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Abstract
This paper presents Banyan, the first rotating leader state
machine replication (SMR) protocol that allows transactions
to be confirmed in just a single round-trip time in the Byzan-
tine fault tolerance (BFT) setting. Based on minimal alter-
ations to the Internet Computer Consensus (ICC) protocol
and with negligible communication overhead, we introduce
a novel dual mode mechanism that enables optimal block
finalization latency in the fast path. Crucially, the modes of
operation are integrated, such that even if the fast path is not
effective, no penalties are incurred. Moreover, our algorithm
maintains the core attributes of the ICC protocol it is based
on, including optimistic responsiveness and rotating leaders
without the necessity for a view-change protocol.

We prove the correctness of our protocol and provide an
open-source implementation of it. Banyan is compared to its
predecessor ICC, as well as other well known BFT protocols,
in a globally distributed wide-area network. Our evaluation
reveals that Banyan reduces latency by up to 30% compared
to state-of-the-art protocols, without requiring additional
security assumptions.

CCS Concepts: •Computer systems organization→Dis-
tributed architectures; • Security and privacy → Dis-

tributed systems security.

Keywords: Consensus, Blockchain, Byzantine fault toler-
ance, Fast Path, State Machine Replication

1 Introduction
Byzantine fault tolerance (BFT) is a class of protocols that
provide guarantees in the presence of arbitrary faults, such
as a powerful adversary controlling both a share of partici-
pants and the network scheduling [46]. BFT protocols can
be applied whenever a fixed (also called permissioned) set
of untrusted parties desires to reach an agreement.
This core primitive has enabled the creation of decen-

tralized protocols that are akin to a world computer, en-
abling anyone to run Turing-complete programs. Various
such world computers exist today [10, 16, 29, 31], with vary-
ing trade-offs regarding performance, security, and inclu-
siveness. At each system’s core, lays an ordering protocol

assuring that resource accesses are consistent across all par-
ticipants (called replicas), thus guaranteeing deterministic
and secure execution of the computation.

Byzantine agreement (BA) protocols typically provide con-
sensus on a single decision, while state machine replication
protocols (SMR) focus on making efficient use of this costly
primitive. In practice, the most widely used consensus proto-
cols (such as Bitcoin [51], Ethereum [16], and Algorand [35])
make use of an elected leader to propose a batch of trans-
actions, called a block. A total order across leaders is then
obtained by chaining blocks.

There are a few considerations that are especially crucial
to such leader-based protocols. Firstly, leaders canmisbehave
and propose conflicting blocks. While this can be detected,
the resulting change of the leader (called view-change in the
literature) leads to notoriously high complexity. Honest, but
slow leaders are just as problematic, as they cannot easily
be called out, but can stall the effective throughput nonethe-
less [24]. Moreover, relying on a single leader leads to uneven
load, both in terms of computation and communication [25],
and might facilitate censorship. Finally, leaders sometimes
extract value from their control of the block creation. On the
Ethereum blockchain, for example, miner-extractable value
(MEV) is a major source of income for replicas and leads
to potentially dangerous incentives to deviate from honest
behavior [26]. These issues can at least partially be resolved
by employing rotating or random leaders [19], which is the
class of protocols we aim to improve upon in this work.
Specifically, we address what we believe to be a major

roadblock in the adoption of decentralized computers: high
latency. In contrast to privacy and security, latency is at
the forefront of the user experience. While centralized and
trusted applications (such as credit card payments or social
media) provide almost instantaneous services, their Byzan-
tine fault-tolerant counterpart typically comes at the cost
of a noticeable delay, in some cases in the order of minutes
or even hours (such as in Bitcoin). Furthermore, contrary to
other metrics such as throughput, latency cannot be readily
improved by hardware upgrades.
In this work, we present the first rotating leader SMR

protocol that allows transactions to be confirmed in just a
single round-trip time. This is optimal, as to achieve fault
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Figure 1. Banyan can terminate after just two communica-
tion steps. Existing rotating leader BFT protocols require at
least three communication steps.

tolerance the block must 1) reach a fraction of replicas, that
have to 2) respond to acquiesce to the processing [56]. This
is visualized in Figure 1.

We are able to achieve this by uniting two lines of research.
The first deals with the theoretical bounds of latency, and
has established optimally fast single-shot protocols in the
good case [3, 6, 43, 44, 50]. The second, more well-known
line of research, provides a class of consensus protocols that
solve state machine replication, in an efficient and fair way,
by employing rotating or random leaders. Prominent exam-
ples include HotStuff, Tendermint, Casper, Algorand and
Bullshark [14, 17, 35, 58, 62].

As Chan and Pass point out [21], rotating leader protocols
can be differentiated by either favoring proposal confirmation

time, meaning block finalization latency, or block creation

time, corresponding to the delay between the blocks and thus
the associated throughput. The Internet Computer Consen-
sus family of protocols [19] excels in both of these metrics.

Our contribution. We present the Banyan protocol that
achieves optimal consensus latency while preserving the
state-of-the-art characteristics of ICC.

1. Banyan is the first SMR protocol with rotating leaders
supporting two-step chain growth and two-step final-
ization under partial synchrony. We prove the safety
and liveness of Banyan for 𝑛 ≥ 3𝑓 + 2𝑝∗ − 1, where 𝑛
is the total number of replicas in the network, and 𝑓 is
the maximum number of Byzantine replicas tolerated.
Additionally, 𝑝∗ ≥ 1 is a parameter that can be set
freely (𝑝∗ ≤ 𝑓 ), and determines the effectiveness of
the fast path. We prove that as long as no more than 𝑝∗
replicas are unresponsive, Banyan finalization latency
is just two network delays.

2. We provide a proof-of-concept Banyan implementa-
tion written in Golang, built on top of the Bamboo
BFT framework [33].

3. We measure the proposal finalization time in three
different wide area networks. We empirically demon-
strate that, compared to ICC, HotStuff, and Streamlet,
Banyan achieves the fastest proposal finalization time,
improving by up to 30% over the runner-up. Further,
we show that Banyan does not suffer from increased
variance in its latency, and behaves as ICC under crash-
faults.

2 Related Work
Byzantine fault tolerance was introduced by Lamport et al.
in 1982 [46]. A long line of work studies consensus proto-
cols in the permissioned setting under various synchrony
assumptions [9, 12, 45]). The partially synchronous network
model was first introduced in [30], together with the first
consensus protocol for this setting. The first truly practical
protocol in the partially asynchronous setting is the PBFT
protocol, as described in [20].
Fast Consensus. Our algorithm relies on a long line of

established work on reaching consensus in two communica-
tion steps (or one round trip time), also referred to as fast or
early-stopping consensus [13, 32, 36, 43, 50, 56]. As shown by
Brasileiro et al. [13] in the crash-fault model, it is possible to
terminate early if “enough” acknowledgments are received.
A year later, a fast path was presented by Kursawe [43], in
which a two-step fast path is paired with a subprotocol in
the slow path. Upon the expiration of a timer, a fallback
subprotocol is used to ensure liveness.

Song et al. describe Bosco [56], an algorithm that provides
a two-step fast path to any underlying consensus algorithm.
Their fast path does not rely on synchrony assumptions, and,
assuming 𝑛 > 5𝑓 , is triggered when all servers are in pre-
agreement, i.e., propose the same value. Assuming 𝑛 > 7𝑓 ,
the fast path is triggered when all honest servers are in
pre-agreement instead. Using similar building blocks it was
later shown that consensus can be performed “on demand”,
i.e., the fallback is only used when the fast path does not
succeed [55]. As Figure 2 shows, these approaches come at
the cost of a longer recovery during the fallback on the slow
path though, as the slow path can only be started once the
fast path round is over. In this work, we show that both
the (single) fast path round and the first slow path round
can happen simultaneously (with only constant message
overhead).

Earlier, Martin and Alvisi introduce Fast Byzantine Paxos
(FaB Paxos) [50], a family of protocols parameterized not
only by 𝑓 but also 𝑝 (0 ≤ 𝑝 ≤ 𝑓 ), the number of (non-leader)
replicas that are not needed for the fast path to succeed.
Their algorithms provide Byzantine agreement, when 𝑛 ≥
3𝑓 +2𝑝+1, where the fast path triggers as long as𝑛−𝑝 servers
behave honestly and are in pre-agreement. Instead of relying
on a variant of PBFT in the slow path, we integrate our
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Figure 2. The different approaches of fast path protocols. In
many protocols, the slow path starts after the fast path fails.
In Banyan, the fast path is integrated into the slow path.

protocol with ICC, sidestepping the complexity introduced
by view changes.
The lower bound by Martin and Alvisi [50] has recently

been improved to 𝑛 ≥ 𝑚𝑎𝑥 (3𝑓 + 2𝑝 − 1, 3𝑓 + 1) by Kuznetsov
et al. [44] and Abraham et al. [3]. Their insight is that misbe-
having (i.e., equivocating) leaders can be reliably detected,
and thus acceptors can wait for 𝑛 − 𝑓 votes, excluding the
malicious leader (𝑛 − 𝑓 + 1 votes in total). To the best of our
knowledge, we present the first protocol that matches this
lower bound without the need for a view-change protocol.
Fast SMR. Ideas from the FaB protocol were borrowed

by the Zyzzyva protocol [42] as well, which turns the single-
shot FaB consensus into an SMR protocol. Improving upon
Zyzzyva, Aliph [6] reduces the latency to two steps. These
protocols do not allow running both the fast path and a slow
path concurrently, though, and thus suffer from switching
costs (see Figure 2). Zyzzyva safety issues were pointed out
by [1] and led to the development of Zelma [2], combining
FaB and Zyzzyva’s benefits.
Zelma is also at the core of the SBFT protocol [37]. SBFT

is the first protocol running both pessimistic and optimistic
paths simultaneously in a dual mode. However, the fast path
of SBFT has one more communication step than Banyan,
and assumes 𝑛 ≥ 3𝑓 + 2𝑝 + 1. Moreover, the slow path of
SBFT is not optimistically responsive, as it triggers only after
a time-out (fig. 2). A large body of work has based itself on
the 3-phase (6-step) HotStuff [62] protocol and presented
improvements upon it [38, 40, 48]. Jolteon andDitto [34] have
improved the latency while adding an asynchronous fallback
to enhance its performance during epoch synchronization
(see Table 1).

Most recently Malkhi and Nayak propose a 2-phase (4-
step) protocol and a simpler fast path [48]. These protocols
reach no lower than 3𝛿 proposer latency in the fast path.

Rotating Leader BFT protocols. Many recent advances
in BFT protocols rely on rotating leaders [14, 15, 22, 62], as
originally introduced by Veronese et al. [61]. Mir-BFT [59]

and its follow-up work [60] for example, improve upon
sequential-leader approaches, by running PBFT instances
on a set of leaders. When a leader is slow, it is replaced.
Other SMR protocols are designed to perform well under
attack [5, 7]. However, in the permissioned blockchain set-
ting it is often assumed that during periods of synchrony,
misbehavior can be punished, either by exclusion or slash-
ing [17]. As such, we focus on the latency in the optimistic
case and satisfy the same pessimistic liveness as ICC, which
was shown to be adequate in [21]. Recent concurrent work
by Chan and Pass [21] provides a theoretical framework for
this class of algorithms, and Table 1 is partially inspired by
it. Their proposed protocol called Simplex falls into the same
category as the ICC and Banyan algorithms but improves
pessimistic liveness by only allowing a single leader per round.
We believe that a technique similar to the one shown in this
work could be applied to bring our fast path to Simplex too.
In [4] Abraham et al. prove that 2Δ is the upper and lower
bound for the good-case latency of rotating leader BFT pro-
tocols, in the synchronous setting. In this work, we provide a
matching upper bound in the partially synchronous setting.
DAG-based BFT protocols. Another line of work pro-

poses to improve the throughput of leader-based protocols
by allowing all parties to broadcast transactions simultane-
ously. Many so-called DAG-based protocols have emerged
recently [8, 41, 49, 58].

One main idea is to disconnect transactions broadcasting
from finalization [27], and another is to allow the finalization
of blocks outside the main blockchain by causally referenc-
ing them [41, 47]. In Bullshark [58], all replicas are parallel
leaders and broadcast one batch of transactions in each round
using Byzantine Consistent Broadcast. While doing so, they
include references to at least 𝑛 − 𝑓 blocks from the previ-
ous round. A more recent protocol called BBCA-Chain [49]
reduces Bullshark’s latency by removing the need for spe-
cialized block layers and instead broadcasts blocks using a
primitive called Byzantine Broadcast with Complete-Adopt
(BBCA). Mysticeti [8] forgoes the confirmation of blocks and
instead relies solely on the DAG edges as input to the proto-
col, leading to better optimistic latency. ICC does not allow
causally referencing non-leader blocks to finalize them and
thus does not benefit from the same throughput advantages.
However, we believe ICC is a good fit to describe our fast
path mechanism, and hypothesize that it applies to DAG
protocols too.
In Table 1 an overview of state-of-the-art protocols is

shown. For both the block finalization latency and the block
creation latency, we have included the required number of
replicas that have to respond in order to proceed in the
optimistic case (synchronous round with a block proposed
by an honest leader). While irrelevant in the calculation of
the theoretical latency bounds, we found that small changes
in these requirements could have large effects in practice,
especially on global-scale deployments as they are seen today.
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Latency

Block
Finalization
Requirement

Block
Creation
Latency

Block
Creation

Requirement

Number of
Replicas equals

Supports
Rotating
Leaders

Casper FFG [17] 𝑂 (Δ) 2𝑓 + 1 𝑂 (Δ) N/A† 3𝑓 + 1 ✓
Fast HotStuff [38]‡ 5𝛿 2𝑓 + 1 2𝛿 2𝑓 + 1 3𝑓 + 1
Jolteon [34] 5𝛿 2𝑓 + 1 2𝛿 2𝑓 + 1 3𝑓 + 1
PaLa [23] 4𝛿 2𝑓 + 1 2𝛿 2𝑓 + 1 3𝑓 + 1
Zelma [2] 2𝛿 3𝑓 + 𝑝 + 1 2𝛿 2𝑓 + 𝑝 + 1 3𝑓 + 2𝑝 + 1
SBFT [37] 3𝛿 3𝑓 + 𝑝 + 1 3𝛿§ 2𝑓 + 𝑝 + 1 3𝑓 + 2𝑝 + 1
Streamlet [22] 6Δ 2𝑓 + 1 2Δ 2𝑓 + 1 3𝑓 + 1 ✓
Bullshark [58] 4𝛿 ¶ 2𝑓 + 1 2𝛿 2𝑓 + 1 3𝑓 + 1 ✓
BBCA-Chain [49] 3𝛿 2𝑓 + 1 3𝛿 2𝑓 + 1 3𝑓 + 1 ✓
ICC [19] / Simplex [21] 3𝛿 2𝑓 + 1 2𝛿 2𝑓 + 1 3𝑓 + 1 ✓
Mysticeti [8] 3𝛿 2𝑓 + 1 1𝛿 2𝑓 + 1 3𝑓 + 1 ✓

Banyan 2𝛿 3𝑓 + 𝑝∗ − 1 2𝛿 2𝑓 + 𝑝∗ 3𝑓 + 2𝑝∗ − 1 ✓

Table 1. Popular and Fast State Machine Replication Protocols. To simplify comparison, we assume that the number of replicas
is equal to the respective lower bound. Δ denotes the message delivery time upper bound, while 𝛿 is the true message delivery
time. † Non-equivocation is enforced by slashing. ‡ We consider the pipelined version of Fast HotStuff. § To the best of our
knowledge no pipelining is specified for SBFT. ¶ We consider Bullshark’s best case latency (anchor blocks). ∗ For simplicity, we
replace 𝑝 by 𝑝∗, 𝑝∗ ≥ 1.

(Intuitively, it is not uncommon for a few outlier replicas to
have a higher latency. If progress can be made safely without
them, a large performance increase can be experienced.)

Other aspects.Many works such as [19, 37, 48] also focus
on the message complexity of the fast path and the view
change. We do describe how BLS signature aggregation [11]
can be used for Banyan, but leave further advancements to
future work. Message complexity and performance do not
always go hand in hand in practice [19, 27] and oftentimes
probabilistic broadcast through gossiping is preferred [52].

3 Model
We consider a network of 𝑛 ≥ max (3𝑓 + 2𝑝 − 1, 3𝑓 + 1) par-
ticipants called replicas. Our protocol is safe and live with
up to 𝑓 replicas being Byzantine. Additionally, we guarantee
fast termination when up to 𝑝 replicas are not cooperating.
In other words, the parameter 𝑝 ∈ [0, 𝑓 ] denotes the max-
imum number of replicas that are not needed for the fast
path to be successful. Note that there is no reason to choose
𝑝 = 0, as our protocol will be strictly faster with 𝑝 = 1, and
require the same number of replicas. We can thus also write
𝑛 ≥ 3𝑓 + 2𝑝∗ − 1, where 𝑝∗ ∈ [1, 𝑓 ].

By setting 𝑝 = 1, we reach the upper bound on the number
of Byzantine replicas permissible [30], i.e. 𝑛 ≥ 3𝑓 + 1. In this
case, the fast pathwill be usedwhen the leader and all but one
replica behave honestly. On the other side of the spectrum,
given an honest leader, the fast path can be made robust
against Byzantine behavior, by setting 𝑝 = 𝑓 .

We consider the same communication model used in ICC,
in which replicas communicate over a partially synchronous

network [30]. In a synchronous network, there is a known
fixed upper bound Δ on the time required for a message
to be sent from one party to another. In an asynchronous
network, no fixed upper bound Δ exists. We use 𝛿 to denote
the true message delivery time of replicas, i.e., the unknown
time it takes for one communication step across all replicas.
In partial synchrony, the network alternates intervals of
synchrony, in which the bound 𝛿 < Δ holds, to ones of
asynchrony.
Replicas communicate via all-to-all authenticated links.

We assume the existence of a public-key infrastructure (PKI),
secure digital signatures, and collision-resistant hash func-
tions. Additionally, we assume replicas have access to shared
randomness, e.g., through a safe and live random beacon
protocol [53].

4 Internet Computer Consensus
The slow path of the Banyan algorithm corresponds almost
precisely to the Internet Computer Consensus protocol (ICC),
which we thus introduce first.

Overview. The goal of the ICC protocol is to provide
a total ordering (i.e., chain) of blocks among replicas in a
network. As the protocol advances, a tree of blocks is con-
structed, starting from a genesis block that is at the root of
the tree. Blocks are added to the block-tree if they are safe to
be extended. Each replica may have a different, partial view
of the block-tree. Replicas make progress, by finalizing at
most one block per tree height. By traversing the tree edges,
a path of finalized blocks is established. This path constitutes
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Figure 3. The diagram shows the steps necessary to reach the finalization of a block. Black blocks are finalized, dark gray
blocks are notarized, while light gray blocks are not. In this example, 𝑛 = 4 and 𝑓 = 1. Initially, 𝑛 − 𝑓 = 3 replicas send
notarization votes (NV) for the rank-0 block of round 𝑘 . Replicas will not send a NV for higher rank proposals, in this round.
As soon as the NV are received, the replica combines them in a notarization (N). Then, the replicas that only sent an NV for
the rank-0 block will also send a finalization vote (FV) for it. Once the three FV are received, they will be combined into a
finalization (F) and both the r-0 block and its ancestor(s) are finalized.

the blockchain. Honest replicas are guaranteed to have a
common prefix of this path.

Creating a Block-Tree through Notarization. The ICC
protocol proceeds in rounds. In the k-th round, one or more
blocks are added to a block-tree at height 𝑘 . To be added to
the tree, a block must be notarized. In ICC, a block 𝑏 becomes
notarized for a replica, once at least 𝑛 − 𝑓 notarization votes

for block 𝑏 are received. A notarization vote is a BLS sig-
nature sent by a replica 𝑢 for a block 𝑏, implying that replica
𝑢 validated block 𝑏. Notarization votes can be aggregated to
a single multi-signature, that can be efficiently verified [11].
As soon as block 𝑏 is validated by at least 𝑛 − 𝑓 replicas, it
becomes notarized, and can be added to the block-tree.
Block Proposal. In principle, in every round 𝑘 , each

replica can propose a block and all notarized blocks make it
into the block-tree. Therefore, at any height 𝑘 there can be up
to 𝑛 blocks. However, this makes it difficult for the replicas to
agree on which block should be part of the blockchain, as at
most one block per height should be included. To reduce the
number of blocks proposed in each round, a random beacon

is used to generate a random permutation of the 𝑛 replicas.
The permutation defines a different rank 𝑟 ∈ [0, 𝑛 − 1] for
each replica for that particular round. The replica with the
lowest rank, i.e., the rank-0 replica, is the leader of that
round. At the beginning of a round, each replica computes
its rank and starts a timer. The leader of that round proposes
the block immediately, while the other replicas wait for a
time directly proportional to their rank before proposing a
block. Let 𝑟 be the rank of a replica in a given round, the
replica delays the proposal of its block by a proposal delay
Δ𝑝𝑟𝑜𝑝 (𝑟 ) = 2Δ×𝑟 . In round 𝑘 , when deciding which block in
the block-tree to extend, the replica considers only notarized
blocks at height 𝑘 − 1.
Notarization. In round 𝑘 , before sending a notarization

vote for a block 𝑏 proposed by a replica 𝑢 with rank 𝑟 (𝑢 ) , the

replica 𝑣 receiving the block 𝑏 waits a notarization delay of
Δ(𝑢 )𝑛𝑜𝑡𝑎𝑟𝑦 = 2Δ × 𝑟 (𝑢 ) after starting round 𝑘 . Therefore, once
replica 𝑣 receives a block 𝑏 from replica 𝑢, it checks if it is
time to send a notarization vote for a block of rank 𝑟 (𝑢 ) . If
so, it broadcasts the notarization vote to all other replicas,
otherwise, it waits until Δ(𝑢 )𝑛𝑜𝑡𝑎𝑟𝑦 has passed. This way, blocks
of lower rank should become notarized and added to the
block-tree before others. Once a block 𝑏 in round 𝑘 becomes
notarized for replica 𝑢, replica 𝑢 broadcasts the notarization
to other replicas, stops sending notarization votes for blocks
of round 𝑘 , and starts round 𝑘 + 1. Thus, when the leader is
honest, the network is in a phase of synchrony and the block
proposal and notarization delays are set accordingly, only
the block proposed by the rank-0 replica will be added to the
tree at height 𝑘 . If the leader is not honest or the network is
asynchronous, some other replicas of higher rank may also
propose blocks, and also have their blocks added to the tree.

Finalization. As there might be multiple notarized blocks
at the same height, we must guarantee that all replicas agree
on the same finalized block and that all finalized blocks are
part of the same blockchain. ICC uses a mechanism similar
to notarization to guarantee that no consistency violation
across rounds is possible. If the replica did not broadcast no-
tarization votes for any other block than 𝑏 in the same round
𝑘 , the replica will also broadcast another BLS-signature for
block 𝑏, called finalization vote. If a replica 𝑢 receives at
least 𝑛 − 𝑓 finalization votes for the same block 𝑏, the replica
𝑢 can aggregate them into a finalization. At this point, the
replica 𝑢 is guaranteed that all replicas will eventually in-
clude block 𝑏 in the blockchain. Once a finalization is created
for a given block 𝑏, block 𝑏 is said to be explicitly finalized
and can be output. The finalization is then sent to all the
other replicas.
The rule for broadcasting finalization votes implies that

in some rounds, no block might become finalized by the
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aggregation of at least 𝑛 − 𝑓 finalization votes. However, as
soon as a block in a later round is explicitly finalized, all its
ancestors in the tree, until the last explicitly finalized block,
automatically become implicitly finalized. An illustration
of the steps necessary before reaching finalization is shown
in Figure 3.
We point out that if a block 𝑏 at height 𝑘 becomes final-

ized, no other block at height 𝑘 can be notarized. Since only
notarized blocks are extended (see beginning of Section 4),
this implies that all blocks at height greater than 𝑘 will have
𝑏 as an ancestor and thus, all finalized blocks are part of the
same blockchain. This sketches the safety proof of the ICC
algorithm.

Remark 4.1 (Finalization Latency). In rounds in which
the network is synchronous, finalization of a block can be
reached in three times the message delivery time 𝛿 < Δ.
In the first round the block proposal, in the second the no-
tarization votes, and in the third the finalization votes are
broadcast (see Figure 1).

Remark 4.2 (Timeouts). In the simplest implementation of
the ICC protocol, we can assume that the communication
delay bound Δ is an explicit parameter. In practice, instead,
the protocol is modified to adaptively adjust to an unknown
communication delay bound.

5 Problem Statement
The purpose of SMR protocols is to totally order blocks con-
taining an arbitrary payload so that all replicas output the
payload in the same order.

The properties we want the Banyan algorithm to satisfy,
are first and foremost the same that Internet Computer Con-
sensus provides [19]:
• Deadlock Freeness: Each round eventually termi-
nates and increases the block-tree height by 1.
• Safety: If some honest replica finalizes block 𝑏 in

round 𝑘 , and another honest replica finalizes block 𝑏′
in round 𝑘 , then 𝑏 = 𝑏′.
• Liveness: If the network is momentarily synchronous
and the leader is honest, then the block proposed by
the leader is added to the block-tree and finalized.

Additionally, Banyan satisfies a stronger property:
• Fast Termination: If the network is momentarily

synchronous, the leader is honest, and𝑛−𝑝 replicas be-
have momentarily honestly, then the block proposed
by the leader is added to the block-tree and finalized
in a single round trip time.

Remark 5.1. Deadlock freeness is also a liveness property. It
provides chain growth even in periods of asynchrony, while
Liveness guarantees that the entire progress is finalized in
periods of synchrony. This distinction underlines the two
modes of operation [19].

6 Intuition
The goal of the Banyan fast path is to finalize a block as soon
as possible while guaranteeing agreement among replicas.
In the ICC protocol a block is finalized at the fastest three
communication steps after being proposed. The fast path
added in Banyan reduces the finalization latency down to
two communication steps, as shown in Figure 1.

Definition 6.1. In order to distinguish the two possible
finalization scenarios, we call Fast Path finalized (or FP-
finalized) the blocks that are explicitly finalized via the
Banyan fast path, while we call Slow Path finalized (or SP-
finalized) the blocks that are explicitly finalized by receiving
at least 𝑛 − 𝑓 finalization votes, as in the ICC protocol.

The idea behind the fast path is that if “enough” replicas
send their first notarization votes for the same block 𝑏, i.e.,
replicas are in pre-agreement, then 𝑏 can be immediately
finalized without waiting for the finalization votes to be sent
and received. In other words, replicas finalize blocks through
finalization votes only if there are too many replicas that do
not agree on the first block added to the block-tree at a given
height, or if the slow path is faster.

Definition 6.2 (Fast Vote). To determine if enough replicas
are in pre-agreement, and try to finalize a block via the fast
path, replicas broadcast a fast vote for each round’s first
block they send a notarization vote for. A block that receives
𝑛 − 𝑝 fast votes becomes explicitly finalized via the fast path,
and fast votes can be combined into a fast finalization.

Safety considerations. As we have sketched in Section 4,
the rules of ICC ensure that if a block 𝑏 at height 𝑘 becomes
SP-finalized, no other block at the same height will be no-
tarized. This guarantees that the tree will not contain any
block at height 𝑘 besides block 𝑏. Therefore, only block 𝑏

will be extended. In Banyan however, if a block 𝑏 gets FP-
finalized, we cannot guarantee that there will not be another
notarized blocks at the same height.

Hence, we introduce a new concept, similar to notarization.
Intuitively, we want to guarantee that whenever a block 𝑏 at
height 𝑘 gets FP-finalized, then no other block at height 𝑘
can be extended. To this end, each replica marks blocks as
unlocked when they are safe to be extended.

As we will show, the conditions of a block being unlocked

almost never restrict the original ICC algorithm (see Re-
mark 8.3) and only a few additions are sufficient to guarantee
the safety of Banyan.

7 The Banyan Algorithm
The Banyan algorithm extends the Internet Computer Con-
sensus algorithm and enables fast path finalization in periods
of synchrony. The protocol allows explicit finalization to be
achieved as soon as 𝑛 − 𝑝 fast votes are received. The fast
path runs alongside the Internet Computer Consensus proto-
col and is integrated into existing messages. In case the fast
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path cannot be used, there is no “switching cost” to revert to
the slow path. When there is no pre-agreement, blocks will
still be notarized and eventually finalized (either explicitly
or implicitly) just as in the ICC protocol.
The following definitions are written from the point of

view of a replica 𝑢, at round 𝑘 :

Definition 7.1. Let blocks(𝑘) be the set of blocks that have
been received in round 𝑘 . For a block 𝑏 ∈ blocks(𝑘), we
define supp(𝑏) to be the set of replicas from which 𝑢 has
received a fast vote. Further, for any set B ⊆ blocks(𝑘), we
define supp(B) to be the set of distinct replicas from which
𝑢 has received a fast vote for a block in B:

supp(B) =
⋃
𝑏∈B

supp(𝑏)

Definition 7.2. At any given time, max(𝑘) is a rank-0 block,
such that no other rank-0 block has a larger support:

max(𝑘) =
(

argmax
𝑏∈blocks(𝑘 ),𝑏.𝑟𝑎𝑛𝑘=0

|supp(𝑏) |
)
.𝑝𝑜𝑝 ()

Remark 7.3. There can be multiple rank-0 blocks when the
leader is Byzantine.

Definition 7.4. At any given time, nonLeaderBlocks(𝑘)
is the set of blocks which 𝑢 has received with a rank larger
than 0:
nonLeaderBlocks(𝑘) = {𝑏 ∈ blocks(𝑘) | 𝑏.𝑟𝑎𝑛𝑘 ≠ 0}

Definition 7.5. At any given time, nonMaxBlocks(𝑘) is
the set of blocks which 𝑢 has received, excluding a rank-0
block that has the most support:

nonMaxBlocks(𝑘) = {𝑏 ∈ blocks(𝑘) | 𝑏 ≠ max(𝑘)}

Using these definitions, we can pin down exactly what
blocks are safe to extend for a replica 𝑢, in the presence of
the fast path. We call such a block unlocked.

Definition 7.6 (Unlocked Blocks). Finalized blocks are un-
locked by definition. Additionally, at any point during a
round 𝑘 , for a valid block 𝑏 ∈ blocks(𝑘):

1. if |supp(𝑏) ∪ supp(nonLeaderBlocks(𝑘)) | > 𝑓 + 𝑝 ,
then 𝑏 is unlocked.

2. if |supp(nonMaxBlocks(𝑘)) | > 𝑓 +𝑝 , all current and
future blocks of round 𝑘 are unlocked.

An example of the above definitions is presented in Figure 4.

Definition 7.7 (Unlock Proof). An unlock proof is the
collection of valid fast votes, that prove that 𝑏 is unlocked
according to Definition 7.6.

Unlock proofs can be implemented naively by aggregating
the fast votes for each block using BLS multi-signatures [11].
In the worst case, condition 2) of definition 7.6 might only
be met after receiving 2𝑓 + 2𝑝 + 1 fast votes, which might
attest 𝑓 + 𝑝 + 2 unique blocks, leaving little improvements

Figure 4. Fast votes (FaV) received for each block are shown
in the block-tree. Black blocks are finalized, dark gray blocks
are unlocked, while light gray blocks are not. Supposing𝑛 = 4,
𝑓 = 1, and 𝑝 = 1, for round 𝑘 , Condition 1 is met, and the r-0
block is unlocked. Instead, for round (𝑘 + 1), Condition 2 is
met, and all blocks in this round are unlocked.

from aggregation. In practice, however, we expect only a few
different blocks to receive fast votes. The description of a
more targeted mechanism to achieve small unlock proofs in
the worst case is left to future work.

The Banyan algorithm is defined by the following changes
to the slow path algorithm (ICC) presented in Section 4. Line
numbers refer to Algorithms 1 and 2 that contain the full
Banyan pseudocode.
Restriction 1 Block proposals can only extend an unlocked

block. Similarly, notarization votes, fast votes,
and finalization votes are only sent for blocks
that extend an unlocked block. (We change
the validity condition on line 62.)

Restriction 2 Replicas move to the next round once an un-
locked block has been notarized, and they
have sent a fast vote (line 48).

Addition 1 When replicas move to the next round, an un-
lock proof of the notarized block is broadcast
(line 31).

Addition 2 When a block is proposed, an unlock proof of
the parent block and a fast vote for the cur-
rent block is broadcast alongside the proposed
block (lines 28 and 31).

Addition 3 When the first round 𝑘 notarization vote is
broadcast, a fast vote for the same block is
broadcast alongside it (line 39).

Addition 4 If a rank-0 block has received 𝑛 − 𝑝 fast votes,
it is considered FP-finalized (line 56). Fast
votes are aggregated into a fast finalization
and broadcast (lines 57 and 58).

Remark 7.8. It is possible to omit sending a corresponding
notarization vote when a fast vote is sent. A notarization
then consists of two multi-signatures, one for notarization
and one for fast votes. For the sake of simplicity, we do



Y. Vonlanthen, J. Sliwinski, M. Albarello, R. Wattenhofer

not consider this version of Banyan in our description and
analysis.

8 Protocol Analysis
In this section, we present proof sketches that explain the
correctness of Banyan. These are not complete proofs but
are intended to provide a conceptual understanding of the
protocol’s security.

8.1 Deadlock Freeness
The ICC protocol guarantees deadlock freeness as each hon-
est replica receives at least one notarized block in each round.
Therefore, each honest replica can start the next round and
the block-tree keeps growing. However, in Banyan a block
that was notarized is not guaranteed to be extended as, due
to Restriction 1, in order for this to happen, the block must
also be unlocked.
The following lemma shows how, regardless, deadlock

freeness is not impacted. Intuitively, Restriction 2 makes
sure that replicas only move to a higher round once a block
can be extended, and Addition 1 guarantees that each replica
does so eventually.

Lemma 8.1. If each honest replica broadcasts a fast vote in

round 𝑘 , then Banyan guarantees that each honest replica

eventually observes at least one unlocked block.

Proof. Assume towards contradiction that in round 𝑘 no
block is unlocked for an honest replica 𝑢. Consider the set
S, defined to be the support for leader blocks different from
Max(𝑘), i.e.,
S = supp(nonMaxBlocks(𝑘) \ nonLeaderBlocks(𝑘))
If S = ∅, a contradiction is reached immediately, as
|supp(max(𝑘)) ∪ supp(nonLeaderBlocks(𝑘)) |
= |supp(blocks(𝑘)) | ≥ 𝑛 − 𝑓 > 𝑓 + 𝑝

and thus by Item 1 of Definition 7.6 max(𝑘) would be un-
locked. (This corresponds to rounds with an honest leader.)
Instead, if S ≠ ∅, there are at least two rank-0 blocks.

By Addition 2 (Line 28), they each contain a fast vote from
the (Byzantine) leader. Since 𝑢 also receives fast votes from
𝑛 − 𝑓 ≥ 2𝑓 + 2𝑝 − 1 honest replicas, at least 2𝑓 + 2𝑝 + 1 fast
votes will be received. This implies that
|supp(max(𝑘)) | + |supp(nonMaxBlocks(𝑘)) | ≥ 2𝑓 + 2𝑝 + 1
By the pigeonhole principle, either |supp(max(𝑘)) | > 𝑓 + 𝑝
or |supp(nonMaxBlocks(𝑘)) | > 𝑓 +𝑝 . In both cases at least
one block is unlocked according to Definition 7.6, leading to
a contradiction. □

Theorem 8.2. Banyan satisfies deadlock freeness.

Proof. We prove that each round eventually terminates, and
that the block-tree of each honest replica keeps growing in
height by induction on the block-tree height 𝑘 . Specifically,

Algorithm 1 Banyan (Part 1)
1: Implements:
2: Pseudocode for round 𝑘 at replica 𝑢
3:
4: Uses:
5: RandomBeacon, instance beacon
6: BestEffortBraodcast, instance broadcast
7:
8: Parameters:
9: Δ𝑝𝑟𝑜𝑝 ⊲ Proposal delay
10: Δ𝑛𝑜𝑡𝑎𝑟𝑦 ⊲ Notarization delay
11: 𝑘 ⊲ Current round number
12: 𝑘𝑀𝑎𝑥 ⊲ Highest round finalized so far
13: 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 ⊲ Set of transactions for this round
14: 𝑟𝑢 ⊲ Rank, permutation derived from beacon
15: 𝑏𝑝 ⊲ Notarized and unlocked round (𝑘 − 1) block
16:
17: upon event ⟨banyan.Init⟩ do
18: 𝑓 𝑎𝑠𝑡𝑉𝑜𝑡𝑒𝑆𝑒𝑛𝑡 ← False;
19: 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 ← False; ⊲ Proposed a block
20: 𝑡0 ← 𝑐𝑙𝑜𝑐𝑘 (); ⊲ Time at the start of the round
21: 𝑁 ← ∅; ⊲ Set of blocks for which a notarization

vote was sent
22:
23: upon ¬𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 and 𝑐𝑙𝑜𝑐𝑘 () ≥ 𝑡0 + Δ𝑝𝑟𝑜𝑝 (𝑟𝑢) do
24: create a new round k block:
25: 𝑏 ← (𝑘,𝑢, ℎ𝑎𝑠ℎ(𝑏𝑝 ), 𝑝𝑎𝑦𝑙𝑜𝑎𝑑, 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑢)
26: 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 ← True
27: if 𝑟𝑢 = 0 then
28: broadcast 𝑏, 𝑏𝑝 ’s notarization, 𝑏𝑝 ’s unlock proof,

fast vote for 𝑏
29: 𝑓 𝑎𝑠𝑡𝑉𝑜𝑡𝑒𝑆𝑒𝑛𝑡 ← True
30: end if
31: broadcast 𝑏, 𝑏𝑝 ’s notarization, 𝑏𝑝 ’s unlock proof
32:
33: upon exists a valid round 𝑘 block 𝑏 of rank 𝑟

such that 𝑏 ∉ 𝑁, and 𝑐𝑙𝑜𝑐𝑘 ≥ 𝑡0 +
Δ𝑛𝑜𝑡𝑎𝑟𝑦 (𝑟 ) and � valid round 𝑘 block 𝑏′ of rank 𝑟 ′, 𝑟 ′ < 𝑟

do
34: if 𝑟𝑢 ≠ 𝑟 then
35: broadcast 𝑏, 𝑏𝑝 ’s notarization, 𝑏𝑝 ’s unlock proof
36: end if
37: 𝑁 ← 𝑁 ∪ {𝑏}
38: if ¬𝑓 𝑎𝑠𝑡𝑉𝑜𝑡𝑒𝑆𝑒𝑛𝑡 then:
39: broadcast fast and notarization vote for 𝑏;
40: 𝑓 𝑎𝑠𝑡𝑉𝑜𝑡𝑒𝑆𝑒𝑛𝑡 ← True;
41: else
42: broadcast notarization vote for 𝑏
43: end if
44:
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Algorithm 2 Banyan (Part 2)
45: upon exists a valid round 𝑘 block 𝑏

such that 𝑏 not notarized

and ⌈𝑛+𝑓 +12 ⌉ notarization votes received do
46: combine notarization votes into a notarization for

𝑏

47:
48: upon exists a valid round 𝑘 block 𝑏

such that 𝑏 is notarized and 𝑏 is unlocked

and 𝑓 𝑎𝑠𝑡𝑉𝑜𝑡𝑒𝑆𝑒𝑛𝑡 do
49: combine fast votes into a unlock proof
50: broadcast notarization and unlock proof for 𝑏
51: if 𝑁 ⊆ {𝑏} then
52: broadcast finalization vote for 𝑏
53: end if
54: 𝑘 ← 𝑘 + 1 ⊲ Move to next round
55:
56: upon exists (fast) finalization for a round 𝑘 block 𝑏

with 𝑘 > 𝑘𝑀𝑎𝑥

or receive ⌈𝑛+𝑓 +12 ⌉ finalization votes

or (receive 𝑛 − 𝑝 fast finalization votes and 𝑏.𝑟𝑎𝑛𝑘 = 0)
such that 𝑣𝑎𝑙𝑖𝑑 (𝑏) and 𝑏 is not finalized do

57: combine (fast) finalization votes into a (fast)
finalization for 𝑏, if necessary

58: broadcast (fast) finalization for 𝑏
59: output payloads of the last 𝑘 − 𝑘𝑀𝑎𝑥 blocks in the

chain ending at 𝑏
60: 𝑘𝑀𝑎𝑥 ← 𝑘

61:
62: procedure valid(𝑏) is
63: return 𝑏 extends a notarized and unlocked round
(𝑘 − 1) block 𝑏𝑝 and 𝑏 is signed correctly and contains
a fast vote from the proposer if 𝑏.𝑟𝑎𝑛𝑘 = 0

64:

we show that for each round 𝑘 , at least one notarized and
unlocked block will be added to each honest replica’s block-
tree.
Base case: All honest replicas agree on the root of the

block-tree, the genesis block, which is also notarized and
finalized by definition. By Definition 7.6 the genesis block is
thus unlocked. Thus, in round 0, a notarized and unlocked
block is added to each replica’s block-tree.

Induction step:Assuming a notarized and unlocked block
exists in round 𝑘 , we prove that each replica observes a no-
tarized and unlocked block in round 𝑘 + 1. By the induction
hypothesis, all replicas will broadcast a fast vote and thus
execute the procedure that starts on line 48. Thus, all honest
replicas will enter round 𝑘 + 1.
Each honest replica will receive at least one round 𝑘 + 1

block, together with a notarization and unlock proof for
the extended parent block (Addition 2, line 31). Thus, each
honest replica will send a fast vote for one block (Addition

3, line 39). Thus, by Lemma 8.1, at least one block round
𝑘 + 1 block will be unlocked. As no honest replica moves to
a higher round without an unlocked block being notarized
(Restriction 2, line 48), and replicas keep notarizing blocks,
one unlocked block will be notarized. Finally, honest replicas
moving from one round to the next broadcast the notariza-
tion and unlock proof (Addition 1, line 50), guaranteeing that
all honest replicas can add a notarized and unlocked block
to their block-tree. □

Remark 8.3. Banyan is at least as fast as ICC. Any scenario
in which a notarized block for round k exists before it is un-
locked can only occur due to message reordering. Hence,
Restriction 1 and Restriction 2 cannot cause latency con-
cessions if the communication channel precludes message
reordering (which is the case in practice when TCP/QUIC is
used).

8.2 Safety
ICC derives its safety from the fact that in rounds with an ex-
plicetly finalized block, no other blocks can be notarized. We
start our way towards sketching the safety proof of Banyan
by showing that an equivalent property holds for Banyan.

Lemma 8.4. If a round 𝑘 block 𝑏 is SP-finalized, then Banyan

guarantees that no round 𝑘 block 𝑏′, 𝑏′ ≠ 𝑏 is notarized for

any replica.

Proof. Let block 𝑏 be SP-finalized by some replica, and let
block 𝑏′, 𝑏′ ≠ 𝑏 be notarized. A replica must have received a
quorum of at least ⌈𝑛+𝑓 +12 ⌉ finalization votes for𝑏, ⌈

𝑛−𝑓 +1
2 ⌉ of

which are from honest replicas. Moreover, some replica must
have received a quorum of ⌈𝑛+𝑓 +12 ⌉ notarization votes for 𝑏′,
⌈𝑛−𝑓 +12 ⌉ of which are from honest replicas. The two quorums
must be disjoint, since each honest replica sends a finalization
vote for 𝑏 only if it did not send any notarization vote for
other blocks (in particular 𝑏′) at height 𝑘 (line 51). Thus,
there must be at least ⌈𝑛−𝑓 +12 ⌉ + ⌈

𝑛−𝑓 +1
2 ⌉ ≥ 𝑛 − 𝑓 + 1 honest

replicas. By definition, there are only 𝑛 − 𝑓 honest replicas,
hence one honest replica must occur in both quorums, a
contradiction. □

Therefore, any other block at height 𝑘 will be neither
extended nor finalized (as both cases require it to be at least
notarized). Similarly, let 𝑏 be a block at height 𝑘 which is
FP-finalized, we prove that 𝑏 is the only unlocked block at
height 𝑘 .

Lemma 8.5. If a round 𝑘 block 𝑏 is FP-finalized, then Banyan

guarantees that no round 𝑘 block 𝑏′, 𝑏′ ≠ 𝑏 is unlocked for

any replica.

Proof. Assume towards contradiction that there exists an FP-
finalized block 𝑏 and an unlocked block 𝑏′, 𝑏′ ≠ 𝑏 at height
𝑘 . For 𝑏′ to be unlocked, either Condition 1 or Condition 2
of Definition 7.6 must be satisfied.
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If Condition 1 is satisfied, then

|supp(𝑏′) ∪ supp(nonLeaderBlocks(𝑘)) | > 𝑓 + 𝑝

This implies that blocks different from 𝑏 have received more
than 𝑓 + 𝑝 fast votes, more than 𝑝 of which coming from
honest replicas. By lines 38 to 40, each honest replica broad-
casts at most one fast vote per round. Thus 𝑏 received less
than 𝑛 − 𝑝 fast votes, a contradiction, as 𝑛 − 𝑝 fast votes are
required for FP-finalization (line 56).

If Condition 2 is satisfied, then

|supp(nonMaxBlocks(𝑘)) | > 𝑓 + 𝑝

It follows that |supp(max(𝑘)) | < 𝑛 − 𝑝 . This implies that no
block can be FP-finalized, a contradiction. □

Theorem 8.6. Banyan satisfies safety.

Proof. Towards contradiction, assume an honest replica final-
izes round 𝑘 block 𝑏, while another honest replica finalizes
round 𝑘 block 𝑏′, 𝑏′ ≠ 𝑏. Without loss of generality, we
assume 𝑏 was explicitly finalized.

Consider the case where𝑏 and𝑏′ were both explicitly final-
ized. SP-and FP-finalization imply the reception of ⌈𝑛+𝑓 +12 ⌉
unique notarization and fast votes for a block, respectively.
This implies the existence of two respective Byzantine quo-
rums, a contradiction [18]. Thus, without loss of generality,
assume 𝑏′ was implicitly finalized. If 𝑏 was SP-finalized, by
Lemma 8.4𝑏′ cannot have been notarized, and thus no honest
replica would have extended 𝑏′. Instead, if 𝑏 was FP-finalized,
by Lemma 8.5 then 𝑏′ was not unlocked. Thus, honest repli-
cas would have sent fast, notarization, or finalization votes
for a block that was not unlocked, a contradiction (see line 33
and the validity definition on line 62). □

8.3 Liveness
We define liveness such that whenever the network is syn-
chronous for a “long enough” interval, if the leader is honest,
only the leader’s block will be added to the block-tree for
the corresponding round and this block will be finalized by
all honest replicas.

Theorem 8.7. Banyan satisfies liveness.

Proof. Let𝑇 be the timewhen the first honest replica𝑢 enters
round 𝑘 . Suppose that the leader 𝑙 of round 𝑘 is honest and
proposes block 𝑏. Moreover, suppose that the network is
𝛿-synchronous between time 𝑇 and 𝑇 + 2𝛿 . Furthermore,
assume 𝛿 ≤ Δ, which implies that Δ𝑛𝑜𝑡𝑎𝑟𝑦 (1) ≥ 2𝛿 , with
the functions Δ𝑛𝑜𝑡𝑎𝑟𝑦 and Δ𝑝𝑟𝑜𝑝 as defined in Section 4. We
want to prove that under these assumptions, eventually, each
honest replica will finalize block 𝑏.
Before the honest replica 𝑢 enters round 𝑘 at time 𝑇 , the

replica 𝑢 notarized an unlocked block in rounds 1, . . . , 𝑘 − 1
and broadcast the notarization and unlock proof (Addition
1, line 50). By the synchrony assumption, the other replicas,

𝑙 included, receive the notarization and unlock proof for
rounds 1, . . . , 𝑘 − 1 by time 𝑇 + 𝛿 , and enter round 𝑘 .
Note that Δ𝑝𝑟𝑜𝑝 (0) = 0. Thus, replica 𝑙 broadcasts 𝑏 by

time 𝑇 + 𝛿 , and other replicas will receive it by 𝑇 + 2𝛿 . By
assumption, no other honest replica enters round 𝑘 before
time 𝑇 and as Δ𝑛𝑜𝑡𝑎𝑟𝑦 (1) ≥ 2𝛿 , every honest replica will
broadcast a fast vote and a notarization vote for 𝑏 (Addition
3, line 39). Therefore, all honest replicas eventually receive at
least 𝑛 − 𝑓 fast votes for 𝑏. When 𝑝 = 𝑓 , these fast votes are
enough to FP-finalize 𝑏 (Addition 4, line 56). When 𝑝 < 𝑓 ,
⌈𝑛+𝑓 +12 ⌉ ≤ 𝑛 − 𝑓 notarization votes are sufficient to notarize
𝑏 instead. As argued previously, honest replicas will not have
notarized another block and thus will broadcast a finalization
vote (line 52). Eventually, after an additional communication
round, honest replicas will receive ⌈𝑛+𝑓 +12 ⌉ ≤ 𝑛 − 𝑓 finaliza-
tion votes, which leads to SP-finalization (line 56). □

8.4 Fast Termination
Theorem 8.8. Banyan satisfies fast termination.

Proof. With the additional assumption that 𝑛 − 𝑝 replicas
behave honestly during a phase of synchrony, we can guar-
antee 𝑛 − 𝑝 fast votes for the rank-0 block reaching every
replica. Thus, after a single round-trip time, each replica will
be able to FP-finalize the rank-0 block. □

9 Evaluation
9.1 Implementation
We implement Banyan in Golang, utilizing the Bamboo BFT
framework, which is designed for prototyping and evaluat-
ing chained BFT algorithms [33]. This framework already
supports the two well-known protocols, Streamlet [22] and
HotStuff [62].
To enhance the performance and reliability of the frame-

work, we introduced a few modifications. For instance, by
using non-blocking message-passing channels internally,
and by forwarding blocks that extend the tip of the chain,
we drastically improve the performance of all algorithms im-
plemented with Bamboo. The impact of the latter change is
especially surprising to us, as originally only Streamlet pur-
sued this strategy in the provided implementation, leading
to an unexpected advantage over all other protocols, both in
terms of throughput and latency. Henceforth, we have been
careful to treat all protocols equally.

To further increase predictability and transparency of the
protocol operations, we have replaced the random beacon
leader election with a round-robin rotation. Our code and
benchmarking scripts are made openly available [54].

9.2 Methodology
Application subnets of the Internet Computer feature 13
replicas [28]. To test the potential of Banyan as a drop-in
replacement for ICC, and since 𝑛 = 19 is optimal for both
𝑓 = 6, 𝑝 = 1 and 𝑓 = 4, 𝑝 = 4 experimental scenarios, we
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Figure 5. Locations of the AWS datacenters used in our
testbed. Red triangles represent the 4 datacenters employed
in Section 9.3, yellow crosses indicate the 4 US datacenters
used in Section 9.4, and black dots denote the 19 worldwide
datacenters used in Section 9.5.

perform experiments with up to 19 replicas around the globe
(see Figure 5). Replicas run on a testbed comprised of AWS
t3.large EC2 instances (with 2vCPUs, 8 GB of memory,
running Ubuntu 22.04).

We wish to demonstrate that (i) requiring only two rounds
of communication instead of three has a positive impact
and does not increase variance, while (ii) not suffering any
more throughput or latency degradation than ICC under
crash-faults. Finally, we want to show (iii) that Banyan is
performing consistently as well as or better than ICC and
other state-of-the-art protocols in a global network topology.
As the goal of our evaluation is to measure the precise

impact of our changes, we define latency as the average pro-
posal finalization time, measured at the respective proposer
using their system clocks. Throughput is calculated as the
average number of committed bytes per second at any (non-
faulty) replica. We measure the protocols’ behavior under
varying load by controlling the size of the payload, where
the payload is a bit vector randomly generated by the leader.
As required by the protocol, we set the proposal (Δ𝑝𝑟𝑜𝑝 )

and notarization (Δ𝑛𝑜𝑡𝑎𝑟𝑦) delays for Banyan and ICC to be
larger than the message delay experienced without network
disruptions, such that our experimental results correspond to
regular network conditions and only one block is proposed
per round if there are no faults. We proceed in the same way
to set appropriate timeouts for HotStuff and Streamlet. Each
experiment is run for 120 seconds, which is shown to be
sufficient, as the measurements show remarkable regularity
(e.g., see Figure 6c).

9.3 Performance Evaluation
We distribute 19 replicas across 4 datacenters, as shown by
the red triangles in Figure 5. Each datacenter hosts 5 repli-
cas, except for one that hosts only 4. Figure 6a shows the
throughput with varying block sizes. Primarily, we note that
Banyan with 𝑝 = 1 performs consistently better or as well
as ICC. For blocks of size 400KB, ICC averages a proposal

finalization time of 239ms, while Banyan 𝑝 = 1 averages a
finalization time of 216ms. This improvement of about 10% is
expected to be less than the theoretical maximum of 33%, be-
cause Banyan must hear from all the data centers in the fast
path. In the slow path, replicas can collect two consecutive
quorums without needing to communicate with the furthest
datacenter. This observation, namely that more communica-
tion rounds with smaller quorum sizes are sometimes faster
in practice than fewer rounds with larger quorum sizes, has
been made before in similar contexts [39, 57]. Moreover, by
setting 𝑝 = 𝑓 = 4, we observe that Banyan now has an av-
erage proposal finalization time of 179ms at the same block
size, an improvement of 25.1%, that is much closer to the
theoretical maximum of 33%. We suggest that this is due to
the situation where the 4 co-located replicas are the furthest,
in which case the fast path is employed, and thus lowers the
average latency.
Next, we measure the potential of the Banyan fast path

with a low number of replicas, i.e., we use only a single
replica at each datacenter (𝑛 = 4). Crucially, in this case
the fast path fires with the same conditions as regular nota-
rization, i.e., after receiving just 3 replies. Figure 6b shows
the throughput with block size increments of 500KB. At
block sizes of 1MB, ICC averages a proposal finalization time
of 224ms, which Banyan manages to improve by 29.9% to
157ms. We emphasize that this large performance increase
does not come at the cost of higher variance in latency, as is
shown in Figure 6c.

9.4 Effect of Crash-faults
In this experiment, we show the effect that crashes have on
Banyan and Internet Computer Consensus. We distribute 19
replicas across four US datacenters, as shown by the yellow
crosses in Figure 5. Results are presented in Figure 6d. As
has been noted in literature, rotating leader protocols are
sensitive to crashes (or malicious behavior), as at least one
full timeout duration must expire before progress can be
made in the case of a faulty leader. The timeout parameter
will crucially impact the results of such scenarios. In the
presented experiment, the timeout was set to 3 seconds. As
seen in Figure 6d, there are no penalties in trying to take
the fast path. When there are failures, the performance of
Banyan is exactly the one of ICC.

9.5 Global Network
In this experiment, we simulate a worldwide deployment.
We include almost all AWS datacenter locations available
to us and distribute 19 replicas across the globe, as shown
by the black dots in Figure 5. In this setting and with 1MB
payloads, the average proposal finalization time measured
for the ICC implementation was 384ms. By running Banyan
with 𝑓 = 6, 𝑝 = 1, the average proposal finalization time is
reduced by 5.8% to 362ms for “free”. Further, for Banyanwith
𝑓 = 4, 𝑝 = 4, the number drops by 16% to 324ms (Figure 6e).
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(a) Throughput vs. proposal latency for n=19
replicas spread across 4 global datacenters.

(b) Throughput vs. proposal latency for n=4
replicas spread across 4 global datacenters.

(c) Variance of Banyan and ICC proposal la-
tencies compared with 1 MB payload and n=4.

(d) Effect of crash-faults on throughput and
block intervals for n=19 replicas, spread across
4 US datacenters.

(e) Throughput vs. proposal latency for n=19
replicas spread across a global network.

Figure 6. Evaluation results.

10 Conclusion
The proposed Banyan protocol improves upon current BFT
protocols by providing a simultaneous dual mode, without
incurring extra cost, thus closing the gap between state-of-
the-art SMR protocols and classical fast consensus literature.
We show that it is possible to achieve optimally fast pro-

posal finalization time for a rotating leader SMR protocol.
We experimentally demonstrate the effectiveness of the fast
path by showing consistent latency improvements compared
to ICC, HotStuff and Streamlet. Ultimately, the effectiveness
of the fast path depends largely on the network topology, as
well as the parameter 𝑝 ∈ [0, 𝑓 ]. Still, as we can set 𝑝 = 1 at
essentially no cost, we hypothesize that Banyan can have
large positive impact in practice, especially in networks with
fewer replicas. In the context of permissioned blockchains,
and future decentralized Layer-2 sequencers, this setting is
undoubtedly compelling, since it is possible to detect adver-
sarial behavior and remove misbehaving replicas [17, 19].
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