Solving the ANTS Problem with Asynchronous Finite State Machines

Yuval Emek, Tobias Langner, Jara Uitto, Roger Wattenhofer

ETH Zurich - Distributed Computing Group - www.disco.ethz.ch

Previous Work

 ANTS problem (Ants Nearby Treasure Search) introduced by Feinerman, Korman, Lotker, Sereni [PODC 2012]

Previous Work

 ANTS problem (Ants Nearby Treasure Search) introduced by Feinerman, Korman, Lotker, Sereni [PODC 2012]

• Treasure located in **optimal** time $\mathcal{O}(D^2/n + D)$

Motivation

- "They operate without any central control. Their collective behavior arises from local interactions."
- Prime example of real-world distributed algorithms
- Deeper understanding may help computer science and biology

- Infinite integer grid with origin and treasure in (Manhattan-) distance D
- Ants controlled by the same randomized finite automaton
- Execution in asynchronous environment
- Goal: Starting at origin, find treasure fast

► In each step, ant can move one cell N, E, S, W or stay

Communication within cells

- For each state: Is there an ant with this state?
- $\blacktriangleright \Rightarrow Finite message size$

E G -**G** G-Ġ

G- **G** G G G

G ĠG G G

G **G**-G ė G

G G G -**C**G

G G G -6 Ġ

G **B**G G G

G Ģ G -G G

EG G G G

EG G G G

G- **G** G G G

G ė G G G

G 6-G G G

G İG G G

G **G**--G ė G

G G G -6 G

G G G ė G

G G G -**E**G

G G G -0 Ġ

G G G 0 G

G G G -6 G

G ĢG G G

G Ģ G --G G

G • G G G

G 0 G G G
Diamond Search – Runtime

- $\mathcal{O}(D^2)$ cells within distance D
- New cell explored every constant number of steps
- Runtime: $\mathcal{O}(D^2)$
- How can we parallelize it?

Parallel Diamond Search

- Simple idea: Multiple search teams search in parallel
- Emit new team as long as still ants available in origin
- Ensure "organized" overtaking

Parallel Diamond Search

- Search teams stick together
- Two separate stages
 - Initialization
 - Search

Each ant employs a Scout

Explorers do not overtake

Explorers do not overtake

Explorers do not overtake

Explorer waits for next guide

Explorer waits for next guide

Explorer waits for next guide
Handling Asynchrony

• Every explorer finds guide on axis

Runtime Analysis

Essential puzzle pieces:

- Synchronous schedule: no explorer is delayed
- ▶ Synchronous schedule: treasure found in time $O(D^2/n + D)$.
- Synchronous schedule is worst-case schedule

How can we repeatedly emit a new search team of ten ants?

Spread ants along the east axis

- Spread ants along the east axis
- Each ant throws a coin

- Spread ants along the east axis
- Each ant throws a coin
- ▶ When a cell contains exactly one ant ⇒ Ready!

- Spread ants along the east axis
- Each ant throws a coin
- ▶ When a cell contains exactly one ant ⇒ Ready!
- ► Ten subsequent cells are ready? ⇒ Collect team!

- Spread ants along the east axis
- Each ant throws a coin
- ▶ When a cell contains exactly one ant ⇒ Ready!
- ► Ten subsequent cells are ready? ⇒ Collect team!
- ► After time O(log n), a new team can be emitted within a constant amount of time

Search team emission works after time $\mathcal{O}(\log n)$

- Search team emission works after time $O(\log n)$
- Then, treasure is found in time $\mathcal{O}(D^2/n + D)$

- Search team emission works after time $O(\log n)$
- Then, treasure is found in time $\mathcal{O}(D^2/n + D)$
- Runtime: $\mathcal{O}(D^2/n + D + \log n)$

- Search team emission works after time O(log n)
- Then, treasure is found in time $\mathcal{O}(D^2/n + D)$
- Runtime: $\mathcal{O}(D^2/n + D + \log n)$
 - About half of the ants perform RectangleSearch

- Search team emission works after time O(log n)
- Then, treasure is found in time $\mathcal{O}(D^2/n + D)$
- Runtime: $\mathcal{O}(D^2/n + D + \log n)$
 - About half of the ants perform RectangleSearch
 - ► The other half performs local random search which locates treasure in time O(D) if D ≤ log n

- Search team emission works after time $O(\log n)$
- Then, treasure is found in time $\mathcal{O}(D^2/n + D)$
- Runtime: $\mathcal{O}(D^2/n + D + \log n)$
 - About half of the ants perform RectangleSearch
 - ► The other half performs local random search which locates treasure in time O(D) if D ≤ log n
- **Combined runtime**: $\mathcal{O}(D^2/n + D)$

Diamond Search in Real Life

Thanks! Questions & Comments?