
TWAP Oracle Attacks: Easier Done than Said?
Torgin Mackinga

ETH Zürich
Tejaswi Nadahalli

ETH Zürich
Roger Wattenhofer

ETH Zürich

Abstract—Blockchain “on-chain” oracles are critical to the
functioning of many Decentralized Finance (DeFi) protocols. We
analyze these oracles for manipulation resistance. Specifically, we
analyze the cost of manipulating on-chain time-weighted average
price (TWAP) oracles that use the arithmetic mean. It has been
assumed that manipulating a TWAP oracle with the well-known
multi-block attack is expensive and scales linearly with the length
of the TWAP. We question this assumption with two novel results.
First, we describe a single-block attack that works under the
same setting as the multi-block attack but costs less to execute.
Second, we describe a multi-block MEV (MMEV) style attack
where the attacker colludes with a miner/proposer who can
mine/propose two blocks in a row. This MMEV style attack makes
oracle manipulation orders of magnitude cheaper than previously
known attacks. In the proof-of-work setting, MMEV can be done
by selfish mining even with very low shares of hashpower.

Index Terms—TWAP, Oracles, DeFi, MEV, MMEV

I. INTRODUCTION

Smart contract platforms such as Ethereum [1] have allowed
for the creation of decentralized finance (DeFi), which aims to
recreate financial services such as lending [2], [3], exchanges
[4], [5], asset management [6], [7], insurance [8], and more
in a fully transparent, trustless, and censorship-resistant way.
The total value locked in DeFi has grown to $108 billion as
of December 2021 [9]. Lending and (decentralized) exchange
protocols lead the DeFi ecosystem with lending protocols
locking around $51 billion and exchanges locking around $33
billion in assets. Lending protocols and exchanges enable each
other in a bi-directional relationship, with exchanges informing
lending protocols about exchange rates and lending protocols
providing liquidity to exchanges. The former relationship is
often called an oracle, where the exchange acts as an oracle
and provides market data to the lending protocol. Lending
protocols crucially depend on oracles for their price feeds,
and if these oracles are driven by on-chain exchanges, their
price feed can be manipulated by bad actors to attack the
lending protocols. In the rest of this paper, we see how on-
chain exchange based oracles can be manipulated to carry out
such attacks on the lending protocol.

A. Lending

Lending protocols are smart contracts that allow borrowers
to borrow funds at an interest rate. The borrowed assets come
from a pool of assets that creditors have deposited as their
investments. If this pool suffers a loss due to a bad debt,
the loss is distributed among these creditors. If the borrower
pays back the debt on time, the interest is divided among the

creditors who contributed to the pool from which the loan
was made from. Due to the inability of these protocols to
take action against loan defaulters (borrowers are just public
keys on a blockchain), they use over-collateralization to keep
the protocols liquid. The borrower first deposits a units of
collateral of asset A (with dollar value VA per unit) and then
borrows b units of some other asset B (with dollar value VB

per unit), with a · VA > b · VB . Collateralization ratio (C)
is defined as C = a·VA

b·VB
. If the borrower does not repay the

loan, the protocol allows any liquidator (a disinterested third
party observing the blockchain) to pay back the borrowed asset
and redeem the collateral at a discounted price. For this to be
effective, during the period of the loan, C should not fall below
1. If it does, the loan becomes undercollateralized. This can
happen if the collateral loses value relative to the borrowed
asset or the borrowed asset appreciates against the collateral
asset. As C tends closer to 1, the lending protocol tries to
use the remaining collateral value to make itself whole again
with respect to the borrowed asset. Before a loan gets fully
undercollateralized (C < 1) it can go through a period of “bad
health”, where its C has fallen from the time when the loan
was made and is now too close to 1 (with some tolerance). To
avoid the risk of going fully undercollateralized, the protocol
offers liquidators a chance to pay back the loan at a discount,
and redeem the remaining collateral for themselves. This
makes the protocol whole again, the liquidator gets collateral
for a slightly cheaper price, and the borrower is liquidated.
The borrower is thus motivated to “top-up” the collateral to
make sure that the loan never becomes unhealthy.

Over-collateralization can work only if the lending protocol
knows the dollar values Va, Vb of assets A, B. These assets are
traded on many centralized exchanges which operate in the real
world, outside of the blockchain. Through trusted third parties,
it is possible to get these exchange rates into the lending
protocol. These trusted third parties are also called off-chain
oracles. They are dependent on a trusted third party, so they
are not fully on-chain. Their operation is not fully governed by
a smart contract that can be audited by users and about which
users can have assurances of immutability. Lending protocols,
which are themselves deployed as auditable smart contracts
on-chain, could prefer on-chain oracles, which are deployed
as smart contracts, but can still report market-based exchange
rates of assets. Automated market makers (AMMs), a type
of exchange, serve as a natural on-chain price oracle. They
support trades between many pairs of assets and can report
the relative exchange rates between asset pairs through state
variables available on-chain.978-1-6654-9538-7/22/$31.00 ©2022 IEEE

B. Constant Function Automated Market Makers

Constant Function AMMs [4] are a type of decentralized
exchange that uses a well-known, simple formula to trade
one asset for another. An AMM trading pair is a liquidity
pool containing reserves RA, RB of two different assets A
and B. If the AMM is using the constant product model, the
reserves have a constant product RA · RB = K. There is a
percentage fee (1− γ) that is collected for every trade. When
a user sells b units of B, they get a units of A such that
the constant-product function (RB + γ · b)(RA − a) = K
is preserved. The spot price of asset A is given by RA

RB
, the

spot price of asset B is RB

RA
. To see how an entirely on-chain

artifact like the ratio of the size of two pools can reflect
the true market price (mp) of an asset, we have to look at
arbitrageurs who constantly watch AMM liquidity pools and
other exchanges. Whenever the AMM price deviates from mp,
there is an arbitrage opportunity. An arbitrageur could buy
assets on the cheaper market, then sell them immediately on
the more expensive market for a risk-free profit. In an efficient
market, no such arbitrage opportunities should exist, and price
imbalances are quickly resolved. The no-arbitrage condition
describes a market in which no arbitrage opportunities exist.
Assuming the no-arbitrage condition holds, Angeris et al.
[10] show that the Uniswap V2 market price deviates from
mp by at most (1 − γ)mp. Thus, lending protocols can use
Constant Function AMM’s like Uniswap V2 as their oracles
to build over-collateralization mechanisms using artifacts that
are entirely on-chain.

II. ATTACKS ON LENDING PROTOCOLS

First, we describe two well known attacks on lending
protocols that can happen when their price oracles are ma-
nipulated to report the wrong price of the collateral asset
vis-à-vis the borrowed asset. Later, we describe how these
oracle manipulations can occur. During the lifetime of a loan,
there is complex interplay between creditors, the borrower, the
liquidator, the lending protocol, and the AMM oracle. If the
on-chain price of the collateral can be manipulated by a bad
actor, the bad actor can also act as a borrower or liquidator
to exploit the lending smart contract to make excess profits at
the expense of the creditors. In the next sections, we describe
two such attacks.

A. Undercollateralized loan attack

A bad actor assumes the role of a borrower to execute
this attack. The attacker allots some capital upfront to the
attack, which they divide into two pools: attack capital and
manipulation capital. They first use their manipulation capital
to buy an asset A from the AMM to move the price of
the asset higher. The lending protocol under attack uses this
artificially inflated price of A from the AMM to inform its own
collateralization ratio. Now, the attacker can use their attack
capital as collateral on the lending protocol and borrow the
loan asset B. If the price of A had not been manipulated, the
attacker would have been allowed to borrow less of B. The
manipulation of the price of A allows the attacker to borrow

more of B. The attacker then does not repay the loan, and
instead sells B in the open market. If the attacker can also sell
A that they had bought earlier (which they did to manipulate
A’s price) at market price, they make a net profit with the
attack.

Let’s consider an example lending protocol that accepts
ETH as collateral and lets anyone borrow USDC. Let the
collateralization ratio of this protocol be fixed to 0.8. Let the
market price of ETH/USDC be $3000. If this correct price
is used by the lending protocol, the attacker can only borrow
up to $2400 worth of USDC for every 1 ETH they deposit
as collateral. The attacker manipulates the price to $4000,
deposits the same 1 ETH, but is now able to borrow $3200
worth of USDC from the lending protocol. They can now sell
this USDC in the open market and pocket a profit of $200.

The attack’s profitability also rests on whether the attacker
can “de-manipulate” the price of A back to market price
without other users front-running the attacker. The profit
gained by selling B at a higher value should not be offset by
the manipulation capital lost moving the price of A. Further
in the paper, we will see how the attacker manages to execute
the de-manipulation transaction. The calculation of this attacks
profits are further elaborated in Appendix A. Such an attack
was performed on Inverse Finance DAO’s Anchor lending
lending protocol, resulting in a loss of USD 15.6 million to
the protocol [11].

B. Liquidation Attack

A bad actor assumes the role of a liquidator to execute
this attack. In a typical loan, collateral asset A is backing the
loan asset B. The loan can be made to appear to be in “bad
health” by manipulating the price of A lower or the price of B
higher. The oracle, which feeds the price ratio of A vs. B to the
lending protocol, has to be manipulated to give the impression
to the lending protocol that the price of A has gone lower with
respect to the price of B. The smart contract will then allow
liquidators to settle the loan back in asset B and take asset A
out of the protocol, and the liquidator who manages to get this
transaction confirmed will successfully make a profit. Unlike
the undercollateralized loan attack, in this case, the attacker
has to buy asset B from an external exchange to pay back the
loan and claim the collateral asset A with profit.

There is one aspect of the open nature of blockchains that
attackers need to grapple with. As soon as the new price is
effective on the on-chain oracle, other actors also see this
and are incentivized to profit from it. The oracle manipulator
now competes with other rational actors to execute either
the undercollateralized loan attack or the liquidation attack,
and has to bid up their transactions to get included in the
next block. As we see in later sections, if the attacker uses
our multi-block MEV attack, both attacks become executable
without getting into a race with other actors.

C. Spot Price Manipulation

In the attacks described in Sections II-A and II-B, the
attacker manipulates the price of an asset on the lending

2

protocol’s reference AMM. If the lending protocol uses the
naı̈ve spot price of an asset as per its AMM, it is straight-
forward to manipulate this spot price. In this case, the steps
of in Sections II-A and II-B: manipulation, borrow/liquidate,
and de-manipulation can be done atomically in a single
blockchain transaction. Atomicity ensures that arbitrageurs
cannot front-run the attacker’s de-manipulate transaction. This
makes the manipulation cheap. To make matters even worse,
the manipulate and de-manipulate steps can be funded by a
so-called “flash-loan” [12]. Flash loans are when a lending
protocol lets users borrow large amounts of assets without
collateral if they are returned back in the same transaction
with a small fee. These flash loans remove the attack capital
requirements. This type of naive attack is thwarted by well-
known AMMs like Uniswap V2 [13] by not allowing spot
prices of assets to be recorded in the middle of a block and
only recording the price value at the end of a block (refer
to Appendix B for details). This forces the manipulate and
de-manipulate steps into different blocks, and flash-loans are
no longer an option. Additionally, the de-manipulate step can
be front-run by arbitrageurs who notice the manipulate step
and want to make a profit by bringing back the manipulated
price to the true market price mp. This effect can be made
even stronger by not only relying on the price recorded in
one block but as the arithmetic mean of the price recorded
in many blocks in sequence, leading to the Time-Weighted
Average Price (TWAP) oracle.

III. TWAP ORACLES

TWAP oracles double down on the effect mentioned in
the previous section, allowing arbitrageurs to front-run de-
manipulating transactions so as to keep the manipulation
expensive for the attacker. If the classic AMM price is read by
the lending protocol in its arithmetic mean setting, we get the
advantage of having the two-block defense against attackers,
where the attacker has to manipulate the price in a block and
wait for the next block to de-manipulate the price. If we extend
this to multiple blocks, where the lending protocol reads the
price of an asset averaged over many blocks, the attacker has
to keep the manipulation going for that entire duration and
pay the price for it.

One example of an on-chain price oracle is the Uniswap
V2 oracle [13]. It records the price of a particular Uniswap
V2 trading pair’s smart contract before the first trade of
each block. This price, multiplied by the number of sec-
onds that have passed since the last update, is observation
pi. All observations get stored in an accumulator at with
at =

∑t
i=1 pi. The accumulator should always reflect the

sum of the spot price at each second in the history of the
contract. An external caller (the lending protocol, for example)
can checkpoint the accumulator’s value at time t1, then again
at t2. Using these values, it calculates a time-weighted average
price (specifically, arithmetic mean), or TWAP, from t1 to t2
(with LT = t2 − t1) as:

TWAPt1,t2 =
at2 − at1

LT

Taking an average over many blocks allows arbitrageurs
more time to successfully front-run an attacker’s de-
manipulation transaction. In the worst case for the attacker,
arbitrageurs will front-run the de-manipulation transaction in
every block. TWAP oracles have a clear tradeoff between
manipulation resistance and freshness. Using a larger LT

in the TWAP increases the cost of manipulation, while a
shorter TWAP follows the spot price more closely. Using a
longer duration TWAP comes with the risk of the TWAP
not reflecting the true spot price of an asset, and the lending
protocol not responding to real market conditions that cause
loans to get under-collateralized. In the rest of this paper, we
assume that the TWAP uses the arithmetic mean over its range.

A. TWAP manipulation cost

Let mp be the true market price of an asset A. Let ϵ > 0
be some desired constant on which we want to parameterize
the cost of manipulation C1 of A for just one block to the
new price (1 + ϵ) · mp. Angeris et al. [10] have shown this
one-block manipulation cost to be:

C1(ϵ) = RB(
√
1 + ϵ+ (

√
1 + ϵ)−1 − 2) (1)

where RB is the Uniswap V2 trading pair’s liquidity reserve
of asset B. This cost is the amount of tokens of the asset
B that the attacker has to deposit in the AMM contract to
move the price of asset A to (1 + ϵ) · mp. This cost takes
into account the value of asset A tokens that the attacker
received for that specific manipulating trade. This equation
assumes no fees, an infinitely liquid reference market, and the
no-arbitrage condition, meaning that arbitrageurs are assumed
to de-manipulate the price every block. As seen, independently
of ϵ, this cost also scales linearly with the size of the pool
(reflected in the parameter RB).
C1(ϵ) is the cost for the attacker to manipulate the oracle

for a single block. If the lending protocol uses a TWAP, the
attacker (who wants to use attacks from Sections II-A and
II-B) must keep this manipulation ongoing for multiple blocks
LT , where LT is the length of the TWAP. The total cost of
the multi-block attack is Cm = LT · C1(ϵ). The cost C1(ϵ)
is incurred as arbitrage loss every time an arbitrageur de-
manipulates the price instead of the attacker. This result (1)
has led to the generally accepted conclusion that “the cost
of manipulating the Uniswap V2 price [oracle] to any fixed
amount scales linearly with the reserves and the number of
blocks” [14]. Next, we show with our first novel result that an
AMM-based price oracle can be manipulated for higher profits
with lower costs.

B. Single-block attack

The multi-block attack model is assumed to be
manipulation-resistant if the AMM pools have large liquidity
reserves. Optimistic users assume that the attacker needs to
pay a huge price of Cm = LT · C1(ϵ) to manipulate mp to
(1 + ϵ) · mp over LT successive blocks. Our insight is that
the same effect can be seen if the attacker can manipulate
mp for just one block to (1 + LT · ϵ) · mp. We call this the

3

single-block attack. We now show that this attack is cheaper
than the multi-block attack under some circumstances.

The attacker chooses just one block over the range LT and
in that one block makes a trade in the AMM to manipulate
the price of the asset from mp to (1 + LT · ϵ) · mp. The
attacker “de-manipulates” the price back to mp in the next
block. Assuming the price is mp in all other blocks, the oracle
will report a TWAP price of

LT + LT · ϵ
LT

·mp = (1 + ϵ) ·mp

just like the multi-block attack. The cost of manipulation for
the single-block attack is given by C1(LT ·ϵ), while the multi-
block attack had cost LT · C1(ϵ). The single-block attack is
cheaper when LT and ϵ are such that:

LT · C1(ϵ)

C1(LT · ϵ)
> 1 (2)

We plot this ratio of multi-block to single-block attacks for

Figure 1: Cost comparison between the multi-block and single-
block attack. The y-axis shows how much cheaper the single-
block attack is. The single-block attack is more expensive when
the cost reduction is less than 1. The x-axis is LT .

LT ranging from 1 to 300 and multiple values of ϵ 1 to get the
graph in Figure 1. The break-even point, where both attacks
have an equal cost for a 135 block TWAP oracle (which is
a commonly used value in practice), is at ϵ = 0.574. For
higher ϵ, the single-block attack is cheaper than the multi-
block attack. For lower ϵ, the single-block attack is more
expensive. Ironically, an attacker that wants to manipulate an
asset’s price higher to achieve a larger profit can do so in a
proportionately cheaper way.

C. Failed Assumptions

The idea that the only way to manipulate a TWAP oracle
is through the expensive multi-block attack already makes a

1In the undercollateralization loan attack, ϵ is typically in the range 0.2 to
1. In the liquidation attack, even small values of ϵ, such as 0.01 to 0.1 could
be effective in practice, given that there is a large amount of collateral that is
within this range of its liquidation threshold.

few assumptions, like the no-arbitrage condition, an infinitely
liquid external market for asset A which arbitrageurs can tap
into, and that arbitrageurs can always front-run the attacker’s
de-manipulation transaction. These assumptions have to be
true to make the multi-block attack expensive for an attacker,
thereby making the TWAP oracle safe to use. If the assump-
tions do not hold, the multi-block attack might already not be
as expensive as previously thought. The single block attack,
which is cheaper for larger manipulations, also makes the same
assumptions. In this case, the assumptions are even less likely
to hold – thereby making the single block attack even cheaper
to execute.

No-arbitrage condition: For the single-block attack, the
no-arbitrage assumption is less likely to hold than for the
multi-block attack. Arbitrageurs only have a single block
to act, ruling out manual arbitrage and forcing bot-based
arbitrage. This general-purpose arbitrage bot needs instant
access to a large amount of asset A. This eliminates all off-
chain exchanges as reference markets since it would take at
least one block to transfer funds out of the exchange.

Infinitely liquid external market: Eliminating off-chain
exchanges also makes the assumption that arbitrageurs have
access to an infinitely liquid external market less likely to
hold. If arbitrageurs are unable to react within a single block,
the manipulation is free.

Transaction Ordering: Transaction ordering within the
block is even more important in the single block attack
than in the multi-block attack. If the attacker can get a de-
manipulation transaction included in the second block before
the arbitrageur can, the attack is also free.

Additionally, against a multi-block attack, a DeFi protocol
admin has an entire TWAP length to notice that a price is being
manipulated and trigger emergency shutdown procedures if
they exist. In a single-block attack, the oracle already reports
the manipulated price in the very next block, and an exploit
can take place immediately with no prior warning. Even if all
assumptions hold, the novel result we arrive at is that for large
enough ϵ and LT , the cost of manipulation of a TWAP oracle
only scales with the square root, not linearly with the TWAP
length. If some of the assumptions do not hold, an attack may
be dramatically cheaper than expected.

In the next section, we look at a scenario where all these
safety assumptions fail. The attacker controls a miner/proposer
and can propose two blocks in a row: one with the manipulat-
ing transaction and one with the de-manipulating transaction.

IV. MULTI-BLOCK MEV

Miner Extractable Value (MEV) is the value that can be
extracted by miners/proposers who decide which transactions
go into a block and in what order. This ordering gives them the
power to include their own transactions ahead of other users’
transactions and thereby extract value out of the ordering
process, which goes beyond their usual rewards of fees and
block subsidies. Daian et al. [15] first explored the many ways
in which transaction ordering can be used to extract more

4

value. If an attacker could specify a transaction ordering over
not just one but multiple blocks in a row, they would no longer
need to compete with arbitrageurs. We call this Multi-block
MEV, or MMEV.

In the proof-of-work setting, it is not known ahead of time
which miner will mine the next block. However, if a miner
does selfish mining [16]–[18] and maintains a private chain,
they can publish the private chain judiciously to extract more
value than their share of hash power would warrant. In our
case, the selfish miner has an even simpler goal – to include
their own transactions in two blocks in a row and make these
two blocks get into the main blockchain. The MMEV, in this
case, is the ability to cheaply manipulate a TWAP oracle, and
additionally, also execute an under-collateralized loan attack
or liquidation attack on a lending protocol that uses this
oracle. We show that selfish mining to enable such MMEV
is feasible with much lower shares of total hash power than
what is traditionally expected for profitable selfish mining.
Selfish mining attacks on the Uniswap V2 TWAP oracle are
acknowledged in the Uniswap V2 whitepaper [13] and its
security audit [19], but has not been studied formally before.

A. Manipulation Capital

As before, the total cost of the attack consists of the
manipulation capital and the attack capital. First, we assume
that the attacker controls the contents of two blocks in a
row and is able to execute the single block attack described
earlier. This makes the manipulation capital reduce to the
fees of the AMM, as there are no arbitrageurs to fight off
because of selfish mining. Selfish mining itself has a cost
that is independent of the attack, and we will look at that
in subsequent sections.

The attacker controls two blocks. In the first block, the
attacker buys am of asset A, increasing the market price to
(1 + LT · ϵ) · mp, as required by the single block attack.
This costs b of asset B. In the first transaction in the second
block, the attacker sells am units of asset A, returning the
market price to mp, receiving b units of B. Under normal
circumstances, the transaction in the first block would be
vulnerable to arbitrage. Controlling two consecutive blocks
allows an attacker to be immune to arbitrage and makes
the manipulation cost reduce to the AMM fee. Note that
the attacks on the lending protocol require separate attack
capital that is independent of the manipulation capital we are
discussing here. An MMEV attack is cheaper than a single-
block attack if it is cheaper to create two blocks in a row than
being vulnerable to an arbitrage that nullifies the attacker’s
de-manipulation transaction. The cost of selfishly mining two
blocks in a row is fixed. It does not depend on LT or ϵ.
Assuming a constant product AMM like Uniswap V2, we have
RA ·RB = K, we can calculate the required number of tokens
of asset B to achieve a price for A of (1 + LT · ϵ) ·mp from
Equation 1.

Ignoring the AMM fee and assuming a TWAP length
of 135 blocks (30 minutes, if we assume Ethereum as the
smart contract platform), we calculate values of b required for

different values of ϵ. Table I shows that doubling the TWAP
price of A for a 30-minute TWAP (by setting ϵ = 1) on a pair
with $2,000,000 of total liquidity, $1,000,000 worth of A and
B respectively, would require temporary capital of $9,750,000.
Increasing TWAP to 100 ·mp (setting ϵ = 99) would require
temporary manipulation capital of $113,000,000. The amount
of manipulation capital required is likely a bigger limiting
factor for an attacker than the cost in fees. This is an illustrative
example using values for liquidity and TWAP length that could
be used in practice. The manipulation capital required scales
linearly with total liquidity and scales with the square root of
TWAP length and ϵ. Note that using a flash loan to acquire
the needed funds is not an option, as this attack spans two
blocks.

ϵ b

0.5 6,400,000
1 9,750,000
9 33,000,000
99 113,000,000

Table I: Amounts and trading fee costs for different ϵ

B. Selfish Mining Cost

Selfish mining cost is given by the opportunity cost of not
mining blocks on the main chain. We model the following
miner strategy S: The selfish miner M mines on the main
chain until he successfully mines a block B1. M does not
publish B1 and continues mining on top of B1. If M finds a
second block B2, M immediately publishes both B1 and B2.
M ’s chain is now longer than the main chain, and all honest
miners will continue mining on M ’s chain. We call this a
success. If two blocks are added to the main chain without M
finding a block B2, M publishes B1. This will turn B1 into
an uncle block. Then M starts over and returns to mining the
main chain.

0, 0 1, 0

1, 1

2, x1− p

p

1− p

p

p1− p

1

Figure 2: Markov chain model of strategy S

Let p be the share of the total hash rate that M controls. The
probability of M mining any block is p, and the probability
of all other miners mining that block is 1 − p. We assume
that the propagation of newly published blocks to the network
is instantaneous. Let E[S] be the expected number of blocks
it takes to have success when following strategy S. We use
the Markov chain given in Figure 2 to model strategy S. The
states of the Markov chain contain pairs of (n1, n2) with n1 =
number of blocks on the private chain and n2 = number of
blocks on the main chain. The absorbing state (2, x) is the state
where the selfish miner is leading with the required length 2

5

and will release both blocks to the main chain. As this is a
finite discrete absorbing Markov chain, we can calculate the
expected hitting time E[S] of state (2, x) given the initial state
is (0, 0) as:

E[S] =
1 + 2p− p2

2p2 − p3

Opportunity Cost: In the original selfish mining research on
Bitcoin [16], the selfish miner forgoes mining rewards if the
miner’s private blocks do not make it to the main blockchain.
In Ethereum, there is a way to reduce this opportunity cost
by making these private blocks into public uncle blocks and
collect uncle block rewards. It takes E[S] blocks for MMEV
success. During this time, the miner has a p chance of mining
a block. This makes their uncle block opportunity E[S] · p −
2. The last two blocks cannot count as uncle blocks as the
selfish miner releases them as part of the main blockchain.
Uncle blocks mitigate the attack cost even more, at the risk
of exposing the fact that the attack is happening to the world
at large.

Total Cost: In Ethereum, blocks are generated every 15
seconds, leading to 240 blocks per hour.2 The dollar cost of
selfish mining is calculated based on Ethereum’s total hash
rate of 715 terahashes/s [20], and the cost of renting hash
power at $60,000 for one terahash/s for 24 hours [21]. As
we see, an attacker can rent 1.5% hash rate for 9 hours by
paying $258,000 and expect to selfishly mine two blocks in a
row. As the MMEV selfish miner has different goals than the
traditional selfish miner, a much lower share of the total hash
rate is enough for success. This is important because renting a
higher hash rate can distort the inelastic hash rate market, and
the price per hash will go up. Uncle rewards are reduced by
0.25 ETH for each generation that they are late. We remove
0.25 ETH from the average uncle block reward, putting the
uncle block reward at 1.46 ETH. If we look at low values for
p, the expected time to success (in hours) and the approximate
total cost in dollars for the attack are shown in Table II.

p E[S] in hours Cost in dollars Uncle Rewards Total Cost
0.25% 335 $1,499,000 $598,000 $901,000
0.50% 84 $754,000 $298,000 $456,000
0.75% 37 $506,000 $198,000 $308,000
1.00% 21 $382,000 $148,000 $234,000
1.25% 13 $307,000 $118,000 $189,000
1.50% 9 $258,000 $98,000 $160,000

Table II: Selfish Mining MMEV hash rates, costs, and rewards

C. MMEV in Proof of Stake

In the proof-of-stake algorithm currently proposed for
Ethereum [22], block proposers per epoch are known in
advance. Two block proposers could collude and perform
MMEV style oracle manipulation. These attacks do not go

2In practice, Ethereum has a slightly faster block generation time of 260
blocks per hour.

against standard consensus rules of blockchains, and hence,
colluding proposers will escape slashing, or even detection.

In proof-of-stake systems that use verifiable randomness
functions (Algorand, Ouroboros family), block proposers can-
not be predicted in advance and MMEV attacks are not possi-
ble in the algorithms’ ideal settings. However if the previous
block is used to generate the seed used in the verifiable
randomness function, block proposers could try a “grinding
attack”, where they try to improve their odds of proposing
two blocks in a row to enable the MMEV style attack. The
incentives for traditional selfish mining and “stake grinding”
attacks are specified in terms of block rewards. However, an
MMEV style attack is entirely independent of block rewards
and can be orders of magnitude more profitable due to DeFi
rewards. These out-sized rewards might make it worthwhile to
game the verifiable randomness functions. This is an area of
future research.

V. RESULTS

We compare the three different TWAP manipulation attacks
we have seen so far. We again use the example where we want
to double the price of an asset which uses a 30-minute TWAP
that uses a pair with $2,000,000 of total liquidity reserves.
The cost of the MMEV single-block attack with 1.5% hash
rate is $160,000. Based on equation 1, the cost of the single-
block attack is C1(135 · 1) = $9,750,000 and the cost of the
multi-block attack is 135 · C1(1) = $16,200,000.

All attacks ignore the rather small AMM trading fee of
around $35,000. The multi-block attack (previous best known
attack) cost scales linearly with the TWAP length LT , whereas
the single-block attack costs only scale with the square root of
LT . The MMEV single-block attack avoids this cost entirely
as it has no arbitrageurs to worry about. The cost of selfish
mining-based MMEV single block attacks only depends on
the share of hash power required to pull off the attack in a
reasonable time. Even with a conservative estimate of 1.5%,
it is almost two orders of magnitude cheaper than the other
attacks.

A. Solution 1: Median

First, as seen in commentary on Equation (1), an asset pair
having high liquidity RA, RB makes the costs of the non-
MMEV attacks scale linearly with it, which mitigates the
attack to some extent. In the MMEV single-block attack, only
the cost of trading fees scales with liquidity. For all attacks,
the amount of temporary capital required scales linearly with
liquidity. Illiquid assets are more likely to get attacked in the
ways discussed above. Using a longer length for the TWAP is
not ideal mitigation against the standard and MMEV versions
of the single-block attack, as the cost and capital requirements
only scale with the square root of the TWAP length in the best
case. The fundamental issue that these attacks exploit is that a
TWAP can be affected significantly by manipulating a single
block’s price. This could be solved by using a median price
instead of an average. A median is largely unaffected by outlier
prices in single blocks. This eliminates the single-block attack

6

and requires the MMEV attack to take place over many blocks
and not just two. It is important to note that a median is less
resilient to the multi-block attack than a TWAP. To manipulate
a median, it is sufficient to manipulate only half the blocks it
encompasses. Consequently, the multi-block attack becomes
cheaper by 50% if the median is used instead of the average.

Using a median oracle does not seem practical, as the calling
contract would need to store checkpoints of the accumulator
every single block and would need to load all checkpoints
from storage to calculate the median, which would be very
expensive in terms of gas costs.

A more economic solution could be to use a median of
averages with a small number of averages. One would split
the block range of interest into n smaller ranges using n+1
checkpoints and calculate the average of each range. This
would mean the majority of ranges would need to contain at
least one block that is manipulated to manipulate the median.
Further work would be needed to analyze the properties of
such a median of averages in worst-case conditions compared
to a standard median or average.

B. Solution 2: Geometric Mean

Uniswap V3 stores the cumulative logarithm (to some base
b) of the price of every pool’s assets instead of the sum as in
Uniswap V2. As before, we denote the length of the TWAP
to be LT . Say, the accumulated value of the logarithm of an
asset at time ti as

At =

j=ti∑
i=0

logbPi

This allows a consumer protocol (like a lending protocol) to
use the geometric mean of the pool as

Pt1,t2 = B
At2

−At1
LT

In effect, the geometric mean of the individual prices can also
be written as

Pt1,t2 = LT

√√√√ t2∏
i=t1

Pi

To compare TWAPs with arithmetic mean and geometric
mean, we assume the price of an asset to be constant (say
mp) over the TWAP period (LT) and hence TWAPs with both
arithmetic and geometric means return the same price. We now
try to manipulate the TWAPs in both cases using the single
block attack to reflect a price of (1 + ϵ) ·mp. In the case of
the arithmetic mean TWAP, the price of the asset in one block
has to be manipulated to (1 + LT · ϵ) · mp. In the case of
geometric mean TWAP, the price of the asset in one block
has to be manipulated to (1 + ϵ)LT ·mp.

As can be seen in Figure 3, manipulating the geometric
mean by manipulating the price of an asset in a single block
is more expensive than multi-block manipulation. This means
that Uniswap V3 oracles are not affected by the single-block
attack described in this paper, while Uniswap V2 oracles are.
However, using MMEV to avoid arbitrageurs while executing

Figure 3: Cost comparison between the multi-block and single-
block attack with geometric mean. The y-axis shows how much
cheaper the single-block attack is. The single-block attack is more
expensive when the cost reduction is less than 1. The x-axis is
LT .

the multi-block attack could reduce its costs significantly. This
would likely require controlling many blocks within the TWAP
period, not just two. This makes the attack more difficult and
thus more expensive. Analysing this use-case of MMEV is a
topic for future research.

VI. CONCLUSION

We illustrated the need for a manipulation-resistant oracle
with the under-collateralized loan attack on a lending protocol.
Any protocol that relies in the same way on a TWAP oracle
is vulnerable. We analyzed the manipulation resistance of
TWAP oracles against different types of attacks and showed
that the cost of manipulation for TWAP oracles is lower than
expected. We introduced the single-block attack, which for
longer TWAPs is cheaper to execute than the previously known
multi-block attack. Previously, it was assumed that a TWAP
oracle is safe because the multi-block attack is expensive to
execute because the safeguards against the attack are assumed
to work. We show that the single block attack is not only
cheaper to execute, but the assumed safeguards do not work.
One of the safeguards assumed in the multi-block attack’s
“infeasibility bubble” is that arbitrageurs can get assets from
external off-chain exchanges to revert the manipulated price
back to the market price. The single block attack leaves
no time for arbitrageurs to do this, thereby restricting this
assumption to just on-chain exchanges.

Another safeguard that is assumed in the multi-block at-
tack’s “infeasibility bubble” is that arbitrageurs will always
arbitrage the manipulated price back to the market price. Under
the MMEV setting, we show that if an attacker can mine
two blocks in a row, this no-arbitrage condition fails, and
the attack gets dramatically cheaper. The area of MMEV is
under-explored and should be analyzed for other exploits that
are only possible when an attacker controls multiple blocks in
a row.

7

These attacks do not target a specific victim transaction.
The goal is to manipulate an oracle that a DeFi protocol relies
upon and exploit the protocol. A protocol’s structural reliance
on an oracle does not change much with time, and this attack is
always available for the taking, based on the attacker’s ability
to acquire capital to pull off the attack.

As a solution, we also suggest that TWAP oracles
should rather use the median or the geometric mean as a
manipulation-resistant statistic instead of a mean. An interest-
ing open research question is to analyze the effect of MMEV
attacks on geometric mean TWAPs or other types of metrics
that also reflect an asset’s true market price.

REFERENCES

[1] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[2] R. Leshner and G. Hayes, “Compound: The money market protocol,”
Feb 2019. [Online]. Available: https://compound.finance/documents/
Compound.Whitepaper.pdf

[3] Aave Protocol Whitepaper V1.0. [Online]. Avail-
able: https://github.com/aave/aave-protocol/blob/master/docs/Aave
Protocol Whitepaper v1 0.pdf

[4] Y. Zhang, X. Chen, and P. Daejun, “Formal specification of
constant product (xy=k) market maker model and implementation,”
Oct 2018. [Online]. Available: https://github.com/runtimeverification/
verified-smart-contracts/blob/uniswap/uniswap/x-y-k.pdf

[5] W. Warren and A. Bandeali, “0x: An open protocol for decentralized
exchange on the ethereum blockchain,” pp. 04–18, Feb 2017. [Online].
Available: https://github.com/0xProject/whitepaper

[6] Yearn Finance. [Online]. Available: https://docs.yearn.finance/
[7] Convex Finance. [Online]. Available: https://www.convexfinance.com/
[8] H. Karp and R. Melbardis. Nexus Mutual. [Online]. Available:

https://nexusmutual.io/assets/docs/nmx white paperv2 3.pdf
[9] Total Value Locked (USD) in DeFi. [Online]. Available: https:

//defipulse.com/
[10] G. Angeris, H.-T. Kao, R. Chiang, C. Noyes, and T. Chitra, “An analysis

of Uniswap markets,” arXiv e-prints, p. arXiv:1911.03380, Nov. 2019.
[11] “Inverse Finance got flipped for $15M.” https://rekt.news/

inverse-finance-rekt/, [Accessed: 2022-04-04].
[12] K. Qin, L. Zhou, B. Livshits, and A. Gervais, “Attacking the defi

ecosystem with flash loans for fun and profit,” 2021.
[13] H. Adams, N. Zinsmeister, and R. Dan. (2020, Mar) Uniswap V2 Core.

[Online]. Available: https://uniswap.org/whitepaper.pdf
[14] G. Angeris. (2020, Feb) When is Uniswap a good

oracle? [Online]. Available: https://medium.com/gauntlet-networks/
why-is-uniswap-a-good-oracle-22d84e5b0b6c

[15] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach,
and A. Juels, “Flash boys 2.0: Frontrunning, transaction reordering, and
consensus instability in decentralized exchanges,” 2019.

[16] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is
vulnerable,” in International conference on financial cryptography and
data security. Springer, 2014, pp. 436–454.

[17] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, “Optimal selfish mining
strategies in bitcoin,” in International Conference on Financial Cryp-
tography and Data Security. Springer, 2016, pp. 515–532.

[18] F. Ritz and A. Zugenmaier, “The impact of uncle rewards on selfish
mining in ethereum,” 2018 IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW), Apr 2018. [Online]. Available:
http://dx.doi.org/10.1109/EuroSPW.2018.00013

[19] Dapp.org. (2020) Uniswap V2 Audit Report. [Online]. Available:
https://uniswap.org/audit.html

[20] Ethereum Network Hash Rate. [Online]. Available: https://ycharts.com/
indicators/ethereum network hash rate

[21] Nicehash Hash power Marketplace. [Online]. Available: https://www.
nicehash.com/marketplace

[22] V. Buterin, D. Hernandez, T. Kamphefner, K. Pham, Z. Qiao,
D. Ryan, J. Sin, Y. Wang, and Y. X. Zhang, “Combining GHOST
and casper,” CoRR, vol. abs/2003.03052, 2020. [Online]. Available:
https://arxiv.org/abs/2003.03052

APPENDIX A
UNDERCOLLATERALIZED ATTACK

A bad actor assumes the role of a borrower to execute this
attack. We define the collateral factor f (ranging from 0 to 1)
of an asset A as the ratio that governs how much value can be
borrowed against A. If one deposits a units of collateral A at
price VA, they have a borrowing capacity of Bc = f · a · VA.
Let mp be the true market price of A and ϵ > 0 be an arbitrary
constant. The attacker does the following steps:

1) Set aside capital C for the attack. Divide the capital into
two piles Cc and Cm, such that Cc+Cm = C (Cc is the
capital cost and Cm is the manipulation cost).

2) Using Cc, purchase an amount ac of asset A at price mp

from any unrelated exchange. Cc = ac ·mp.
3) Using Cm, manipulate the AMM price oracle to report

the price of A as (1 + ϵ) ·mp by purchasing an amount
am of A on the AMM.

4) Deposit ac of A (bought in step 2) as collateral and
borrow another asset B up to the borrowing capacity
f · ac · (1 + ϵ) · mp. If (1 + ϵ) > 1

f , this is an under-
collateralized loan.

5) Never pay back the loan. Sell ac · (1 + ϵ) ·mp · f worth
of B and book profit P .

6) (Optional) “De-manipulate” the price of A on the AMM
back to mp by selling am of A, receiving back Cm.

To simplify, we set 1+ϵ = 1+δ
f , with δ being another arbitrary

constant. The collateral factor f cancels out. Step 6 can be
difficult to do in practice due to front-running by arbitrageurs.
Assuming the attacker can do step 6, the manipulation has no
cost and we get the profit P as:

P = ac · (δ + 1) ·mp − Cc,

P = δ · Cc.

In this case, any attack with δ ·Cc > Cm has a positive profit.
To disincentivize such an attack, Cm needs to be high for
non-negligible positive values of δ (ϵ is linearly related to δ).
Oracle designs try to keep Cm high and to make it difficult to
execute step 6.

APPENDIX B
UNISWAP V2 ORACLE PRICE RECORDING

Uniswap swap pairs are independent smart contracts
that have internal state variables. To enable this “end of a
block” trick, Uniswap stores the timestamp (overwriting the
previous one) of each Uniswap smart contract call. This
variable, called, blockTimestampLast, always has the last
smart contract call timestamp. It is used in conjunction with
the most recently mined block’s timestamp to record the
oracle prices in state variables. For reference, the actual
function code is at https://github.com/Uniswap/v2-core/blob/
4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/
UniswapV2Pair.sol#L73.

8

https://compound.finance/documents/Compound.Whitepaper.pdf
https://compound.finance/documents/Compound.Whitepaper.pdf
https://github.com/aave/aave-protocol/blob/master/docs/Aave_Protocol_Whitepaper_v1_0.pdf
https://github.com/aave/aave-protocol/blob/master/docs/Aave_Protocol_Whitepaper_v1_0.pdf
https://github.com/runtimeverification/verified-smart-contracts/blob/uniswap/uniswap/x-y-k.pdf
https://github.com/runtimeverification/verified-smart-contracts/blob/uniswap/uniswap/x-y-k.pdf
https://github.com/0xProject/whitepaper
https://docs.yearn.finance/
https://www.convexfinance.com/
https://nexusmutual.io/assets/docs/nmx_white_paperv2_3.pdf
https://defipulse.com/
https://defipulse.com/
https://rekt.news/inverse-finance-rekt/
https://rekt.news/inverse-finance-rekt/
https://uniswap.org/whitepaper.pdf
https://medium.com/gauntlet-networks/why-is-uniswap-a-good-oracle-22d84e5b0b6c
https://medium.com/gauntlet-networks/why-is-uniswap-a-good-oracle-22d84e5b0b6c
http://dx.doi.org/10.1109/EuroSPW.2018.00013
https://uniswap.org/audit.html
https://ycharts.com/indicators/ethereum_network_hash_rate
https://ycharts.com/indicators/ethereum_network_hash_rate
https://www.nicehash.com/marketplace
https://www.nicehash.com/marketplace
https://arxiv.org/abs/2003.03052
https://github.com/Uniswap/v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/UniswapV2Pair.sol#L73
https://github.com/Uniswap/v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/UniswapV2Pair.sol#L73
https://github.com/Uniswap/v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/UniswapV2Pair.sol#L73

	Introduction
	Lending
	Constant Function Automated Market Makers

	Attacks on Lending Protocols
	Undercollateralized loan attack
	Liquidation Attack
	Spot Price Manipulation

	TWAP oracles
	TWAP manipulation cost
	Single-block attack
	Failed Assumptions

	Multi-Block MEV
	Manipulation Capital
	Selfish Mining Cost
	MMEV in Proof of Stake

	Results
	Solution 1: Median
	Solution 2: Geometric Mean

	Conclusion
	References
	Appendix A: Undercollateralized Attack
	Appendix B: Uniswap V2 Oracle Price Recording

