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Magnús M. Halldórsson1,� and Roger Wattenhofer2

1 School of Computer Science, Reykjavik University, 103 Reykjavik, Iceland
mmh@ru.is

2 Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland
wattenhofer@tik.ee.ethz.ch

Abstract. In this paper we address a common question in wireless com-
munication: How long does it take to satisfy an arbitrary set of wireless
communication requests? This problem is known as the wireless schedul-
ing problem. Our main result proves that wireless scheduling is in APX.
In addition we present a robustness result, showing that constant pa-
rameter and model changes will modify the result only by a constant.

1 Introduction

Despite the omnipresence of wireless networks, surprisingly little is known about
their algorithmic complexity and efficiency: Designing and tuning a wireless net-
work is a matter of experience, regardless whether it is a Wireless LAN in an
office building, a GSM phone network, or a sensor network on a volcano.

We are interested in the fundamental communication limits of wireless net-
works. In particular, we would like to know what communication throughput
can possibly be achieved. This question essentially boils down to spatial reuse,
i.e., which devices can transmit concurrently, without interfering. More precisely,
formulated as an optimization problem: Given a set of communication requests,
how much time does it take to schedule them?

Evidently the answer to this question depends on the wireless transmission
model. In the past, algorithmic research has focused on graph-based models, also
known as protocol models. Unfortunately, graph-based models are too simplistic.
Consider for instance a case of three wireless transmissions, every two of which
can be scheduled concurrently without a conflict. In a graph-based model one
will conclude that all three transmissions may be scheduled concurrently as well,
while in reality this might not be the case since wireless signals sum up. Instead,
it may be that two transmissions together generate too much interference, hin-
dering the third receiver from correctly receiving the signal of its sender. This
many-to-many relationship makes understanding wireless transmissions difficult
– a model where interference sums up seems paramount to truly comprehending
wireless communication. Similarly, a graph-based model oversimplifies wireless
attenuation. In graph-based models the signal is “binary”, as if there was an
invisible wall at which the signal immediately drops. Not surprisingly, in reality
the signal decreases gracefully with distance.
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In contrast to the algorithmic (“CS”) community which focuses on graph-
based models, researchers in information, communication, or network theory
(“EE”) are working with wireless models that sum up interference and respect
attenuation. The standard model is the signal-to-interference-plus-noise (SINR)
model – we will formally introduce it in Section 3. The SINR model is reflect-
ing the physical reality more precisely, it is therefore often simply called the
physical model. On the other hand, “EE researchers” are not really looking for
algorithmic results. Instead, they usually propose heuristics that are evaluated
by simulation. Analytical work is only done for special cases, e.g. the network has
a grid structure, or traffic is random. However, these special cases do neither give
insights into the complexity of the problem, nor do they give algorithmic results
that may ultimately lead to new protocols. Since the SINR model is somewhere
between graph-theory and geometry, we believe that it will be interesting for the
algorithms community, as a new set of tools will be necessary.

The specific question we are addressing in this paper is a classic question in
wireless communication: How long does it take to satisfy an arbitrary set of wire-
less communication requests? This problem is known as the wireless scheduling
problem. It is at the heart of wireless communication. Our solution is hopefully
pleasing to the EE community as it is using their models, and it is hopefully
pleasing to the CS community because we make no restrictions on the input.
Our main result proves that wireless scheduling is in APX.

2 Related Work

Most work in wireless scheduling in the physical (SINR) model is of heuristic na-
ture, e.g. [3,7]. Only after the work of Gupta and Kumar [14], analytical results
became en vogue. The analytical results however are restricted to networks with
a well-behaving topology and traffic pattern. On the one hand this restriction
keeps the math involved tractable, on the other hand, it allows for presenting
the results in a concise form, i.e., “the throughput capacity of a wireless net-
work with X and Y is Z”, where X and Y are some parameters defining the
network, and Z is a function of the network size. This area of research has been
exceptionally popular, with a multi-dimensional parameter space (e.g. node dis-
tribution, traffic pattern, transport layer, mobility), and consequently literally
thousands of publications. The intrinsic problem with this line of research is
that real networks often do not resemble the models studied here, so one cannot
learn much about the capacity of a real network. Moreover, one cannot devise
protocols since the results are not algorithmic.

In contrast there is a body of algorithmic work, however, mostly on graph-
based models. Studying wireless communication in graph-based models
commonly implies studying some variants of independent set, matching, or col-
oring [18,26]. Although these algorithms present extensive theoretical analysis,
they are constrained to the limitations of a model that ultimately abstracts away
the nature of wireless communication. The inefficiency of graph-based protocols
in the SINR model is well documented and has been shown theoretically as well
as experimentally [13,19,23].
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Algorithmic work in the SINR model is fairly new; to the best of our knowl-
edge it was started just three years ago [22]. In this paper Moscibroda et al.
present an algorithm that successfully schedules a set of links (carefully chosen
to strongly connect an arbitrary set of nodes) in polylogarithmic time, even in
arbitrary worst-case networks. In contrast to our work the links themselves are
not arbitrary (but do have structure that will simplify the problem). This work
has been extended and applied to topology control [8,24], sensor networks [20],
combined scheduling and routing [5], or ultra-wideband [15], or analog network
coding [12]. Recently a moderately exponential-time algorithm has been pro-
posed [16]. Apart from these papers, algorithmic SINR results also started pop-
ping up here and there, for instance in a game theoretic context or a distributed
algorithms context, e.g., [1,2,4,10,17,25]

So far there are only a few papers that tackle the general problem of scheduling
arbitrary wireless links. Goussevskaia et al. give a simple proof that the problem
is NP-complete [11], and [21] test popular heuristics. Both papers also present
approximation algorithms, however, in both cases the approximation ratio may
grow linearly with the network size.

The work most relevant for this paper is by Goussevskaia et al. [9]. Among
other things, [9] presents the first wireless scheduling algorithm with approxima-
tion guarantee independent of the topology of the network. The paper accom-
plishes a constant approximation guarantee for the problem of maximizing the
number of links scheduled in one single time-slot. Furthermore, by applying that
single-slot subroutine repeatedly the paper realizes a O(log n) approximation for
the problem of minimizing the number of time slots needed to schedule a given
set of arbitrary requests.

Our present paper removes the logarithmic approximation overhead of [9].
Hence the problem of wireless scheduling is in APX. Moreover, our algorithm
is simpler than [9], and will be easier to build on. In addition we are able to
present a quite general robustness result, showing that constant parameter and
model changes will modify the result only by a constant.

3 Notation and Model

Given is a set of links �1, �2, . . . , �n, where each link �v represents a commu-
nication request from a sender sv to a receiver rv. We assume the senders and
receivers are points in the Euclidean plane; this can be extended to other metrics.
The Euclidean distance between two points p and q is denoted d(p, q). The asym-
metric distance from link v to link w is the distance from v’s sender to w’s re-
ceiver, denoted dvw = d(sv, rw). The length of link �v is denoted dvv = d(sv, rv).
We shall assume for simplicity of exposition that all links are of different length;
this does not affect the results. We assume that each link has a unit-traffic de-
mand, and model the case of non-unit traffic demands by replicating the links.
We also assume that all nodes transmit with the same power level P . We show
later how to extend the results to variable power levels, with a slight increase in
the performance ratio.
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We assume the path loss radio propagation model for the reception of signals,
where the received signal from w at receiver v is Pwv = P/dα

wv and α > 2 denotes
the path-loss exponent. When w �= v, we write Iwv = Pwv. We adopt the physical
interference model, in which a node rv successfully receives a message from a
sender sv if and only if the following condition holds:

Pvv∑
�w∈S\{�v} Iwv + N

≥ β, (1)

whereN is the ambientnoise,β denotes theminimumSINR(signal-to-interference-
plus-noise-ratio) required for a message to be successfully received, and S is the set
of concurrently scheduled links in the same channel or slot. We say that S is SINR-
feasible if (1) is satisfied for each link in S.

The problems we treat are the following. In all cases are we given a set of
links of arbitrary lengths. In the Scheduling problem, we want to partition the
set of input links into minimum number of SINR-feasible sets, each referred to
as a slot. In the Single-Shot Scheduling (SSS) problem, we seek the maximum
cardinality subset of links that is SINR-feasible. And, in the k-Thruput problem,
for a positive integer k, we seek a collection of k disjoint SINR-feasible sets with
maximum combined cardinality. Let χ denote the minimum number of slots in
an SINR-feasible schedule.

We make crucial use of the following new definitions.

Definition 1. The relative interference (RI) of link �w on link �v is the increase
caused by �w in the inverse of the SINR at �v, namely RIw(v) = Iwv/Pvv. For
convenience, define RIv(v) = 0. Let cv = β

1−βN/Pvv
= 1

1
β − N

Pvv

be a constant that

indicates the extent to which the ambient noise approaches the required signal at
receiver rv. The affectance1 of link �v, caused by a set S of links, is the sum of
the relative interferences of the links in S on �v, scaled by cv, or

aS(�v) = cv ·
∑

�w∈S

RIw(v).

For a single link �w, we use the shorthand aw(�v) = a{�w}(�v). We define a
p-signal set or schedule to be one where the affectance of any link is at most 1/p.

Observation 1. The affectance function satisfies the following properties for a
set S of links:

1. (Range) S is SINR-feasible iff, for all �v ∈ S, aS(�v) ≤ 1.
2. (Additivity) aS = aS1 + aS2 , whenever (S1, S2) is a partition of S.

3. (Distance bound) aw(�v) = cv ·
(

dvv

dwv

)α

, for any pair �w, �v in S.

1 Affectance is closely related to affectedness, defined in [9], but treats the effect of
noise more accurately.
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4 Robustness of SINR

We present here properties of schedules in the SINR model, which double as
tools for the algorithm designer. The results of this section apply equally to
scheduling links of different powers, including involving topology control. In the
next subsection, we examine the desirable property of link dispersion, and how
any schedule can be dispersed at a limited cost.

We now explore how signal requirements (in the value of β), or equivalently
interference tolerance, affects schedule length. It is not a priori obvious that
minor discrepancies cause only minor changes in schedule length, but by showing
that it is so, we can give our algorithms the advantage of being compared with
a stricter optimal schedule. This also has implications regarding the robustness
of SINR models with respect to perturbations in signal transmissions.

The pure geometric version of SINR given in (1) is an idealization of true
physical characteristics. It assumes, e.g., perfectly isotropic radios, no obstruc-
tions, and a constant ambient noise level. That begs the question, why move
algorithm analysis from analytically amenable graph-based models to a more
realistic model if the latter isn’t all that realistic? Fortunately, the fact that
schedule lengths are relatively invariant to signal requirements shows that these
concerns are largely unnecessary.

The following result on signal requirement applies also to throughput opti-
mization.

Theorem 1. There is a polynomial-time algorithm that takes a p-signal schedule
and refines into a p′-signal schedule, for p′ > p, increasing the number of slots
by a factor of at most �2p′/p�2.
Proof. Consider a p-signal schedule S and a slot S in S. We partition S into a
sequence S1, S2, . . . of sets. Order the links in S in some order, e.g., decreasing
order. For each link �v, assign �v to the first set Sj for which aSj(�v) ≤ 1/2p′,
i.e. the accumulated affectance on �v among the previous, longer links in Sj is
at most 1/2p′. Since each link �v originally had affectance at most 1/p, then by
the additivity of affectance, the number of sets used is at most � 1/p

1/2p′ � = � 2p′
p �.

We then repeat the same approach on each of the sets Si, processing the links
this time in increasing order. The number of sets is again � 2p′

p � for each Si, or

� 2p′

p �2 in total. In each final slot (set), the affectance on a link by shorter links
in the same slot is at most 1/2p′. In total, then, the affectance on each link is at
most 2 · 1/2p′ = 1/p′.

This result applies in particular to optimal solutions. Let OPTp be an optimal
p-signal schedule and let χp be the number of slots in OPTp. It is not a priori
clear that a smooth relationship exists between χp and χ, for p > 1.

Corollary 1. χp ≤ �2p�2χ.

This has significant implications. One regards the validity of studying the pure
SINR model. As asked in [9], “what if the signal is attenuated by a certain
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factor in one direction but by another factor in another direction?” A generalized
physical model was introduced in [24] to allow for such a deviation.

Theorem 1 implies that scheduling is relatively robust under discrepancies in
the SINR model. This validates the analytic study of the pure SINR model, in
spite of its simplifying assumptions.

Corollary 2. If a scheduling algorithm gives a ρ-approximation in the SINR
model, it provides a O(θ2ρ)-approximation in variations in the SINR model with
a discrepancy of up to a factor of θ in signal attenuation or ambient noise levels.

This result can be contrasted with the strong n1−ε-approximation hardness of
scheduling in an abstract (non-geometric) SINR model that allows for arbitrary
distances between nodes [11]. Alternatively, Theorem 1 allows us to analyze
algorithms under more relaxed situations than the optimal solutions that we
compare to.

4.1 Dispersion Properties

One desirable property of schedules is that links in the same slot be spatially
well separated. This blurs the difference in position between sender and receiver
of a link, since it affects distances only by a small constant. Intuitively, we
want to measure nearness as a fraction of the lengths of the respective links.
Given the affectance measure, it proves to be useful to define it somewhat less
restrictively.

Definition 2. Link �w is said to be q-near link �v, if dwv < q · c1/α
v · dvv. A

set of links is q-dispersed if no (ordered) pairs of links in the set are q-near. A
schedule is q-dispersed if all the slots are formed by q-dispersed sets.

Observation 1, item 3, states that link w is q-near a link �v iff aw(�v) > q−α.
This immediately gives the following strengthening of Lemma 4.2 in [9].

Lemma 2. Fewer than qα senders in an SINR-feasible set S are q-near to any
given link �v ∈ S.

At a cost of a constant factor, any schedule can be made dispersed.

Lemma 3. There is a polynomial-time algorithm that takes a SINR-feasible
schedule and refines it into a q-dispersed schedule, increasing the number of slots
by a factor of at most (q + 2)α.

Proof. Let S be a slot in the schedule. We show how to partition S into sets
S1, S2, . . . , St that are q-dispersed, where t ≤ (q + 2)α + 1.

Process the links of S in increasing order of length, assigning each link �v

“first-fit” to the first set Sj in which the receiver rv is at least
(
qc

1/α
v + 2

)
· dvv

away from any other link. Let �w be a link previously in Sj, and note that �w
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is shorter than �v. By the selection rule, dwv ≥
(
qc

1/α
v + 2

)
· dvv ≥ qc

1/α
v · dvv.

Also,

dvw ≥ dwv − dww − dvv ≥
(
qc1/α

v + 1
)

dvv − dww ≥ qc1/α
v dww.

Since this holds for every pair in the same set, the schedule is q-dispersed.
Suppose St is the last set used by the algorithm, and let �v be a link in it.
Then, each Si, for i = 1, 2, . . . , t− 1, contains a link whose sender is closer than
(qc1/α

v + 2) · dvv ≤ (q + 2)c1/α
v dvv to rv, i.e., is (q + 2)-near to �v. By Lemma 2,

t− 1 < (q + 2)α.

Let χq denote the minimum number of slots in a q-dispersed schedule.

Corollary 3. χq ≤ (q + 2)α · χ.

Intuitively, there is a correlation between low affectance and high dispersion in
schedules. The following result makes this connection clearer. The converse is,
however, not true, since interference can be caused by far-away links.

Lemma 4. A p-signal schedule is also p1/α-dispersed.

Proof. Let �v and �w be an ordered pair of links in a slot S in a p-signal schedule.
By definition, aw(�v) ≤ aS(�v) ≤ 1/p. By Observation 1, item 3, dwv ≥ p1/αc

1/α
v ·

dvv. Hence, the lemma.

5 Scheduling Approximation

The algorithm we analyze is a slightly simplified version of the algorithm of [9].
It involves repeated application of the following algorithm for the Single-Shot
Scheduling problem.

Let c = 1/τα, where τ = 2 + max
(

2,
(
263β α−1

α−2

) 1
α

)

.

A(c)
sort the links �1, �2, . . . , �n by non-decreasing order of length
S ← ∅
for v ← 1 to n do

if (aS(�v) ≤ c)
add �v to S

output S

We shortly show that this algorithm also gives a O(1)-approximation to the
Single-Shot Scheduling problem. It is rather surprising that a O(1)-approximation
algorithm can be obtained in a single sweep. This should help in applying the
ideas further, e.g., in distributed implementations. Simulation results in [9] also
indicate very good practical performance, in relation to previous algorithms, and
the simplification given here is likely to perform at least as well.

Instead of applying algorithm A repeatedly, we equivalently implement it as
the following algorithm B:
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B(c)
sort the links �1, �2, . . . , �n by non-decreasing order of length
Si ← ∅, for i = 1, 2, . . .
for v ← 1 to n do

assign �v to the first set Si for which aSi(�v) ≤ c
output S = (S1, S2, . . .)

It is not immediate that algorithm A (or, equivalently, B) produces a feasible
solution.

Lemma 5. Algorithms A and B produce a τ − 2-dispersed solution.

Proof. Let �w be a link in the set S output by algorithm A. Let N− (N+) be the
set of links in S that are shorter (longer) than �w. Consider first a link �u ∈ N−.
Since �w was added by the algorithm after adding �u, au(�w) ≤ c = 1/τα,
which implies by Observation 1, item 3, that duw ≥ τc

1/α
w dww > (τ −2)c1/α

w dww.
Consider next a link �v ∈ N+. Since �v was added after �w, it holds that aw(�v) ≤
c = 1/τα. So by Observation 1, dwv ≥ τ · c1/α

v dvv. Note that cv ≥ cw whenever
dvv ≥ dww. Then, using the triangular inequality,

dvw = d(sv, rw) ≥ dwv − dvv − dww ≥
(
τc1/α

v − 2
)

dvv ≥ (τ − 2)c1/α
w dww.

Since this holds for every ordered pair in S, we have that S is (τ − 2)-dispersed.

The following appeared as part of Lemma 4.1 in [9], and has also been applied
in similar forms directly or indirectly elsewhere (e.g. [6]).

Lemma 6. Let �v be a link in an SINR-feasible set S. Let N+
z be the set of links

in S that are at least as long as �v and whose senders are of distance greater
than z · dvv from rv. Then,

aN+
z

(�v) <

(
α− 1
α− 2

253
)

z−αcv.

Theorem 2. Algorithms A and B produce an SINR-feasible solution.

Proof. Let �w be a link in the set S output by algorithm A. Let N− (N+) be
the set of links in S that are shorter (longer) than �w. The links in N− were
processed before �w, so by the if-condition in the algorithm, aN−(�v) ≤ c. By
Lemma 5, S is τ − 2-dispersed, so by Lemma 6 and the definitions of τ and
dispersion,

aN+(�w) <

(
α− 1
α− 2

253
)

cv

(τ − 2)αcv
cv ≤ 1

2
.

Hence, the affectance of each link in S is at most c + 1/2 < 1.
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5.1 Performance Analysis

We need an extension of a geometric result from [9]. Let R and B be two disjoint
sets of points in a metric space, called the red and the blue points. A blue point
g guards a red point w, with respect to a point b, if d(g, w) ≤ d(b, w) and the
angle ∠gwb is at most 30◦. That is, g is contained in the 60◦ sector emanating
from w whose centerline goes through b. See Fig. 1. We say that a point b in B is
blue-shadowed if each red point has a private guard in B with respect to b; i.e.,
there is an injective function f : R → B \ {b} such that f(w) guards w from b
for any w ∈ R.

sb

g

w

rb

Fig. 1. Blue point g guards red point w from blue point sb. If the blue points are
sufficiently dispersed, then the receiver rb will also be closer to g than to w.

The following result is a variation on Lemma 4.4 (“Blue-dominant centers
lemma”) of [9].

Lemma 7 (Blue-shadowed lemma). Let R and B be two disjoint sets of red
and blue points in 2-dimensional Euclidean space. If |B| > 12 · |R|, then there is
a blue-shadowed point in B.

Proof. Process the points in R in an arbitrary order, we work with a subset B′

of B initially set at B′ = B. We shall assign each r ∈ R a set {gr
1, g

r
2, . . . , g

r
12} of

guards.
For each point r ∈ R in order, let gr

i be the blue point closest to r among
the points in B′ that are contained in the 30◦-sector seci at angle in the range
[(i − 1) · 30◦, i · 30◦) emanating from r. If a sector i contains no blue point in
B′, then no point is assigned as gr

i . We then remove these points gr
i from B′ and

continue with the next point in R.
After going through all the points in R, the set B′ is still nonempty by the

assumption on the relative sizes of R and B. We claim that every point in B′ is
now blue-shadowed. Let b be such a point and consider a point r ∈ R. Consider
the 60◦-sector emanating from r whose centerline goes through b. This sector
properly contains one of the 30◦-sectors seci, and thus contains one of r’s guards.
Since b was not selected as a guard, there was a guard selected for that sector
and it is closer to r than b is. Since this holds for any point r, b is blue-shadowed.
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The following lemma builds on Lemma 4.5 of [9]. Note that the straightforward
modification of that lemma appears insufficient. Instead, we need something like
our Theorem 1, allowing us to compare the algorithm’s solution with the stricter
optimal solution OPTc. We also utilize the dispersion property to simplify the
proof argument.

Lemma 8. Let ρ = 12. Let Sk be the set of links scheduled by algorithm B in
slot k, and let Xk be the set of links scheduled in slot k of OPTc. Further, let
Sk = ∪k

i=1Si and Xk = ∪k
i=1Xi. Then, for any positive integer k, |Sρk| ≥ |Xk|.

Proof. Suppose the claim is false for some integer k. Then, |Sρk| < |Xk| or,
equivalently, |Sρk \ Xk| < |Xk \ Sρk|. Thus, there are slots i0, 1 ≤ i0 ≤ ρk, and
j0, 1 ≤ j0 ≤ k, for which |Si0 \ Xk| < |Xj0 \ Sρk|/ρ. Let S = Si0 , S′ = S \ Xk,
X = Xj0 , and X ′ = X \ Sρk.

Since OPTc is a 1/c-signal schedule and 1/c = τα, X ′ is also a τα-signal set.
By Lemma 4, X ′ is then τ -dispersed. In particular, it is 3-dispersed.

Let B = {sv|�v ∈ X ′} and R = {sw|�w ∈ S′} be the sets of senders in X ′

and S′; we call them blue and red points, respectively. By Lemma 7, there is a
blue-shadowed point (sender) sb in B. We shall argue that the link �b = (sb, rb)
would have been picked up by our algorithm for the slot i0.

Consider any red point (sender) w ∈ R, and let g = f(w) be the guard for w
guaranteed by the blue-shadowed lemma. Since g guards w, d(sb, w) ≥ d(sb, g).
By the dispersion property, d(g, rb) ≥ τ · dbb. Thus,

d(sb, w) ≥ d(sb, g) ≥ d(rb, g)− dbb ≥ (τ − 1) · dbb = (τ − 1)d(sb, rb).

Then, the angle ∠rbwsb is at most arcsin 1/(τ − 1) ≤ 30◦, since τ − 1 ≥ 2. That
implies that rb is contained in the 60◦-sector emanating from w with centerline
going through sb, just like the guard g. See Fig. 1 for the relative positions of
the points. Then, rb is closer to g than to w. Thus, ag(�b) > aw(�b). Summing
up over all links w in R and their guards f(w), we get

aS′(�b) =
∑

w∈R
aw(�b) <

∑

w∈R
af(w)(�b) ≤

∑

v∈B
av(�b) = aX′(�b).

Thus, since the affectance threshold of X is c,

aS(�b) = aS′(�b) + aS∩X(�b) < aX′(�b) + aS∩X(�b) = aX(�b) ≤ c,

which contradicts the fact that �b was not selected into S.

The following result is largely immediate from Lemma 8.

Theorem 3. Algorithm B outputs a schedule that approximates both the
Scheduling and k-Thruput problems, for every k ≥ 1, within a constant factor.

Proof. By Lemma 8 and Theorem 1, the number ALG of slots used by algorithm
B is bounded by

ALG ≤ ρχc ≤ ρ

⌈
2
c

⌉2

χ.
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Also, by Lemma 8, the number of links scheduled by B in the first 12k slots is
at least the number of links in an optimal c-signal k-Thruput solution. Again by
Theorem 1, we obtain a constant factor approximation to k-Thruput.

5.2 Handling Different Transmission Powers

We can treat the case when links transmit with different powers in two different
ways. Let Pmax (Pmin) be the maximum (minimum) power used by a link,
respectively. By introducing a factor of Pmin/Pmax into the affectance threshold
c, the algorithm B still produces a feasible schedule, that is longer by a factor
of at most Pmax/Pmin.

Alternatively, we can partition the instance into “power regimes”, where each
regime consists of links whose powers are equal up to a factor of 2. We schedule
each power regime separately, obtaining an approximation factor of at most
log Pmax/Pmin, or at most the number of different power values.

6 Conclusions

This paper shows that wireless scheduling is in APX. Having a constant ap-
proximation algorithm for wireless scheduling implies that we can derive the
single-hop throughput capacity of an arbitrary wireless network, up to a con-
stant factor. As such this paper basically solves the scheduling complexity in-
troduced by Moscibroda et al. [22]. However, various parameter combinations
are still open, and deserve more research, e.g. power control, multi-hop traffic,
scheduling and routing, analog network coding, models beyond SINR such as
log-normal shadowing, to name just a few of the obvious ones.
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