeds in two stages: first, a candidate list (>1,...,>})
is determined, and then it is checked whether it satisfies the single-
crossing condition. Moreover, should a solution exist, the candidate
list is the unique one up to reversing the list. The second stage is,
perhaps surprisingly, the more difficult one to achieve efficiently,
and its correctness proof is the subtler part of the argument. For our
purposes, however, the first stage suffices since, given the candidate
solution, it is easy to check whether ones on each row form a prefix
or a suffix in additional time O(nt).

It is possible to give a self-contained O(nt) algorithm for our
problem following the outline above (without going through the
reduction to single-crossing preferences). However, the resulting
algorithm is still arguably not the simplest. Instead, in the following
we present a simpler, O(nt) direct algorithm for recognizing single-
switch-no-flips profiles = (cy, .. ., ¢;). The algorithm combines
insights from [16, Section 4.2] with a simple new observation. We
defer further elaboration on the connection with single-crossing
preferences until the end of the section for clarity. Our algorithm
proceeds as follows: First, find an index x maximizing dg(c1, cx)-
Then, sort (using Counting Sort) the columns based on their Ham-
ming distance from c, to get a profile #* = (cy,...,c;) where
dp(cx,c;) < dp(ex,ci,,) fori € [t —1] (ie, ties in Hamming dis-
tance can be broken arbitrarily). We claim that either #’ is the
unique SSWNF presentation of # (up to reversing the order of the

"With this small modification, and if counting inversions is performed with the
O(n+/log n) algorithm of [12], single-crossing preferences can be recognized in the
better time O(nt+/logn). We do not give the details here in order not to dilute the

message. Instead, we discuss a simpler O(nt+/logn) algorithm at the end of the
section based on similar ideas.

columns), or there is no such presentation. The algorithm runs in
O(nt) time. We prove all required claims in the following theorem:

Theorem 7. There is a simple O(nt) algorithm computing (or decid-
ing the inexistence of ) an SSWNF presentation of a profile P. Moreover,
if it exists, this presentation is unique up to reversing column order.

Proor. We first repeat the full algorithm briefly:
(1) Say P =(c1,...,¢);

(2) Find an index x maximizing dg(cy, cx);

(3) Sort (using Counting Sort) the columns based on their Ham-
ming distance from c, to get a profile P’ = (ci,...,c;)
where dp(cx, ¢}) < dy(cx, ¢, ) fori e [t —1];

(4) Check whether ones form a prefix or a suffix on each row
of P’. If yes, return P’, else return “not single-switch-no-
flips”

Each step of the algorithm runs in time O(nt), so it attains the
required time-bound. It remains to show that: (i) if no solution
exists, then this is correctly reported; (ii) if * = (c,...,c;) is
an arbitrary SSWNF presentation of P, then the algorithm returns
either P* or its reverse (which note further implies that the solution
is unique up to reversal). Part (i) follows immediately from the last
step in the algorithm. To show part (ii), we will need an auxiliary
claim:

Claim 18. Assumel1 <i < j <k <t, then dH(c;.*,cj.) <du(c,cp)
with equality lﬁ”c}‘ = ¢} Similarly, du(cj, c}) < dH(c}'f, cy) with
equality iff ¢; = c.

Proor. We will only prove the first part, as the second follows
analogously. First, observe that for any u,uv € B" we can write
dy(u,0) = Y7 I(ue # ve). Hence, it suffices to show that for each
1 < ¢ < nwe have I(cj, # c;]l,) < e, # cz’t,) and then sum up
those inequalities. This amounts to showing that ¢j, # ¢}, =
c;"[ :
that on row ¢ of P* columns i < j < k read either +1, -1, +1
or —1,+1, -1, which either way means that ones do not form a
prefix or a suffix on this row, contradicting that £* is an SSWNF
presentation of P. To get the equality case, note that we have shown
du(c;, c;) < du(c], ¢p) by summing inequalities, so equality occurs
iff all summed inequalities are tight; i.e., for all 1 < £ < n we have
Ic;, # cjp) = ci, # c;;t,), which amounts to ¢, # ¢}, <
CZ[ #Cpp and in turn to cz[ = c}f’[ = ¢, = C;te’ which holds iff
¢j¢ =y, As aresult, equality occurs iff for all 1 < ¢ < n we have

* .k % * .
# ¢, Assume the contrary: Che = Cie # Cipe This means

* % s * ok
Cip = Cppie, i =cp. [m]

Armed as such, we can show that the column ¢, maximizing
dp(cy, ¢x) found by the algorithm satisfies ¢x € {c],c;}. To see
this, let y be such that ¢; = ¢}, then any column c, that maxi-
mizes dp(c1, ¢x) equals a column ¢ that maximizes dy (cy, c7). By
Claim 18, it follows that c; € {c],c;}, so cx € {c], ¢/ }.

In the following, we will show that if ¢, = c], then the out-
put of the algorithm is £’ = P*, and if ¢, = ¢}, then P’ =
the reverse of $*, completing the proof.

The equality parts of Claim 18 give that two columns in £* have
the same Hamming distance from cj (or ¢;), if and only if they are



equal. Since ¢, € {c], c;}, this means that two columns in # have
the same Hamming distance from c, if and only if they are equal.®

The algorithm constructs £’ by ordering the columns of  in
non-decreasing order of Hamming distance from c,. By the previ-
ous, equal Hamming distances correspond to identical columns, so
P’ as defined by us to satisfy dp(cx, ¢}) < dp(cx, ¢}, ;) fori € [t—1]
is actually unique no matter the tie-breaking for equal distances.’

Ifcy = ¢}, notethat (c},...,c;) = (c},...,c;) satisfles dy (cy, ¢}) <
dp (e, c},,) for i € [t — 1]. By the uniqueness of (c],...,c;), this
means that (c}, ..., c;) is the output of our algorithm, i.e., P’ = P*.

If ¢y = c}, the reasoning is analogous, leading to ’ = the reverse
of P*. o

Better recognition for single-crossing preferences. Our
O(nt) algorithm for recognizing single-switch-no-flips profiles can
be easily modified to recognize single-crossing preferences: Con-
sider an input consisting of a set A and a list (>4, ..., >;) of linear
orders over A. First, find an index x maximizing dg7(>1, >x). Then,
sort (using Radix Sort) the list according to the Kendall Tau distance
from > to getalist (>, ..., >}) where dxr (>x, >7) < dir(>x, >y,
) for i € [t — 1] (i.e., ties can be broken arbitrarily). The resulting
list is either the unique permutation of the input list witnessing
the single-crossing property (up to reversal), or there is no such
permutation. After identifying this candidate solution, one checks
whether the single-crossing property is satisfied using the second
stage of [16, Algorithm 4], namely [16, Algorithm 2]: the solution
is valid if and only if dxr (-1, =}) + dxr (%, =},,) = dxr (51, >14p)
for all 2 < i < t. If the O(n+/logn) algorithm of [12] is used for
counting permutation inversions, the previous yields a simpler, and
at the same time, more efficient algorithm for recognizing single-
crossing preferences, running in time O(nt+/logn). The proof of
correctness of this algorithm follows the same outline as the proof
of Theorem 7.1 We also note that our algorithm is, in fact, a more
efficient implementation of [16, Algorithm 3]. The latter tries all
O(t) options for >~ and, for each one, sorts by Kendall Tau distance
from ~] to get a candidate solution, which is then verified as in
our case using [16, Algorithm 2]. Our improvement was to notice
that ~] can be determined efficiently without trying out all options
for it, hence removing a linear factor from the time complexity. In
contrast, instead of efficiently determining >7, [16, Algorithm 4]
takes a more intricate approach.

Theorem 19. Single-crossing preferences can be recognized in time
O(nt+/logn), including producing a witnessing permutation for yes-
instances (which is the unique solution up to reversal).

B.3 Forbidden Subprofiles Characterization of
Single-Switch Preferences

In this section, we prove Theorem 9, which establishes the forbidden
subprofiles characterization of single-switch profiles. Afterward,

8Note that this hinges on our assumption that ? admits P* as an SSWNF presentation
(and would be false in general).

9Fact which again is only true because in this part of the proof we assumed that P is
single-switch-no-flips.

19This is no accident: one can reduce from recognizing single-crossing preferences
to recognizing single-switch-no-flips profiles by introducing a voter for each pair
of distinct elements in A. This incurs a quadratic computational cost but suffices to
recover correctness.

we give further details about how our recognition algorithm for
single-crossing preferences in Theorem 19 can be bootstrapped to
also produce a forbidden subinstance without sacrificing runtime,
similarly to the proof of Theorem 10.

To begin with proving Theorem 9, a profile P is single-switch
if and only if P’ is single-switch-no-flips, where #’ is the profile
obtained from % by flipping columns so that the first row is all
—1’s. As a result, it suffices to understand how short proofs of non-
membership look for the class of single-switch-no-flips preferences.
To this end, [36] considered the profiles:

1+ -1 - o

P = P =1-1 +1 -1
#1001+

1=

and showed that P’ is single-switch-no-flips if and only if it does
not contain as subprofiles $;, P, and the profiles obtainable from
them by flipping any subset of rows. In total, one can check that
this leads to 5 non-equivalent profiles #;, ..., Ps, where Py, P,
are the ones above and P,4; for 1 < i < 3 is P, with the first i
rows flipped. The original presentation lists the 5 profiles explicitly,
but since both single-switch and single-switch-no-flips preferences
are closed under flipping rows, we find our account cleaner. For
the interested reader, we note that the result of [36] can also be
recovered from [9], where it is shown that non-membership to
the class of single-crossing preferences is always witnessed by
one of two small subinstances (this can be done using as a lens the
reduction to single-crossing preferences recognition in Section B.2).

Lemma 20. A profile P is single-switch if and only if P’ does not
contain as a subprofile any of P1, ..., Ps. Here P’ denotes the profile
obtained from P by flipping columns so that the first row is all —1°s.

This already gives short proofs for non-membership, but for our
purposes, we would like a characterization in terms of the subpro-
files of P, not of ’. This can be easily achieved given the previous:
consider a non-single-switch profile £, then, by the previous, #’
contains one of Py, ..., Ps, say P;. Note that P; has no row that
is all —1’s, so P; is, in fact, a subprofile of ' without its first row
(which is all —1’s). As a result, if we define #/ to be #; with a
row of —1’s appended to the top, then $’ also contains P} as a
subprofile. Given how P’ was obtained from # by flipping a subset
of columns, # contains a version of P with accordingly-flipped
columns. Namely, if we let IT{ be the set of profiles that can be ob-
tained from #;* by flipping any subset of columns, then ¥ contains
some X € II{ as a subprofile. Moreover, X is not single-switch, as
X' =P and P{ is not single-switch-no-flips (here X" denotes X
with columns flipped to make its first row all —1’s). As a result, we
get the following:

Lemma 21. A profile P is single-switch if and only if it contains no
profile X € UL_ TI¢ as a subprofile.

This result can be compressed into a more elegant form by lever-
aging the closure of single-switch preferences under flipping rows
and columns and the way Ps, ..., Ps were obtained from $;, as
follows, which is precisely Theorem 9, restated below for conve-
nience:

Theorem 9. A profile P is single-switch if and only if it does not
contain as a subprofile P}, Py and any profile that can be obtained



from them by flipping rows and columns:

Pr=1+1 +1 =1 =1 Pi=|_

Finding forbidden subinstances of single-crossing prefer-
ences. Our idea to use a fast black-box recognition algorithm to
bootstrap a fast algorithm for finding a forbidden subprofile extends
beyond our usage for single-switch preferences in Theorem 10. The
same idea can be used for the class of single-crossing preferences,
where non-membership to the class is witnessed by one of two
small forbidden subinstances with (t,n) € {(4,4), (3,6)}, as shown
in [9]. Given our O(nt+/log n) recognition algorithm in Theorem 19,
we can apply very similar reasoning to the proof of Theorem 10
(except now we need to split into 6 + 1 = 7 groups) to get the
following result, which, to the best of our knowledge, is new, even
if we were to replace our improved time bound with that of the
previously-known fastest algorithm, namely [16, Algorithm 4]:

Theorem 22. Given a no-instance of the problem of recognizing
single-crossing preferences, a forbidden subinstance can be determined

in time O(nt+/logn).

C ANSCOMBE’S PARADOX
C.1 External Weights

This section of the appendix centers on Theorem 11. In Section C.1.1,
we formalize the definition of relevant topics and discuss how to
determine the set of relevant topics for a given instance 7 = (P, w)
efficiently. Section C.1.2 then proves Theorem 11. Throughout this
section of the appendix, we use the notation w(S) = 3 ;cs w; for
any S C [t].

C.1.1  Relevant Topics. A subset of the topics, T C [¢], is a minimal
topic group under weight vector w if w(T) > % and forall j € T we
have that w(T \ {j}) < % Then we call a topic j € [t] a relevant
topic under w if it is in some minimal topic group under w. We
denote the set of all relevant topics under w as R,,.

In proving Theorem 28 (see Section C.1.2), we define B,, =
{p € B": (p,prwm)w > 0} and select a proposal from it uni-
formly at random. Note that we can equivalently write B,, = {p €
B’: dy(p, prwm, w) < 1/2}. We then claim that the only topics
Jj € [t] such that Pr(p; = (prwm);) — Pr(p; # (prwm);) > 0 are
relevant topics. We prove this claim below.

Claim 23. For p selected uniformly at random from Bp,, Pr(p; =
(prwm)j) > 3 if and only if j € R,,.

Proor. Fix some j € [t]. We denote the number of proposals
with +(prwm); for j and —(prwm); for j in B, by Ny, N_ respec-
tively.

(<) Assume j € R,,. Consider the bijection g : B/ — B’ that
flips the jth entry of the proposal. If dg (p, prwm, w) < 1/2—w; and
pj = (prwm)j thenp € By, and sois g(p), so these cancel each other
out when comparing N, — N_. Note too that if p; = —(prwm); and

p € B, then certainly g(p) is as well. So we only have to consider
the case where p = (prwm);, p € Bp butdp (p, prwm, w) > 1/2—wj.
We know such a case must exist because j € R,,. So, this means j is
in some minimal topic group, T. Let p be the proposal where all top-
ics in T are set to their value in prya, and all remaining topics are
set to their value in —pyyyp. By definition of minimal topic group, we
have that w(T) < 1/2+wj,sodg(p, prwm, w) = 1-w(T) > 1/2—w;.
Then dy(q(p), prwm, w) = 1/2, so q(p) ¢ Bp. So we have that
N, > N_.Hence Pr(p; = (prwm);) > 1/2.

(=) Assume Pr(p; = ((prwm);) > 1/2. Weknow thatall p € By,
with p; = —(prwm); have q(p) € B, so this means there must
exist some p ¢ By, with p; = —(prwum); such that g(p) € Bp,. Find
the p with the fewest indices agreeing with pryy such that this
holds. Then the set of topics that q(p) agrees with pryp on forms
a minimal topic group for w. To see this, let T be the set of topics
that q(p) agrees with pywy on. We know that w(T) > 1/2 and
w(T \ {j}) < 1/2 because p ¢ By,,q(p) € B,. Take any other
k € T,k # j. Assume for sake of contradiction that W(T \ k) > 1/2.
Then we could have taken p’ ¢ B,, to be equal to p at all indices
except flipped for k. Then p’ ¢ By, and q(p’) € By, but p’ has
one fewer index agreeing with pryy than p. This contradicts the
minimality in our selection of p. Hence T is a valid minimal topic
group, and thus j € R,,. O

As Theorem 11 shows, relevant topics are useful for determining
whether a proposal with majority support and with weighted agree-
ment of > 1/2 with the issue-wise majority exists. How, then can
we discern whether specific topics are relevant? This is essentially
equivalent to determining whether or not a voter is a dummy voter
in a weighted majority game. While this can be shown to be NP-
hard with respect to general input w [31], we have the constraint
that all elements of w are bounded in [0, 1]. We say that w has poly-
nomial precision if all of its elements can be expressed as rational
numbers with a common denominator that is polynomial in n and
t. If additionally we assume that w has polynomial precision then
we can give a polynomial time algorithm for determining the set of
relevant topics. In order to do this we show the following claim:

Claim 24 (Relevance Monotonicity). Being a relevant topic is a
monotonic property with respect to topic weight.

Proor. Fix topics i, j such that w; > w;. We want to show that
if i is a relevant topic then j is also a relevant topic. Assume i is
relevant, then there exists some S C [¢] \ {i} such that w(S) < 1/2
but w(S U {i}) > 1/2. We have two cases:

(1) j ¢ S. In this case we can reuse S as proof of j’s relevance.
We have that w(S) < 1/2and w(SU {j}) = w(S) + w(j) >
w(S) +w(i) =w(SU {i}) > 1/2.
(2) j € S.Inthis case we define S" = (S\{j})U{i} (we just swap
in i for j). Then we have that w(S’") = w(S) —w(j) +w(i) <
w(S) < 1/2. We also can see that w(S’U{j}) = w(SU{i}) >
1/2.
Therefore, we have shown that if i is relevant, then j is also relevant.

This is equivalent to saying that if j is irrelevant, i is irrelevant as
well. O



Claim 24 implies that there is a “lowest weight relevant topic”
such that all topics with weight less than it are irrelevant, and
all topics with greater weight must be relevant. In order to find
the lowest weight relevant topic we can run binary search over
the topics sorted by weight. For each topic choice j, we can run
knapsack on the remaining topics to look for a set such that % -
w; < w(S) < 1/2 as proof of its relevance. Assuming that all
weights are integral, which we can achieve by temporarily scaling
all of the weights and the respective bounds up, then there is an
exact algorithm for knapsack that runs in polynomial time with
respect to |w| = t and the max weight item. As we only have
to scale up the weights a polynomial factor with respect to nt
(due to our assumption on their precision), the max weight item is
also polynomial in nt. Therefore, the whole algorithm together is
polynomial in nt. As any preference profile input has size at least
n X t (just considering number of entries), this is a polynomial size
operation with respect to the size of our overall problem input.

C.1.2  Existence of Representative Non-Losing Proposals in the Exter-
nal Weights Setting. In this section, we prove Theorem 11, restated
here:

Theorem 11. For any I = (P, w) and prwu, there is a weakly ma-
Jjority supported proposal p with dg (p, prwm, w) < 1/2. If majority
is strict in any relevant topic, “weak” can be replaced with “strict”.

At a high level, our proof structure is the following (the same
structure as used in [13]): For every voter, we define two bijective
relations between proposals. Then, we piece these together to con-
struct a third relation that “swaps” a proposal’s weighted similarity
to the voter with its weighted similarity to prwu. We then define
two quantities that we take the expectation of. One can easily be
shown to be non-negative, and we use the defined relations for
each voter to show the equality of these expectations. The non-
negativity of the second expectation then implies the existence of a
majority-supported proposal, p € B, with dy (prwm, p, w) < 1/2.

C.1.3  Structure-Preserving Maps. We define three different pro-
posal transformations for each given voter. Fix some voter v and
let B C B! be the set of proposals p such that (pywum, p)w # 0 and
(v, p)w # 0. We partition proposals in B* into four categories: T; ;
where i, j € {-1,+1}andi = sgn({p, prwm)w) and j = sgn({v, p)).
We construct the following “mask” for use in our transformations:
v O prwm Where © is the elementwise (Hadamard) product. This
mask has +1 for topics on which v and prwam agree, and —1 for
topics on which they disagree. Then we define two transformations
., fy : B* — B" as follows:

L5(p) =p© (o pwm), fy (p)=p0©—(00pwm)

fF flips a proposal on indices where v and prwum disagree, while
f, flips a proposal on indices where v and pry agree. Note that
the Hadamard product is commutative and for any vector m €
B!, m ® m = 1. Additionally, for any vectors a, b, c € B! we have
that (a,b © ¢),, = (a © b, c),,. From the first two properties, we
can immediately see that f;*, f,~ are both self-inverse and hence
bijective.

Lemma 25. f;" maps proposals of type T; ; to proposals of type T; ;
fori, j € {0, 1}. Moreover, for any p € B* we have that (v, f;} (p))w =
(P, prwm)w-

Proor. Fix some p € B*. Then:

(0, £ (P))w = (0. p ©0 O prwmdw = (v © p © v, prvm)
={p, PrwM)w

As ff(p) € B*, using the shown equality with one more ap-
plication of f;" and the fact that f;} is self-inverse gives us that
(D), Prwathow = (0 £ (5 ()))os = (0, p)v. Hence, applying f:F
has the effect of swapping a proposal’s weighted agreement with v
with its weighted agreement with prwa. Therefore, f; maps T; ; to
Tj’,‘. m]

Lemma 26. f,~ maps proposals of type T;; to proposals of type
T(—j),(~i) fori, j € {=1,+1}. Foranyp € B* we have that (v, f; (p))w =
—(prwm, P)w-

Proor. Fix some p € B*. Then:

<U’ﬁ;(p)>w = <U>P © —(ZI QPIWM)>W = <U Opo _U)pIWM>w
=—(p, prwm)w

Then again, as f, (p) € B*, using the shown equality with one
more application of f;~ and the fact that its self-inverse gives us
that —(f;” (p), prwm)w = (0. fy (fy (P)))w = (v, p)w. Hence we
have that f~ swaps and negates a proposal’s weights agreement
with v with its weighted agreement with pryy. Therefore it indeed
maps T; j to T(—j) (-i)- O

Now we combine our two bijective maps into a single map
fo: B — B* defined as follows:

fF(p) ifpisoftype T_q_1 or Tiy 41

flp) =y 0
f, (p) ifpisoftype T_q4q or Tyq—4

It follows from f;} and f, being self-inverse and Lemmas 25 and 26
that f, is also self-inverse.

Corollary 27. f, maps proposals of type T; j to proposals of type
T;,;. For any proposal p of type T_1 1 or Ty141 we have (v, fo(p))w =
{p, prwm)w and for any proposal p of type T_1,+1 or T1,—1 we have
that <U’ﬁI(P)>w = —<P’PIWM>W-

Proor. This follows directly from the definition of f, as well as
Lemmas 25 and 26. m]

C.1.4  Thought Experiments. Now we will detail our two quantities
of interest through two thought experiments and show that their
expectations are equivalent and non-negative. We define a subset
of B! denoted as B, = {p € B': (p, prwm)w > 0}. Equivalently, for
all p € By, dy(p, prwm, w) < 1/2. As w is externally fixed, this is
some known set. We also note that the number of +1s minus the
number of -1s for a given topic j in the preference profile can be
written as n - mj — n(1 —m;) = n(2m; — 1). Finally, let R,, be the
set of all relevant topics under weight vector w (for a discussion of
relevant topics, see Section C.1.1).

Thought Experiment 1. Our first thought experiment keeps a
global counter X initialized to 0 and samples a proposal p € By,
uniformly at random. For each voter i € [n], we add (v;, p). to X
— equivalently, for each voter we go topic by topic and add w; to X



for each topic j voter i agrees with p on, and subtract w; from X
for each topic j voter i disagrees with p on.

Theorem 28. E[X] > 0. If there exists some j € R,, such that
mj > 0.5 then E[X] > 0.

Proor. We can write X in terms of variables Xj ; that take on 1
ifv;; = p;j and -1 otherwise as X = Y1, 2§-=1 w;X; j. Then we can
evaluate E[X] more easily:

n t n
E[X] ZZZWJE[Xl’j] ZZWJ E[Xl,]]
i=1 j=1 j=1 =t
11
= > wj-n(2m; —1)(Pr(p; = +1) - Pr(p; = -1))
j=1
We arrive at the last line because if p; = +1 then Y7 X;; =
2ieln]: o=+ 1F Yieln]: o =11 = n(2m; — 1) and similarly if
pj = —1then Y., X;; = —n(2m; — 1). Note that we can rewrite
the sum with only the terms where there is a strict majority of +1
(so mj > 0.5), because all terms where m; = 0.5 evaluate to 0:

> win(2m; = 1)(Pr(p; = +1) — Pr(p; = -1))
s
> win(@m; = )(Pr(p; = (prwm);) = Pr(p; # (prwm);))

jelt]
m;>0.5

E[X]

We arrive at the last line by noting that for all j with m; > 0.5,
(prwm); must be +1 as it is the unique majority for that issue.

Now we observe that Pr(p; = (prwm);) = Pr(p; # (prwm);)
for all j € [¢t]. Fix some j € [t]. Then for any p € B, such that
pj # (prwm)j, we know that there exists a p’ € B, that matches
p on all entries except j, where p; = (prwm);. p’ is indeed in By,
because (p’, prwm)w = (P, Prwm)w + 2w; > 1/2. Note that this
mapping from p to p’ is injective, so we have that there are at
least as many proposals in By, with a (prwa); for issue j as there
are with a —(prwm) ;. Hence, when selecting a proposal from B,
uniformly at random, the probability that it has a (prwum); for issue
J is at least the probability that it has a —(prwum);-

We also claim that Pr(p; = (prwm);) > Pr(p; # (prwm);) if
and only if j € R,,. To see a proof of this claim, please refer to
Section C.1.1 Claim 23. Therefore, we know that for all j ¢ R,,,
Pr(p; = (prwm);) — Pr(p; # (prwm);) = 0. Then we can rewrite
our expectation only in terms of the relevant topics:

D win(2m; = 1)(Pr(ps = (prwm);) = Pr(p; # (prwm),))

JE€Rw
m;>0.5

E[X] =

For any relevant topic j, w; is strictly positive (otherwise j would
not be in a minimal topic group) and as just mentioned Pr(p; =
(prwm) ;) —Pr(p; # (prwm);) is strictly positive as well. n(2m; —1)
must be positive in all of our terms because we only consider j € R,,
such that m; > 0.5. Therefore, every term in the sum is positive. If
no relevant topic has m; > 0.5 then E[X] = 0. Otherwise, we have
that there exists at least one term left in the sum, and E[X] > 0. O

Thought Experiment 2. For our second thought experiment we
again sample p € B, uniformly at random and maintain a global
counter Y initialized to 0. Each voter i compares v; with p. If they

approve of p then they add (p, prwm)w to Y, and if they disapprove
of p then they subtract (p, prwm)w from Y. If they are neutral (so
dp (vi, p, w) = 1/2) then they leave Y unchanged.

Theorem 29. E[X] =E[Y]

Proor. First we write Y = 3¢, ¥i where Y; is (p, prwm)w
if voter i approves of p, —(p, prwm)w if voter i disapproves of p,
and 0 if voter i is neutral. Then E[Y] = };c[,) E[Y:] by linearity
of expectation. From the first thought experiment, we have that
E[X] = Xiern] E[{vi, p)w] by definition of X. Hence, to show that
E[X] = E[Y], it suffices to show that for all i € [n] we have that
E[Yi] = E[ (05, ph]-

Fix some voter i € [n]. Let By and B_ be the sets of proposals in
B, that voter i approves of and disapproves of, respectively. Note
that if i is neutral about By, then (v;, p),, = 0. Then we have that:

E[(05 phw] = Bl ™ > (0 phus

PEBm
= 1Bl | D) 0 pdw+ D @)
PEB+ pEB-

Then, because f;, is self-inverse, we can write:

E[(05, pwl = Bl ™[ D €00 for Fos D))+ Y (0, for (for (D))

peBy pEB_

= 1Bl ™| D" for () prwmdw = D (For (p), prwa)w

PEB+ peB-

In the last line we use the fact that for p € B,, p € Ty +1 because
P € By, 5o {p, prwm)w > 0 and p € B, implies that (vj, p),, > 0.
By Corollary 27, we know that f,, (p) is then also in T,y 41, and
hence that (v;, fo, (fo; (P)))w = (fo; (), Prwar)w. Similarly, we have
that for p € B_, p € Ty1 1 because p € By, so {p, prwm)w > 0 and
p € B_ implies that (v;, p),, < 0. Then f,,(p) is also in Tyq 1, so
@5 for (o (P)))w = —(fo (), prwas) - As fo is a bijection on both
B, and B_, summing over a function of f;, (p) for all p € B, (B_) is
equivalent to summing over that function of p for all p € B4 (B-):

E[@ip)w] = [Bal ™| D, (pprwathw = D, (P prwat)u

pPEBy peB-
=E[Y]

Therefore, we have shown that E[X] = E[Y]. O
Finally, we can prove Theorem 11:

Proor. By Theorem 29, we know that E[Y] = E[X], and by
Theorem 28 we have that this quantity is always non-negative and
is strictly positive when in there exists some relevant topic j such
that m; > 0.5. We call this condition the strict majority guarantee.
Then there exists some proposal p € By, such that Y > 0,or Y > 0
if we have the strict majority guarantee.

We now rewrite Y in a way that makes the connection to majority-
supported proposals more explicit. We can write Y = {p, prwm)w -



((# voters supporting p) — (# voters opposing p)). As p € B, we
know that (p, prwm)w > 0. Hence we have that:

Y
(# voters supporting p) — (# voters opposing p) = ———
(p, prwm)
=0

where the inequality is strict if we have the strict majority guar-
antee. As the number of approving voters is at least the number
of disapproving voters, p is weakly majority-supported. With the
strict majority guarantee, Y > 0 so we have that the number of
approving voters is strictly greater than the number of disapproving
voters, and p is strictly majority-supported. O

C.2 Internal Weights: Non-Losing Proposals

In this section of the appendix, we provide proofs and further dis-
cussion of the results presented in Section 5.2. In Section C.2.1 we
provide intuition and proof for our upper bounds on g, in Theo-
rem 12, and in Section C.2.2 we provide proof for our lower bounds
on g, in Theorem 13. Finally in Section C.3 we prove the generalized
Rule of Three-Fourths. Throughout this section of the appendix,
we use the notation that w(S) = 3 ;¢ w; for any S C [¢].

C.2.1 Efficiently Finding Reasonable Non-Losing Proposals in Indi-
vidual Weight Setting. As discussed in the body, for any proposal
p € BY, at least one of p, p is weakly majority-supported. Therefore,
one way to get a simple upper bound on g, is to construct p given
any prwm and take max{dg (p, prwm, W), du (p, prwm, w) }. Hence,
to get a tighter upper bound, we would like to construct p such that
this quantity is small. As dy (p, prwm, W) = 1=dg (p, prwm, w), this
problem corresponds to the partition problem, because we want
to partition the topics into two sets such that their average weight
sums are as close as possible. We formalize this intuition below.

Theorem 12. We have the following upper bounds on g,:

o Ift e (0,1/3), theng, < 1/2 +¢/2;

o Ift e [1/3,1/2], theng, <1—¢;

o Ift € (1/2,1), theng, < ¢.
In each case, we can compute a weakly majority-supported proposal
p with dg (p, prwm, W) at most the given bound in polynomial time.

Proor. Fix some instance 7 = (P, W) with average weight
vector Way. We will case on w4, and construct a subset of topics,
T, for later use in creating the proposal complement pair of interest.

o If Wnax € (0,1/3), construct a set S C [t] by starting with
S = [t] and then removing topics until we cannot remove
anymore without the total weight going below 1/2. We
know that w(S) < 1/2 + Wy, as otherwise we could
remove another topic without the weight dipping below
1/2 (as all topics have weight at most Wpgayx). If w(S) <
1/2 + Wiax/2 then let T = S. Otherwise, we have that
w(S) > 1/2 + Wiy /2. Take any topic j € S and let §” :=
S\ {j}and " = [t] \ §’. Then w(S") = w(S) — w; and
w(S8”) =t — w(S’). By construction of S we know that
w(S’) < 1/2. We can also lower bound it by using our
lower bound on w(S) and upper bounding w; by Wpax:
w(S") 2 1/2 4+ Wmax/2 = Wimax = 1/2 — Winax /2. Then we
have that w(S”) > 1/2 and w(S”") < 1/2 + Wpax /2. Then
let T = S”. Hence, in all cases 1/2 < w(T) < 1/2 + Wipax /2.

o If Wiax € [1/3,1/2],let T = [t] \ {jmax} Where jmax € [1]
is the index of some maximum weight topic. Then 1/2 <
"NV(T) =1- ﬁ’max-

o If Wpax € (1/2,1) thenlet T = {jiqx}. Then 1/2 < w(T) =

wma}v
We construct a proposal p as follows: for all j € T, set p; =
(prwm)j, and for all j € [t] \ T set p; = —(prwm);. Then we

have that p agrees with pryar on all topics in T and disagrees
with prwam on all other topics. Then dy (p, prwm, w) = 1 — w(T)
and dy (p, prwm, w) = w(T). We know that at least one of these is
weakly majority-supported. Hence,
min du (p, prwm, w) < max{w(T),1 - w(T)}
p weakly majority-supported

= w(T)

We arrive at the second line because w(T) > 1/2. This bound holds
for any selection of 7 with the same maximum average weight
and for any selection of pryy for 7. Hence, gy, < w(T), which
gives us the desired bounds. Additionally, either p or p are weakly
majority-supported and have the desired distance from pry . De-
termining T, constructing p, p, and checking their support takes
time O(nt) altogether. ]

We note that if one wants to find a weakly majority-supported
proposal with distance as close as possible to 1/2 from a designated
prwm using the proposal complement pair technique, this can also
be done in polynomial time with an additional assumption on the
average weight vector. Specifically, we assume that W has polyno-
mial precision, so all of its elements can be expressed as rational
numbers with a common denominator that is polynomial in n and
t. We first scale up all elements of w by the common denominator,
so that they are all integers. By our assumption, we know that
their scaled-up counterparts are polynomial in n and ¢. We then
use the standard reduction from partition to knapsack and run the
pseudo-polynomial DP for knapsack. Finally, we check which one
of p or p (or both) has weak majority support.

C.2.2  Arbitrarily Low Agreement with the IWM. We provide the
full proof for Theorem 13 here:

Theorem 13. The following lower bounds for g, hold:
o Ift =1/(2k + 1) withk € Zs, theng, > 1/2 + £/2;
o Ifte(1/2,1), theng, > ¢.

Proor. We will actually show something slightly stronger than
just upper bounding g, in this proof. In both ranges of ¢, our con-
structions will be such that 1 is the unique IWM for the instance.
Hence, the fact that any non-losing proposal is far away from 1 not
only implies the bound on g,, it also implies that there are instances
where any non-losing proposal is far away from any IWM for that
instance.

Small ¢. Fix some k € N* and let £ = 1/(2k + 1). We illustrate
the construction below for k = 1 for clarity and then describe the
generalization to larger k.

5% (-1 +1 +1 5%x(3/5 1/5 1/5
x|+ -1+ _5x|1/5 3/5 1/5
7)_5>< +1 +1 -1 (W_SX 1/5 1/5 3/5

4X[+1 +1  +1 4x(1/3 1/3 1/3



The generalization is as follows: we have t = 2k + 1 topics and
t + 1 types of voters. Denote type i’s preference and weight vectors
as o' and w' respectively. There are 2t — 1 copies of each of the
first t types, and t + 1 copies of the last type of voter. The voters of
type t + 1 prefer the all-ones vector and consider all issues to be
equally important: 0'*! = +1 and w*! = (1/t,1/¢,...,1/t). Voters
of type i € {1,...,t} are single-issue voters on issue i and prefer
the negative outcome, although they do place some importance on
the other issues:

e ' e
ol = -1 ifi=j N b= ifi=j
J +1 ow. ] - ow

W. 5] OW.

We say that they are single-issue voters because they vote for a
proposal if and only if it agrees with their position on that issue.
Note that by symmetry of the weight matrix, all topics have the
same weight in the average weight vector. As there are t = 2k + 1
topics, w; = 1/(2k + 1) = ¢ for all j € [t]. Therefore, ¢ is indeed
Wmax Of this profile. Additionally, all of the weights are nonnegative,
and every weight vector type sums to 1, as 55 + (t— 1) - 775 = L.

Now we show that +1 is the unique IWM for this preference
and weight profile. For any given topic, the total weight on +1
is(t—1)-(2t-1)- ﬁ +(t+1)- %, and the weight on —1 is
(2t—1)- 55 =t. Wehave that (1 —1)- (2t —1)- 575 + (1 +1) - 1 =
t+ % > t. Therefore, +1 is the strict majority opinion on all topics.

Fix any p € B’ such that dg(p,1,w) < 1/2 + £/2. Given our
construction, this means that at least k + 1 of the 2k + 1 topics
are set to +1 in the proposal. Note that for all i € [¢] such that
pi = +1, all voters of type i vote no on p. As there are at least k + 1
of these indices, we have that at least k + 1 types of voters vote
against p. This corresponds to at least (2¢ — 1) - (k + 1) voters. The
proposal can then get at most all of the remaining votes, which
amount to (2t —1) - k + (¢ + 1) votes. We have that (2t —1)(k+1) =
(2t —1)k+ (2t —=1) > (2t = 1)k + (¢t + 1) because t > 3. Therefore,
p receives strictly more votes against it than for it. Hence, any
non-losing proposal must have distance at least 1/2 + ¢/2 from 1.

Big ¢. Fix some ¢ € (1/2,1). We will construct a preference and
weight profile, P, W, such that Wpex =, 1 is the sole IWM, and
any non-losing proposal p has dy(p, 1, w) > £. Let x € N* be such
that x > max {ﬁ 2[—171 } Note that both of the denominators are
strictly positive because of our bounds on ¢.

_oxx [+ +1] _oxx [Hp o1y
- - - x_ _x_
x+1X|=1 +1 X+1X |70 1-Z7-¢

First we show that all elements of ‘W are in [0, 1]. It suffices just
to show that this is true for the weights on the first issue, as every
row sums to 1 and there are only two issues. More specifically, we
will show all voters place weight in the range (0.5, 1) on the first
topic. First we upper bound:

t(x+1) t
—— <1l = lx+lt<x &= <x(1-t) < ﬁ<x
x _

where the final inequality holds by our definition of x. Additionally,

fx
—— >05 & 2x>x+1 & x>
x+1 2t -1

where again the final inequality holds by our definition of x. Putting
everything together we have that:
4
x < f(x+1) <1
x+1 x

0.5 <

Not only does this confirm that W is a valid weight profile, it also
informs us that both types of voters in this scenario are single issue
voters on the first issue — they vote for a proposal if and only if it
agrees with their preference on the first issue. Additionally, it gives
us that wq = Wpex. We have that

. t(x+1) tx 1
wi=|x ——+(x+1) —
X x+1)2x+1
e+ 1) +0x
T o2x+1

Hence, Wpax = £ as desired.

Next, we show that 1 is the sole IWM for this profile. Clearly
+1 is the unanimous majority opinion for the second topic. For the
first topic, we have that +1 is the unique majority opinion if there
is strictly more total weight on +1 than on —1 for that topic:

.. t(x+1) S

tx
(x+1)- —— < x+1>x
x+1

Therefore, +1 is the strict majority for both issues and as such 1 is
the unique IWM for this profile.

Finally, we claim that any non-losing proposal p must have
p1 = —1. To see this, recall that all voters are single-issue voters on
the first topic. All x + 1 voters with —1 as their preference for the
first topic would vote against p if p; = +1. As they form a majority
of voters, the proposal would lose. Therefore, dg(p, 1, w) > w; = L.

It is also worth noting that this preference profile is single-switch,
but Ostrogorski’s paradox happens: (—1,+1) > (+1,+1). This
instance highlights that the single-switch condition does not help
for the internal weights setting. O

C.3 Internal Weights: Condition Precluding
Anscombe’s Paradox

Here we include the full proof for our generalized Rule of Three-
Fourths, Theorem 14:

Theorem 14. Ifm > 3/4 then Anscombe’s paradox will not occur.
Additionally, if mj > 3/4 for all j € [t] in the external weights
setting, then Ostrogorski’s paradox will not occur.

Proor. Fix an instance 7 = (P, W) in the internal weights
setting such that m > 3/4. Notice if W has identical rows, then this is
equivalent to the external weights setting. We assume without loss
of generality that the IWM proposal we are interested in verifying
gets weak majority support is 1. This is indeed without loss of
generality because if our original prw s has a —1 for some topic, j,
we know that m; = 0.5 (as we assume for all of Section 5 that m; >
0.5, so for —1 to be a majority, the column must be exactly split). We
can then flip all entries in that column of the preference profile —
this is equivalent to having voters express their preferences on the
negated version of the issue. Then (pywam); = +1 as well because
its decision on the negated version of issue j is the opposite of its
former decision. Moreover, the fraction of weight on +1 in that
column is still 0.5. So all issue majorities are unchanged, and hence



the average majority is also unchanged. Therefore, assume pryyar =
1.

We first define a variable Wy;es counting the total weight placed
on +1 in a preference profile, and show that if Wopes > %” then 1 is
weakly majority-supported (hence Anscombe’s paradox does not
occur). Then we will show that Wypes = 1 - 1.

Let Wones := iy 1 — di(v;, 1, w;). We claim that if

o= (2] #1)(3) |5

then 1 is weakly majority-supported. Assume for the sake of con-
tradiction that this is not the case. For any voter i that opposes 1,
we have that d (v;, 1, w;) > 1/2. As 1 is not even weakly majority-
supported, we know that more than half of the voters (at least
Ln/2]+1) oppose 1. The remaining at most n—|n/2]-1 = [ (n—1)/2]
voters still must have a non-negative distance from 1. Hence we
can upper bound Wopes:

Wunes = Z 1- dH(Ui; 1, Wi) + Z 1- dH(Uia 1, Wi)
i€[n] i€[n]
i opposes 1 i supports 1
< Z 1/2 + Z 1
i€[n] i€[n]
i opposes 1 i supports 1
<

n—1
2

(15149 (3)+

Hence, we have that Wones < (| 2] +1) (3) + [ % |, a contra-
diction. We now upper bound the RHS as follows:

n 1 n—1 n 1 n—-1 3n
([—J+1)—+ 5(—+1)—+ ==
2 2 2 2 2 2 4
Hence, if Wypes > %” then our previous condition is satisfied, and
the issue-wise majority is non-losing.

Now we’ll show the claimed relationship between rm and Wopes:

t t n
- . . 1
n-m=n E wim; =n E Wj(_ﬁ) w,;j~1[(v,»,j:+1))

nwj i3
t
= Z Wi * H(Ui,j = +1) = Wones

Therefore we have that Wypes > S’T” = m> %.

To prove the second claim of the theorem, we fix a new instance
I’ = (P, w) in the external weights model such that m; > 3/4 for
all j € [t]. Therefore, 1 is the unique IWM. Assume for sake of
contradiction that Ostrogorski’s paradox occurs, so there is some
proposal p # 1 such that p > 7+ 1. Then we know by Lemma 17 that
there exists a sub-instance 7"’ in which Anscombe’s paradox occurs,
where 7" is obtained by restricting 7’ to some subset of issues
T C [t] and renormalizing the external weight vector. Note that
the majorities on the topics in T are unchanged from the original
profile. Hence, the average majority in 7" is at least 3/4, because
each individual issue majority is at least 3/4. This is a contradiction
to the claim proven above. Therefore, Ostragorski’s paradox does
not occur in 7”'. O
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