
Random Walks Revisited: Extensions of
Pollard’s Rho Algorithm for Computing

Multiple Discrete Logarithms

Fabian Kuhn1 and René Struik2

1 Departement Informatik, ETH Zentrum,
CH-8092 Zürich, Switzerland,

fkuhn@iiic.ethz.ch
2 Certicom Research, 5520 Explorer Drive, 4th Floor,

Mississauga, Ontario, Canada L4W 5L1
rstruik@certicom.com

Abstract. This paper extends the analysis of Pollard’s rho algorithm
for solving a single instance of the discrete logarithm problem in a finite
cyclic group G to the case of solving more than one instance of the
discrete logarithm problem in the same group G. We analyze Pollard’s
rho algorithm when used to iteratively solve all the instances. We also
analyze the situation when the goal is to solve any one of the multiple
instances using any DLP algorithm.

1 Introduction

The security of many public-key cryptographic systems is based on the discrete
logarithm problem (DLP). Examples are the Diffie-Hellman key agreement pro-
tocol and the ElGamal encryption and signature schemes.

The DLP can be defined as follows: Let g be a generator of a finite cyclic
group G = 〈g〉 of order N . For the general DLP, we have to find an integer
x (0 ≤ x < N) such that gx = h, where h is chosen uniformly at random
from G (written h ∈R G). The integer x is called the discrete logarithm of h to
the base g, denoted logg h. If N is composite, one can compute x mod pk in the
subgroup of order pk for each prime power pk dividing N . Then, one can compute
x by application of the Chinese Remainder Theorem. Further, calculating the
discrete logarithm in the subgroup of order pk can be reduced to finding the
discrete logarithm in the group of prime order p (see [7]). For these reasons, we
only consider the DLP in groups of prime order N .

Shoup [10] gave a lower bound for the running time for computing discrete
logarithms by generic algorithms (probabilistic or deterministic) in groups of
prime order. The time needed to solve the DLP with a non-negligible probabil-
ity is c

√
N group operations for some constant c. The best algorithm known for

solving the general DLP is Pollard’s rho algorithm [8]. It does not only match
Shoup’s lower bound, but also needs very little memory and is parallelizable
with a linear speed-up (see [6]). For many groups of cryptographic interest, such

S. Vaudenay and A. Youssef (Eds.): SAC 2001, LNCS 2259, pp. 212–229, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Random Walks Revisited: Extensions of Pollard’s Rho Algorithm 213

as the multiplicative group of a finite field (see [1]), and the Jacobians of hyper-
elliptic curves of high genus (see [2]), there are subexponential-time algorithms
known for the DLP that are more efficient than Pollard’s rho algorithm. How-
ever, Pollard’s rho algorithm is the best algorithm known for solving the DLP
in some groups such as the group of points on an elliptic curve, and the Jaco-
bian of genus 2 and 3 hyperelliptic curves. Thus, the results in this paper are
particularly relevant to the DLP in elliptic curve groups and in genus 2 and 3
hyperelliptic curves.

This paper extends the analysis of Pollard’s rho algorithm for solving a single
instance of the discrete logarithm problem in a finite cyclic group G to the case
of solving more than one instance of the discrete logarithm problem in the same
group G. Pollard’s rho algorithm is reviewed in §2. In §3, we provide a runtime
analysis in an idealized model and do an exact analysis of possible time-memory
trade-offs for the parallelized version. When using Pollard’s rho algorithm to
iteratively solve all n instances of the DLP in the same group, the data that is
gathered during the calculation of a single discrete logarithms can be used to
compute subsequent discrete logarithms. Thus, the additional time needed for
every new DLP may be smaller than the time needed to solve the one before. A
careful analysis for this case is provided in §4. In §5 we consider the case where
the goal is to solve any one of a set of n DLPs in the same group using any DLP
algorithm.

2 Pollard’s Rho Algorithm

2.1 Basic Idea

Pollard’s rho algorithm is based on the birthday paradox. If we randomly choose
elements (with replacement) from a set of N numbered elements, we only need
to choose about

√
N elements until we get one element twice (called a colli-

sion). This can be applied to find discrete logarithms as follows. By choosing
a, b ∈R [0, N − 1], one obtains a random group element gahb. Such group ele-
ments are randomly selected until we get a group element twice. If gaihbi and
gajhbj represent the same group element then ai + bix ≡ aj + bjx (mod N),
whence

x = (aj − ai)(bi − bj)−1 mod N for bi 	≡ bj (mod N). (1)

Let T be the random variable describing the number of group elements chosen
until the first collision occurs. We denote the probability that T > k by pk. We
have

pk = 1
(
1 − 1

N

) (
1 − 2

N

)
· · ·

(
1 − k − 1

N

)
≈

(
1 − k − 1

2N

)k

≈ e− k2
2N . (2)

For k ∈ O(
√
N), the relative error of the above approximation is O(N−1/2).

As shown in Appendix B, the expected value of T is E(T) ≈ √
πN/2. The first

214 Fabian Kuhn and René Struik

collision can be found by simply storing all the randomly selected group elements
until a repeat is detected. However, this simple-minded method has an expected
storage requirement of

√
πN/2 group elements.

2.2 The Single Processor Case

The question now is how to detect a collision without having to store
√
πN/2

group elements. In Pollard’s rho algorithm, this is done by means of a random
function1 f : G → G. For actual implementations, f is chosen such that it
approximates a random function as closely as possible. Further, it should be
calculated with a single group multiplication and map an element gahb to an
element gchd so that c and d can easily be computed from a and b. The originally
suggested function by Pollard (for Z∗

p) can be generalized towards arbitrary cyclic
groups as

f(x) =



hx if x ∈ S1;
x2 if x ∈ S2;
gx if x ∈ S3.

Here, S1, S2 and S3 are three sets of roughly the same size which form a partition
of G. In [12,13], Teske shows that this function is not random enough and gives
a better function:

f(x) = x · gmshns , if x ∈ Ms for s ∈ {1, . . . , r} and r ≈ 20.

Here again, the Ms are of roughly the same size and form a partition of G. But
this time, G is partitioned into more than three subsets. For both functions, it is
of course necessary that determining the subset Mi, resp. Si, to which a group
element belongs is very efficient.

By starting at a random point ga0hb0 and iteratively applying a random
function, random points gaihbi are generated. Because the group is finite, we
eventually arrive at a point for the second time. The sequence of subsequent
points then cycle forever. From §2.1 we know that the first repeat happens after
an expected E(T) ≈ √

πN/2 function applications. With very little time and
space overhead, it is possible to detect such a cycle with Floyd’s cycle-finding
algorithm (or with an improved variant by Brent [3]).

2.3 Parallelization of Pollard’s Rho Algorithm

Unfortunately, iteratively applying a function is an inherently serial process and
cannot efficiently be parallelized. If m processors run the Pollard-rho algorithm
as described above, the speed-up when compared to the single processor case is
only about

√
m. For, if the processors run the algorithm individually, the prob-

ability that none of them has found a collision after k steps is pm
k ≈ e−k2m/(2N).

This leads to an expected time of (
√
πN/2)/

√
m for finding the first collision.

1 A random function is a function that is chosen uniformly at random from the set of
all functions f : G → G.

Random Walks Revisited: Extensions of Pollard’s Rho Algorithm 215

If, however, the processors communicate with each other, we can do better. If
we could detect and use any collision which occurs between two processors, the
speed-up to the single processor case would be a factor m because m processors
calculate m times as many points as a single processor does.

In [6], Wiener and van Oorschot presented a very elegant way of parallelizing
Pollard’s rho alorithm which is based on distinguished points. A distinguished
point is a group element with an easy testable property. An often used dis-
tinguishing property is whether a point’s binary representation has a certain
number of leading zeros. Each processor starts the iteration at a different ran-
dom element (but all have the same iteration function). As soon as the iteration
hits a distinguished point, this point will be sent to a central server and the
processor starts a new iteration. The server stores all collected points (ai, bi and
yi = gaihbi) in a hash table. As soon as the server has received the same point
twice, it has two representations gaihbi and gajhbj for a group element and can
calculate the discrete logarithm x of h as given in (1).

As soon as a point occurs in two iterations, the remainder of those two
iteration trails will be the same and thus lead to the same distinguished point.
Therefore, by performing the iterations, all processors calculate random group
elements of the form gahb and as soon as the same element has been calculated
twice, we are going to get the same distinguished point twice, as well. If the
two representations of the point, where the trails collided, are different, the
representations of this distinguished point are different too, and we are therefore
able to calculate x.

3 Analysis of the Parallelized Pollard’s Rho Algorithm

For our analysis, we make the following assumptions (cf. §3.3):
1. The iterative function really behaves like a random mapping and thus gen-

erates uniformly distributed random group elements.
2. All collisions are useful, i.e. the collision reveals two representations gaihbi

and gajhbj of a group element with bi 	≡ bj (mod N).
3. All trails lead to distinguished points (i.e., we neglect the existence of it-

eration paths which eventually run into a cycle that does not contain a
distinguished point).

We denote the number of processors bym. The proportion of the points that con-
stitute distinguished points is called θ (i.e., there are θN distinguished points).
Additionally, for the analysis, we assume that all processors operate at the same
speed.

3.1 Running Time

The runtime of the Pollard-rho algorithm can be divided into two statistically
independent phases. First, all processors have to calculate points until a collision
occurs. We already know that an expected

√
πN/2 points must be calculated

216 Fabian Kuhn and René Struik

for this part of the algorithm. Because all m processors calculate their points
independently, the expected time for this part is

√
πN/2/m function iterations.

After a collision, the iteration has to be continued until it arrives at a distin-
guished point. Because for each function application, the probability to come to
a distinguished point is θ, the number of steps from a collision to its detection
is a geometrically distributed random variable with expected value 1/θ.

The iteration function is such that the time for one function application is
equal to the time of one group operation plus a negligible overhead. Thus, the
overall expected value for the running time of the parallel Pollard-rho algorithm
is E(T) = (

√
πN/2)/m+ 1/θ group operations.

3.2 Memory Requirements

Essentially, the only memory needed for the parallel version of Pollard’s rho
algorithm is that for storing the distinguished points on the server2. For ev-
ery iteration, the server has to store one distinguished point. The length of a
trail portion between distinguished points is geometrically distributed with pa-
rameter θ. Therefore, the expected length of such an iteration trail is 1

θ . This
means that for the whole duration of the algorithm, all processors will send a
distinguished point to the server every 1

θ group operations on average. There-
fore, because the time until a collision occurs and the average length of the trails
are assumed to be statistically independent, the expected space needed on the
server is E(S) = mθE(T) = θ

√
πN/2 + m distinguished points. Note that for

each distinguished point, we have to store the group element gahb and the inte-
gers a and b. Therefore, the actual space needed to store one distinguished point
is O(logN) bits.

For the memory requirements to be as small as possible, we have to choose θ
as small as possible. But of course, if θ gets smaller, the time overhead 1

θ to detect
a collision gets bigger. In order to keep the overall running time in O(

√
N/m),

we have to choose θ in O(m/
√
N). Therefore, we choose θ as θ = αm/(

√
πN/2).

The expected values for time and space then become E(T) = (1+ 1
α)

√
πN/2/m

and E(S) = m(1 + α). We see that there is a time-space trade-off. But even
if we choose the constant α quite big, the space requirements are still small.
Therefore, the limiting factor for solving discrete logarithms with the parallel
rho algorithm is definitely time.

Remark 1. We have assumed that all distinguished points are collected by a
single server. However, it is possible to parallelize the server side with no com-
munication overhead. Assume that k servers collect the distinguished points.
One could split up the distinguished point set D into k disjoint subsets Di of
roughly the same size. Server i would then only collect the points of Di. When
a client gets a distinguished point, it would have to check to which subset Di it
belongs and send it to the appropriate server. Checking if a new distinguished

2 All clients also need to store a description of the iteration function. This, however,
requires only O(log N) bits per client.

Random Walks Revisited: Extensions of Pollard’s Rho Algorithm 217

point has already been computed previously can be done independently on each
server.

3.3 Assumptions of the Analysis

At the beginning of §3, we made three assumptions on which we based our time
and space analysis. We will now elaborate on how realistic these assumptions
are in an actual implementation.

Randomness of the function: For our analysis, we assumed that the iteration
function is perfectly random and therefore produces uniformly distributed group
elements. In [12,13], Teske shows that the function suggested by her behaves
practically like a truly random function if the group elements are partitioned
into about 20 subsets.

All collisions are useful: A collision reveals two representations of the form
gaihbi and gajhbj of the same group element. If bi 	≡ bj (mod N), the collision
can be used to calculate x. Because the bi are random elements of ZN , the
probability for this is 1 − 1

N . Therefore, the probability that a collision is not
useful is 1

N and thus negligible.

Each iteration reaches a distinguished point: In [9], Schulte-Geers shows
that the distinguished point set must be at least of size c

√
N while c should not

be too small. This is intuitively clear, since the only way for an iteration not
to arrive at a distinguished point is to end up in a cycle without distinguished
points, the expected length of which is

√
πN/8. The condition is certainly met

by our distinguished point set (c is αm
√

2/π in our case). Schulte-Geers also
finds that if we choose θ as described in §3.2, the proportion of starting points
with iterations that end up in distinguished points is 1/(1 + πN (0,1)2

2α2m2), where
N (0, 1) is a standard normally distributed random variable.

Further, Schulte-Geers shows that if θ � 1/
√
N , only a negligible number

of starting points will miss the distinguished point set. We could meet this re-
quirement by setting α to O(logN). The space requirements still remain very
small.

Additionally, van Oorschot and Wiener [6] suggest to abandon all trail por-
tions without a single distinguished point that are longer than k/θ, k times their
expected lengths. The proportion of time wasted through abandoned trails can
be estimated3 as k(1 − θ)k/θ ≈ ke−k which is very small.

3.4 Statistical Analysis

Until now, we have only considered expected values for time and space. We will
now have a look at the probability distributions of these.
3 Here, we assume the length of the trail portions between subsequent distinguished

points to be geometrically distributed. Note that this model is slightly inaccurate
since it implies that all such trail portions eventually lead to a distinguished point.
For reasonably chosen values of θ, the model will do, however, since the probability
of ending up in cycles without distinguished points is, indeed, very small.

218 Fabian Kuhn and René Struik

As already explained, the time for finding a discrete logarithm with parallel
Pollard-rho can be divided in two phases, the time until a collision occurs and
the time needed for its detection. We will first treat those phases individually. As
seen in §2.1, the probability that more than l points are needed for a collision is
pl ≈ e−l2/2N . Because in time k, mk points are calculated, the probability that

the time T1 for the first phase is longer than k is Pr{T1 > k} = pmk ≈ e− (mk)2

2N .
Because the time T2 for the second phase of detecting a collision is geometrically
distributed, the probability that T2 > k is Pr{T2 > k} = (1−θ)k. Therefore, the
probabilities that T1, resp. T2 are bigger than β times their expected values is:

Pr{T1 > (β
√
πN/2)/m} ≈ e−β2π/4 and Pr{T2 > β/θ} = (1 − θ)β/θ ≈ e−β .

(3)
For the probability for T2, given in (3), note that θ is very small and that
limx↓0(1 − x)β/x = e−β .

We want to avoid having to calculate exact probabilities for the overall time
T = T1 + T2. Therefore, we assume that α in §3.2 is chosen sufficiently large to
achieve a good running time. In this case, T1 dominates the time T and we can
approximate the probability that T > βE(T) with Pr{T1 > βE(T1)}. Taking
Equation (3), we then get:

Pr{T > βE(T)} ≈ e−β2π/4. (4)

Table 1 gives samples of the probabilities for various values of β.

Table 1. Probabilities for the running time of Pollard’s rho algorithm.

β 1/100 1/10 1/3 1/2 1 3/2 2 3
Pr{T > βE(T)} 1.000 0.992 0.916 0.822 0.456 0.171 0.043 0.001

For space, exactly the same analysis holds. In fact, the space needed is very
close to mθT where T is the actual running time. This is because the length
of every iteration trail is geometrically distributed with parameter θ and the
lengths of different trails are statistically independent. By application of the
limit theorem, we get that the average length of the trails is very close to the
expected length.

4 Solving Multiple Instances of the DLP

In this section, we consider the situation where one wants to solve multiple, say
L, discrete logarithms in the same group (using the same generator). Hence,
we have a set of L group elements hi = gxi (where 1 ≤ i ≤ L) and we would
like to find all exponents xi. This can be done by solving each of the discrete
logarithms individually, using the rho algorithm. A better approach, however,

Random Walks Revisited: Extensions of Pollard’s Rho Algorithm 219

is to take advantage of the distinguished points gathered during the solution of
the first k discrete logarithm problems using the rho algorithm, to speed up the
solution of the (k+1)st discrete logarithm. As soon as we find a discrete logarithm
xi = logg hi, we have a representation of the form gc for all distinguished points
gajh

bj

i that were calculated in order to find xi. The value of c is c = (aj +
xibj) mod N . If we now find a collision between a distinguished point gc and
a new one of the form gahb

k, we can calculate xk as xk = (c − a)b−1 mod N .
This method was also suggested by Silverman and Stapleton [11], although a
precise analysis has not been published. It seems obvious that the number of
operations required for solving each new logarithm will become smaller, if one
takes advantage of information gathered during previous computations. In this
section, we will provide an exact analysis for this case.

The number of points we have to calculate with the rho algorithm to find
L discrete logarithms is equal to the number of points we have to choose with
replacement out of a set with N numbers until we have chosen L numbers at
least twice (i.e. there are L collisions). We denote the expected value for the
number of draws W to find L collisions by E(W) = EL.

Theorem 1. We have EL ≈ √
πN/2

∑L−1
t=0

(2t
t)
4t for L � 4

√
N .

Proof: Suppose that an urn has N differently numbered balls. We consider an
experiment where one uniformly draws n balls from this urn one at a time, with
replacement, and lists the numbers. It is clear that if one obtains k < n different
numbers after n draws, then n− k balls must have been drawn more than once
(counting multiplicity), i.e., n − k ‘collisions’ must have occurred. We will be
mainly interested in the probability distribution of the number of collisions as a
function of the number of draws.

Let qn,k denote the probability that one obtains exactly k differently num-
bered outcomes after n draws. For any fixed k-set, the number of ways to choose
precisely k differently numbered balls in n draws equals a(n, k), the number of
surjections from an n-set to a k-set. Hence, the number of possibilities to choose
exactly k different balls in n draws equals

(
N
k

)
a(n, k) and, therefore,

qn,k =
(
N

k

)
a(n, k)/Nn =

a(n, k)
k!Nn−k

N(N − 1) · · · (N − k + 1)
N ·N · · ·N =

S(n, k)
Nn−k

pk,

where pk = (1 − 1/N)(1 − 2/N) · · · (1 − (k− 1)/N) is the probability of drawing
k differently numbered balls in k draws, and where S(n, k) := a(n, k)/k! is a
Stirling number of the second type (cf. Appendix A).

We now compute the expected number EL of draws until one obtains precisely
L collisions. Let Q+

n,n−L denote the probability that one requires more than n
draws in order to obtain L collisions. Hence

Q+
n,n−L =

L−1∑
t=0

qn,n−t. (5)

220 Fabian Kuhn and René Struik

Now, the probability that one needs exactly n draws in order to obtain L col-
lisions is given by Q+

n−1,n−1−L − Q+
n,n−L. As a result, the expected number of

draws that one needs in order to obtain L collisions is given by

EL =
∞∑

n=L

n(Q+
n−1,n−1−L −Q+

n,n−L) = (L− 1) +
∞∑

n=L−1

Q+
n,n−L.

From equation (5) we infer that Q+
n,n−(L+1) = Q+

n,n−L + qn,n−L, hence one
obtains

EL+1 − EL = 1 +
∞∑

n=L

Q+
n,n−(L+1) −

∞∑
n=L−1

Q+
n,n−L (6)

=
∞∑

n=L

qn,n−L =
∞∑

k=0

S(k + L, k)
NL

pk. (7)

Obviously, one has E0 = 0, hence we can compute EL via

EL =
L−1∑
t=0

∞∑
k=0

S(k + t, k)
N t

pk. (8)

We will now approximate EL based upon an approximation for Et+1−Et (for
t < L). It will turn out that the relative error of our approximation is negligible
if L < cN

4
√
N (here 0 < cN < 1 is a small constant). We will use the fact that

for any fixed value of L, the Stirling number S(k + L, k) is a polynomial in k of
degree 2L. More specifically, one has (cf. Lemma 1 of Appendix A) that

S(k+L, k)=
1

2LL!

2L∑
j=0

ϕj(L)k2L−j , where ϕj(L)∈Q[x] has degree at most 2j.

A substitution in Equation (6) now yields

EL+1 − EL =
1

2LL!

2L∑
j=0

ϕj(L)√
N

j

∞∑
k=0

(
k√
N

)2L−j

pk. (9)

We will now approximate this expression, using approximations for pk and the
function ϕj(L). The inner summation can be approximated, using the approxi-
mation pk ≈ e−k2/2N and a Riemann integral. We have

∞∑
k=0

(
k√
N

)2L−j

pk ≈
∞∑

k=0

(
k√
N

)2L−j

e−k2/2N ≈
√
N

∞∫
x=0

x2L−je−x2/2dx=
√
NI2L−j ,

Random Walks Revisited: Extensions of Pollard’s Rho Algorithm 221

where It is the value of the integral determined in Lemma 2.4 Substitution of
this approximation in Equation (9) now yields

EL+1 − EL ≈
√
N

1
2LL!

2L∑
j=0

ϕj(L)√
N

j
I2L−j

=
√
N

1
2LL!


 (2L)!
L!2L

√
π/2 +

2L∑
j=1

ϕj(L)√
N

j
I2L−j




=
√
πN/2

(2L
L

)
4L

(1 + o(1)) ≈
√
πN/2

(2L
L

)
4L

.

The latter approximation follows from the fact that ϕj(L) = 1 and that for
j > 0, ϕj(L) is a polynomial in L of degree at most 2j without a constant term
and, hence, ϕj(L)/(

√
N)j ≈ 0 if L � 4

√
N . Substituting this approximation in

Equation (8), we now find that

EL ≈
L−1∑
t=0

√
πN/2

(2t
t

)
4t

=
√
πN/2

L−1∑
t=0

(2t
t

)
4t

=
√
πN/2(2L− 1)

(2L−2
L−1

)
4L−1 ≈ (2/

√
π)

√
L

√
πN/2 =

√
2LN.

��
Remark 2. The above result gives a highly accurate estimate of the expected
time required to solve multiple instances of the discrete logarithm problem in
the same underlying group. Unfortunately, this does not give direct insight in
the probability distribution hereof. We should mention, however, that the same
techniques used above to estimate expected values can also be used to estimate
the vaiance of the probability distribution. It turns out that the variance, when
compared to the expected time, is relatively low, especially if the number L of
discrete logarithm problems one considers is not too small. Thus, the expected
value of the running time of Theorem 1 is a good approximation of practically
observed values (for L not too small). Full details will be provided in the full
paper, space permitting.

We can conclude from Theorem 1 that computing discrete logarithms itera-
tively, rather than independently, is advantageous, since the workload involved
in computing the t + 1st discrete logarithm, once the first t of these have been
solved, now becomes only 4−t

(2t
t

) ≈ 1/
√
πt times as much as the workload√

πN/2 required for computing a single discrete logarithm. Thus, we arrived
at a total workload for computing L discrete logarithms iteratively of approxi-
mately

√
2NL group operations, which is (2/

√
π) ·√L ≈ 1.128

√
L times as much

4 It turns out that the relative error of this approximation is O(() log(N)/
√

N). For
details, cf. Lemma 4 and its subsequent remark.

222 Fabian Kuhn and René Struik

as the workload for computing a single discrete logarithm. Thus, economies of
scale apply: computing L discrete logarithms iteratively comes at an average
cost per discrete logarithm of roughly

√
2N/L group operations, rather than

of approximately
√
πN/2 group operations (as is the case when computing dis-

crete logarithms independently). Our results hold for 0 < L < cN
4
√
N , where

0 < cN < 1 is some small constant.
Our extension of Pollard’s rho algorithm is a generic algorithm for solving

multiple instances of the discrete logarithm problem in finite cyclic groups. The
low average workload 5 we obtained for computing multiple discrete logarithms
seems to be counter-intuitive, since it seems to contradict Shoup’s result [10],
which gives a lower bound of Ω(

√
N) group operations required by generic al-

gorithms solving the discrete logarithm problem in groups of prime order N .
The result is explained by observing that the low average workload is due to the
fact that solving subsequent discrete logarithm problems requires relatively few
operations, once the first few discrete logarithms have been computed. Thus, the
bottleneck remains the computation of, e.g., the first discrete logarithm, which
in our case requires roughly

√
πN/2 = Ω(

√
N) group operations. It should be

noted, that Shoup’s result does not apply directly, since he addresses the sce-
nario of a single instance of the discrete logarithm problem, rather than that of
multiple instances hereof, which we address. Thus, one cannot a priori rule out
the existence of other generic algorithms that, given L instances of the discrete
logarithm problem in a group of prime order N , solve an arbitrary one of these
using only O(

√
N/L) group operations.

5 On the Complexity of DLP-like Problems

In the previous sections, we discussed the workload required for solving multiple
instances of the discrete logarithm problem with respect to a fixed generator
of a finite cyclic group of order N , using extensions of Pollard’s rho algorithm.
We found that computing discrete logarithms iteratively, rather than indepen-
dently, is advantageous. In §5.1 we will consider the problem of solving 1 out of
n instances of the discrete logarithm problem and several other relaxations of
the classical discrete logarithm problem (DLP) and consider the computational
complexity hereof. It turns out that these problems are all computationally as
hard as DLP. In particular, it follows that generic algorithms for solving each
of these relaxations of the discrete logarithm problem in a prime order group
require Ω(

√
N) group operations. In §5.2 we consider the generalization of the

classical discrete logarithm problem of solving k instances hereof (coined kDLP).
Again, we consider several relaxations of this so-called kDLP and discuss their
computational complexity. It turns out that, similar to the case k = 1, these
problems are all computationally as hard as solving kDLP. We end the section
with a conjectured lower bound Ω(

√
kN) on the complexity of generic algo-

5 The average workload per discrete logarithm is O(N3/8) group operations if one
solves L ≈ cN

4
√

N discrete logarithm problems iteratively.

Random Walks Revisited: Extensions of Pollard’s Rho Algorithm 223

rithms for solving kDLP, which – if true – would generalize Shoup’s result for
DLP towards kDLP.

5.1 Complexity of Solving 1 of Multiple Instances of the DLP

We consider the following variations of the discrete logarithm problem:

1. (DLP-1) Solving a single instance of the discrete logarithm problem:

System: Cyclic group G; generator g for G.
Input: Group element h ∈R G.
Output: Integer x such that h = gx.

2. (DLP-2) Solving a single instance of the discrete logarithm problem (selected
arbitrarily from a set of n instances of the discrete logarithm problem):

System: Cyclic group G; generator g for G.
Input: Group elements h1, . . . , hn ∈R G.
Output: Pair (j, xj) such that hj = gxj and such that 1 ≤ j ≤ n.

3. (DLP-3) Finding a discrete logarithm with respect to an arbitrary basis
element (selected from a set of m basis elements):

System: Cyclic group G; arbitrary generators g1, . . . , gm for G.
Input: Group element h ∈R G.
Output: Pair (i, x) such that h = gx

i and such that 1 ≤ i ≤ m.

4. (DLP-4) Finding a linear equation in terms of the discrete logarithms of all
group elements of a set of n instances of the discrete logarithm problem:

System: Cyclic group G; generator g for G.
Input: Group elements h1, . . . , hn ∈R G.
Output: A linear equation

∑n
j=1 aj logg hj = b (with known values of

a1, . . . , an and b).

5. (DLP-5) Finding the differences of two discrete logarithms (selected arbi-
trarily from of a set of n instances of the discrete logarithm problem):

System: Cyclic group G; generator g for G.
Input: Group elements h1, . . . , hn ∈R G.
Output: Triple (i, j, logg hi − logg hj), where 0 ≤ i 	= j ≤ n and where

h0 := g.

The following theorem relates the expected workloads required by optimal
algorithms for solving the discrete logarithm problem (DLP-1) and for solving
arbitrarily 1 out n instances of the discrete logarithm problem (DLP-2).

224 Fabian Kuhn and René Struik

Theorem 2. Let TDLP , resp. TDLP (1:n), be the expected workload of an optimal
algorithm for solving the discrete logarithm problem, resp. for arbitrary solving 1
out of n instances of the discrete logarithm problem. Then, one has TDLP (1:n) ≤
TDLP ≤ TDLP (1:n) + n (in group operations).

Proof: The inequality TDLP ≤ TDLP (1:n) + n follows from a reduction of an
instance of the DLP to an instance of the DLP(1:n). The other inequality follows
from the observation that DLP=DLP(1:1). Let h := gx be a problem instance
of DLP. We will reduce this to a problem instance h1, . . . , hn of DLP(1:n) as
follows: for all i, 1 ≤ i ≤ n, select the numbers ri uniformly at random from the
set {0, . . . , N − 1} and define hi := grih = gx+ri . Note that all hi are random,
since all x + ri are random and independent. Now apply an oracle that solves
DLP(1:n), to produce an output (j, xj), with xj := logg hj and with 1 ≤ j ≤ n.
Since hj = grjh and since rj is known, we get the required discrete logarithm x
as x ≡ xj − rj(mod N). ��
Corollary 1. The problem of solving arbitrarily 1 out of n instances of the
discrete logarithm is computationally as hard as solving the discrete logarithm
problem, provided n � TDLP . Moreover, any generic algorithm that solves this
problem in a group of prime order N requires at least Ω(

√
N) group operations.

Proof: The bound TDLP (1:n) = Ω(TDLP) follows from Theorem 2 and the in-
equality n � TDLP . The lower bound on the required workload for a generic al-
gorithm that solves6 the relaxed discrete logarithm problem DLP(1:n) in groups
of prime order N follows from the corresponding result for the discrete logarithm
problem [10]. ��
Remark 3. In fact, one can show that Theorem 2 and Corollary 1 easily gener-
alize to each of the problems DLP-1, ..., DLP-5 above. In particular, one has
that each of the problems DLP-1, ..., DLP-5 is as hard as solving the discrete
logarithm problem, provided n,m � TDLP . Moreover, any generic algorithm
that solves any of the the problems DLP-1, ..., DLP-5 in a group of prime order
N requires at least Ω(

√
N) group operations.

Remark 4. One can show that each of the problems DLP-1, ..., DLP-5 can be
solved directly using Pollard’s rho algorithm, with starting points of the ran-
domized walks that are tailored to the specific problem at hand. In each case,
the resulting workload is roughly

√
πN/2 group operations.

5.2 Complexity of Solving Multiple Instances of the DLP

In the previous section, we related the workload involved in solving various
relaxations of the classical discrete logarithm problem. The main result was that
the problem of solving arbitrarily 1 out of n instances of the discrete logarithm
is computationally as hard as solving a single instance of the discrete logarithm
6 with a probability bounded away from zero

Random Walks Revisited: Extensions of Pollard’s Rho Algorithm 225

problem. In this section, we consider the similar problem where we are faced
with solving k given instances of the discrete logarithm problem.
We consider the following variations of the discrete logarithm problem kDLP:

1. (kDLP-1) Solving k instances of the discrete logarithm problem:

System: Cyclic group G; generator g for G.
Input: Group elements h1, . . . , hk ∈R G.
Output: k pairs (i, xi) such that hi = gxi .

2. (kDLP-2) Solving k instances of the discrete logarithm problem (selected
arbitrarily from a set of n instances of the discrete logarithm problem):

System: Cyclic group G; generator g for G.
Input: Group elements h1, . . . , hn ∈R G.
Output: k pairs (j, xj) such that hj = gxj , where j ∈ J and where J is

a k-subset of {1, . . . , n}.
3. (kDLP-3) Finding k discrete logarithms with respect to k arbitrary basis

elements (selected from a set of m basis elements):

System: Cyclic group G; arbitrary generators g1, . . . , gm for G.
Input: Group element h ∈R G.
Output: k pairs (i, xi) such that h = gxi

i , where i ∈ I and where I is a
k-subset of {1, . . . ,m}.

4. (kDLP-4) Finding k linear equations in terms of the discrete logarithms of
all group elements of a set of n instances of the discrete logarithm problem:

System: Cyclic group G; generator g for G.
Input: Group elements h1, . . . , hn ∈R G.
Output: A set of k linear equations

∑n
j=1 aij logg hj = bi (with known

values of aij and bi).

5. (kDLP-5) Finding k differences of two discrete logarithms (selected arbitrar-
ily from of a set of n instances of the discrete logarithm problem):

System: Cyclic group G; generator g for G.
Input: Group elements h1, . . . , hn ∈R G.
Output: A set of k triples (i, j, logg hi − logg hj), where 0 ≤ i 	= j ≤ n

and where h0 := g.

One can show that the results of the previous subsection carry over to this
section, as follows:

– Each of the problems kDLP-1, ..., kDLP-5 is as hard as solving k instances
of the discrete logarithm problem, provided kn, km, k2 � TDLP .

– Any generic algorithm for solving k instances of the discrete logarithm prob-
lem in a group of prime order N require at least Ω(

√
N) group operations.

226 Fabian Kuhn and René Struik

– Each of the problems kDLP-1, ..., kDLP-5 can be solved directly using the
extension of Pollard’s rho algorithm presented in §4, with starting points of
the randomized walks that are tailored to the specific problem at hand. In
each case, the resulting workload is roughly

√
2Nk group operations.

The proofs use constructions based on maximum distance separable codes (cf.,
e.g., [5]). Details will be included in the full paper.

The lower bound on the required workload for a generic algorithm that solves
k instances of the discrete logarithm problem is not very impressive: it derives
directly from Shoup’s lower bound Ω(

√
N) for solving a single discrete logarithm

(i.e., k = 1) . It would be of interest to find a stronger lower bound in this case.
Based on the workload involved in computing k discrete logarithm problems it-
eratively, we postulate that the ‘true’ lower bound is Ω(

√
kN). We suggest this

as an open problem.

Research Problem. Show that any generic algorithm that solves, with a prob-
ability bounded away from zero, k instances of the discrete logarithm problem
in groups of prime order N requires at least Ω(

√
kN) group operations.

References

1. L. Adleman and J. De Marrais, A Subexponential Algorithm for Discrete Log-
arithms over All Finite Fields, in Advances of Cryptology –CRYPTO’93, D.R.
Stinson, Ed., pp. 147-158, Lecture Notes in Computer Science, Vol. 773, Berlin:
Springer, 1993.

2. L. Adleman, J. DeMarrais and M. Huang, A Subexponential Algorithm for Discrete
Logarithms over the Rational Subgroup of the Jacobians of Large genus Hyperel-
liptic Curves over Finite Fields, in Algorithmic Number Theory, pp. 28-40, Lecture
Notes in Computer Science, Vol. 877, Berlin: Springer, 1994.

3. R.P. Brent, An Improved Monte Carlo Factorization Algorithm, j-BIT, Vol. 20,
No. 2, pp. 176-184, 1980.

4. J.H. van Lint and R.M. Wilson, A Course in Combinatorics, Cambridge: Cam-
bridge University Press, 1992.

5. F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, Am-
sterdam: North-Holland, 1977.

6. P.C. van Oorschot and M.J. Wiener, Parallel Collision Search with Cryptanalytic
Applications, J. of Cryptology, Vol. 12, pp. 1-28, 1999.

7. S. Pohlig and M. Hellman, An Improved Algorithm for Computing Logarithms in
GF(p) and its Cryptographic Significance, IEEE Trans. Inform. Theory, Vol. IT-
24, pp. 106-111, January 1978.

8. J.M. Pollard, Monte Carlo Methods for Index Computation (mod p), Mathematics
of Computation, Vol. 32, No. 143, pp. 918-924, July 1978.

9. E. Schulte-Geers, Collision Search in a Random Mapping: Some Asymptotic Re-
sults, presented at ECC 2000 – The Fourth Workshop on Elliptic Curve Cryptog-
raphy, University of Essen, Germany, October 4-6, 2000.

10. V. Shoup, Lower Bounds for Discrete Logarithms and Related Problems, in Ad-
vances in Cryptology – EUROCRYPT ’97, W. Fumy, Ed., Lecture Notes in Com-
puter Science, Vol. 1233, pp. 256-266, Berlin: Springer, 1997.

Random Walks Revisited: Extensions of Pollard’s Rho Algorithm 227

11. R. Silverman and J. Stapleton, Contribution to ANSI X9F1 working group, De-
cember 1997.

12. E. Teske, Speeding up Pollard’s Rho Method for Computing Discrete Logarithms,
in Proceedings of ANTS III – The 3rd International Symposium on Algorithmic
Number Theory, J.P. Buhler, Ed., Lecture Notes in Computer Science, Vol. 1423,
pp. 351-357, Berlin: Springer, 1998.

13. E. Teske, On Random Walks for Pollard’s Rho Method, Mathematics of Compu-
tation, Vol. 70, pp. 809-825, 2001.

14. E. Teske, Square-Root Algorithms for the Discrete Logarithm Problem (A Survey),
Technical Report CORR 2001-07, Centre for Applied Cryptographic Research,
University of Waterloo, 2001.

15. M.J. Wiener and R.J. Zuccherato, Faster Attacks on Elliptic Curve Cryptosystems,
in Proceedings of SAC’98 – Fifth Annual Workshop on Selected Areas in Cryptog-
raphy, E. Tavares, H. Meijer, Eds., Lecture Notes in Computer Science, Vol. 1556,
pp. 190-200, Berlin: Springer, 1998.

A Stirling Numbers

In this section, we introduce Stirling numbers. These numbers play an important
role in several parts of combinatorics. We mention several properties of these
numbers that will be used in the paper. For a detailed discussion, we refer to [4].

In the sequel, n and k denote non-negative integers. Let a(n, k) denote the
number of surjections from an n-set to a k-set. Obviously, one has a(n, k) = 0
if k > n and a(n, k) = n! if n = k. In general, one can use the principle of
inclusion-exclusion to show that

a(n, k) =
k∑

i=0

(−1)i

(
k

i

)
(k − i)n.

Let S(n, k) denote the number of ways to partition an n-set into k nonempty
subsets. The numbers S(n, k) are called Stirling numbers of the second kind.
Obviously, one has that S(n, k) = a(n, k)/k!. Moreover, by a simple counting
argument, one can show that

S(n, k) =
∑

1a1 + 2a2 + · · · + nan = n
a1 + a2 + · · · + an = k

n!
(1!)a1(2!)a2 . . . (n!)ana1!a2! . . . an!

. (10)

Our main interest is in those Stirling numbers S(n, k) for which n−k is relatively
small. The first few of these are

S(k, k) = 1;
S(k + 1, k) = 1

2 (k + 1)k = 1
2 (k

2 + k);
S(k + 2, k) = 1

8 (k + 2)(k + 1)k(k + 1
3) = 1

8 (k
4 + 10

3 k
3 + 3k2 + 2

3k);
S(k + 3, k) = 1

48 (k + 3)(k + 2)(k + 1)k(k2 + k)
= 1

48 (k
6 + 7k5 + 17k4 + 17k3 + 6k2);

S(k + 4, k) = 1
384 (k + 4)(k + 3)(k + 2)(k + 1)k(k3 + 2k2 + 1

3k − 2
15)

= 1
384 (k

8 + 12k7 + 166
3 k6 + 616

5 k5 + 403
3 k4 + 60k3 + 4

3k
2 − 16

5 k).

228 Fabian Kuhn and René Struik

Computing S(k+L, k) for bigger values of L is quite cumbersome. Fortunately,
however, one can express S(k+L, k) as a polynomial in k with coefficients in L,
as is demonstrated by the following lemma.

Lemma 1. For all k, L ≥ 0, one has S(k + L, k) = 1
2LL!

2L∑
j=0

ϕj(L)k2L−j, where

ϕj(x) ∈ Q[x] has degree at most 2j (0 ≤ j ≤ 2L). For j > 0, one has x|ϕj(x).
The first few coefficients are

ϕ0(x) = 1, ϕ1(x) =
2
3
x2 +

1
3
x, ϕ2(x) =

2
9
x4 +

2
3
x3 − 2

1
18
x2 − 7

16
x.

Proof: To be provided in the full version of this paper. ��

B Approximations of Combinatorial Expressions

In this section, we provide approximations of some combinatorial expressions
that will be used in the paper and indicate the accuracy of these approximations.

Lemma 2. For all t ≥ 0, define It :=
∞∫

x=0
xte−x2/2dx. Then

I2t =
(2t)!
t!2t

√
π/2 and I2t−1 = (t− 1)!2t−1.

Proof: The result follows using partial integration and an induction argument.
For t > 1, one has It = (t− 1)It−2, since

It =

∞∫
x=0

xte−x2/2dx = −
∞∫

x=0

xt−1d(e−x2/2)

= [−xt−1e−x2/2]∞x=0 + (t− 1)

∞∫
x=0

xt−2e−x2/2dx = (t− 1)It−2.

Moreover, I0 =
√
π/2 and I1 = 1, since

I2
0 =




∞∫
x=0

e−x2/2dx




2

=

π/2∫
ϕ=0

∞∫
r=0

e−r2/2rdrdϕ = π/2 and

I1 = −
∞∫

x=0

d(e−x2/2) = 1.

The result now follows using induction. ��

Random Walks Revisited: Extensions of Pollard’s Rho Algorithm 229

Lemma 3. Let N > 0, let t ∈ N. Then

1√
N

∞∑
k=0

(
k√
N

)t

e−k2/2N → It (N → ∞).

Proof: The result follows from the observation that the expression is a Riemann
sum that converges to It. ��

Lemma 4. Let N > 0, let t ∈ N, and let pk :=
k−1∏
i=0

(1 − i/N). Then

1√
N

∞∑
k=0

(
k√
N

)t

pk → It (N → ∞).

Proof: The result follows from Lemma 3, using the estimate pk ≈ e−k2/2N while
upper bounding the approximation error in the ‘tail’ of the summation. Details
will be provided in the full paper. ��
Remark 5. One can show that convergence is as follows:

1√
N

∞∑
k=0

(
k√
N

)t

pk = (1 + ε)It, where |ε| ∈ O(log(N)/
√
N).

Hence, for big values of N (as in our applications) the approximation of the
expression by It is almost precise.

	1 Introduction
	2 Pollard's Rho Algorithm
	2.1 Basic Idea
	2.2 The Single Processor Case
	2.3 Parallelization of Pollard's Rho Algorithm

	3 Analysis of the Parallelized Pollard's Rho Algorithm
	3.1 Running Time
	3.2 Memory Requirements
	3.3 Assumptions of the Analysis
	3.4 Statistical Analysis

	4 Solving Multiple Instances of the DLP
	5 On the Complexity of DLP-like Problems
	5.1 Complexity of Solving 1 of Multiple Instances of the DLP
	5.2 Complexity of Solving Multiple Instances of the DLP

	References
	A Stirling Numbers
	B Approximations of Combinatorial Expressions

