Solving the ANTS Problem with Asynchronous Finite State Machines

$n \times 3$

$$
n \times 3
$$

Previous Work

- ANTS problem (Ants Nearby Treasure Search) introduced by Feinerman, Korman, Lotker, Sereni [PODC 2012]

Previous Work

- ANTS problem (Ants Nearby Treasure Search) introduced by Feinerman, Korman, Lotker, Sereni [PODC 2012]

- Treasure located in optimal time $\mathcal{O}\left(D^{2} / n+D\right)$

Motivation

- "They operate without any central control. Their collective behavior arises from local interactions."
- Prime example of real-world distributed algorithms
- Deeper understanding may help computer science and biology

Model

- Infinite integer grid with origin and treasure in (Manhattan-) distance D
- Ants controlled by the same randomized finite automaton
- Execution in asynchronous environment
- Goal: Starting at origin, find treasure fast

Model

- In each step, ant can move one cell N, E, S, W or stay

Model

- Communication within cells

Model

- For each state: Is there an ant with this state?
- \Rightarrow Finite message size

Diamond Search

				E. (
			G-	O	$\rightarrow \mathbf{G}$			
				\mathbf{d}				

Diamond Search

	T							
			$\boldsymbol{E}-$	\boldsymbol{C}				
			$\boldsymbol{\Theta}$	0	$\boldsymbol{\Theta}$			
				$\boldsymbol{\Theta}$				

Diamond Search

				G				
			E. G	O	G			
				G				

Diamond Search

				G				
		G-		O	G			
			E	G				

Diamond Search

				G				
		G		O	G			
				E G				

Diamond Search

	T							
				$\boldsymbol{\Theta}$				
		$\boldsymbol{\Theta}$		0	$\boldsymbol{\Theta}$			
					©			
				$\boldsymbol{\epsilon}$				

Diamond Search

				G				
		G		0	E G			
				G				

Diamond Search

				G	E			
		G		0		\rightarrow G		
				G				

Diamond Search

				E G				
		G						
						G		
				G				

Diamond Search

				E G G				
		G						
				G				
				G				

Diamond Search

			E	G				
		G		0		G		
				G				

Diamond Search

				G				
			E					
		G		0		G		
				G				

Diamond Search

	T							
				$\boldsymbol{\Theta}$				
		$\boldsymbol{\epsilon}-$						
		$\boldsymbol{\Theta}$		0		$\boldsymbol{\Theta}$		
				$\boldsymbol{\Theta}$				

Diamond Search

				G				
		E G		0		G		
				G				

Diamond Search

				G				
	G-							
		E				G		
				G				

Diamond Search

				G				
	G							
			\rightarrow E			G		
				G				

Diamond Search

				G				
	G			0		G		
			E	G				

Diamond Search

	T							
				$\boldsymbol{\Theta}$				
	$\boldsymbol{\Theta}$			0		$\boldsymbol{\Theta}$		
				© ©				

Diamond Search

				G				
	G			0		G		
					\rightarrow E			
				\mathbf{G}				

Diamond Search

	T							
				$\boldsymbol{\Theta}$				
	$\boldsymbol{\Theta}$			0		$\boldsymbol{\Theta}$		
					$\boldsymbol{\Theta}$			
				$\boldsymbol{\Theta}$				

Diamond Search

	T							
				$\boldsymbol{\Theta}$				
	$\boldsymbol{\Theta}$			0		$\boldsymbol{\Theta}$		
						©		
				$\boldsymbol{\Theta}$				

Diamond Search

	T							
				$\boldsymbol{\Theta}$				
	$\boldsymbol{\Theta}$			0		$\boldsymbol{\Theta} \boldsymbol{\Theta}$		
				$\boldsymbol{\Theta}$				

Diamond Search

	T							
				$\boldsymbol{\Theta}$				
						$\boldsymbol{\Theta}$		
	$\boldsymbol{\Theta}$			0			$-\boldsymbol{C}$	
				$\boldsymbol{\Theta}$				

Diamond Search

	T							
				$\boldsymbol{\epsilon}$				
					$\boldsymbol{\epsilon}-$			
	$\boldsymbol{\Theta}$			0			$\boldsymbol{\Theta}$	
				$\boldsymbol{\Theta}$				

Diamond Search

	T							
				$\boldsymbol{\Theta}$	$\boldsymbol{\Theta}$			
	$\boldsymbol{\Theta}$			0			$\boldsymbol{\Theta}$	
				$\boldsymbol{\Theta}$				

Diamond Search - Runtime

- $\mathcal{O}\left(D^{2}\right)$ cells within distance D
- New cell explored every constant number of steps
- Runtime: $\mathcal{O}\left(D^{2}\right)$
- How can we parallelize it?

Parallel Diamond Search

- Simple idea: Multiple search teams search in parallel
- Emit new team as long as still ants available in origin
- Ensure "organized" overtaking

Parallel Diamond Search

- Search teams stick together
- Two separate stages
- Initialization
- Search

Parallel Diamond Search - Execution

				A				

Parallel Diamond Search - Execution

Parallel Diamond Search - Execution

				E G				
			G	A	G			
				G				

Parallel Diamond Search - Execution

			E	G				
			G	A	G			
				G				

Parallel Diamond Search - Execution

Parallel Diamond Search - Execution

	T							
				$\boldsymbol{0}$				
			©	©	$\boldsymbol{0}$			
			$\boldsymbol{\Theta}$	$\boldsymbol{0}$				

Parallel Diamond Search - Execution

	T							
				©				
			© © © ©	©				
			© ©					

Parallel Diamond Search - Execution

	T							
				©				
			©	©	©			
				©	©			

Parallel Diamond Search - Execution

				C				
				A	C			

Parallel Diamond Search - Execution

Parallel Diamond Search - Execution

Parallel Diamond Search - Execution

					E G			
				C				
		G		A	C	G		
				G				

Parallel Diamond Search - Execution

	7		E	(G)	\%			
				C				
		(G)	(10)	A	(c)	(
			\cdots	(10)	(5)	.		
				(G)				

Parallel Diamond Search - Execution

Parallel Diamond Search - Execution

				E G				
					C			

Parallel Diamond Search - Execution

Parallel Diamond Search - Execution

			E	(C				
	\square							
	(G)			0			(G)	\rightarrow (MC)
				C				
				(1)				

Parallel Diamond Search - Execution

				E G				

Parallel Diamond Search - Execution

			E	G				

Handling Asynchrony

- Each ant employs a Scout

Handling Asynchrony

- Explorers do not overtake

Handling Asynchrony

- Explorers do not overtake

Handling Asynchrony

- Explorers do not overtake

Handling Asynchrony

- Explorer waits for next guide

Handling Asynchrony

- Explorer waits for next guide

Handling Asynchrony

- Explorer waits for next guide

Handling Asynchrony

- Every explorer finds guide on axis

Runtime Analysis

Essential puzzle pieces:

- Synchronous schedule: no explorer is delayed
- Synchronous schedule: treasure found in time $\mathcal{O}\left(D^{2} / n+D\right)$.
- Synchronous schedule is worst-case schedule

Emitting Search Teams

How can we repeatedly emit a new search team of ten ants?

- Spread ants along the east axis

Emitting Search Teams

How can we repeatedly emit a new search team of ten ants?

- Spread ants along the east axis
- Each ant throws a coin

Emitting Search Teams

How can we repeatedly emit a new search team of ten ants?

- Spread ants along the east axis
- Each ant throws a coin
- When a cell contains exactly one ant \Rightarrow Ready!

Emitting Search Teams

How can we repeatedly emit a new search team of ten ants?

- Spread ants along the east axis
- Each ant throws a coin
- When a cell contains exactly one ant \Rightarrow Ready!
- Ten subsequent cells are ready? \Rightarrow Collect team!

Emitting Search Teams

How can we repeatedly emit a new search team of ten ants?

- Spread ants along the east axis
- Each ant throws a coin
- When a cell contains exactly one ant \Rightarrow Ready!
- Ten subsequent cells are ready? \Rightarrow Collect team!
- After time $\mathcal{O}(\log n)$, a new team can be emitted within a constant amount of time

Putting Everything Together

- Search team emission works after time $\mathcal{O}(\log n)$

Putting Everything Together

- Search team emission works after time $\mathcal{O}(\log n)$
- Then, treasure is found in time $\mathcal{O}\left(D^{2} / n+D\right)$

Putting Everything Together

- Search team emission works after time $\mathcal{O}(\log n)$
- Then, treasure is found in time $\mathcal{O}\left(D^{2} / n+D\right)$
- Runtime: $\mathcal{O}\left(D^{2} / n+D+\log n\right)$

Putting Everything Together

- Search team emission works after time $\mathcal{O}(\log n)$
- Then, treasure is found in time $\mathcal{O}\left(D^{2} / n+D\right)$
- Runtime: $\mathcal{O}\left(D^{2} / n+D+\log n\right)$
- About half of the ants perform RectangleSearch

Putting Everything Together

- Search team emission works after time $\mathcal{O}(\log n)$
- Then, treasure is found in time $\mathcal{O}\left(D^{2} / n+D\right)$
- Runtime: $\mathcal{O}\left(D^{2} / n+D+\log n\right)$
- About half of the ants perform RectangleSearch
- The other half performs local random search which locates treasure in time $\mathcal{O}(D)$ if $D \leq \log n$

Putting Everything Together

- Search team emission works after time $\mathcal{O}(\log n)$
- Then, treasure is found in time $\mathcal{O}\left(D^{2} / n+D\right)$
- Runtime: $\mathcal{O}\left(D^{2} / n+D+\log n\right)$
- About half of the ants perform RectangleSearch
- The other half performs local random search which locates treasure in time $\mathcal{O}(D)$ if $D \leq \log n$
- Combined runtime: $\mathcal{O}\left(D^{2} / n+D\right)$

Diamond Search in Real Life

Thanks!

Questions \& Comments?

