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Abstract

Positioning based on received signal strengths from base
stations is highly sensitive to the effects of signal attenu-
ation, reflection, and scattering. Moreover, experimental
measurements show that received signal strengths fluctuate
significantly over time due to noise and interference. Un-
like most of the related work our approach does not rely on
the presence of a priori information about base station posi-
tions, objects influencing radio signal propagation, and sig-
nal propagation characteristics. Instead of trying to com-
pute the current position defined by coordinates, the goal
of our system is to infer a user’s present logical position. In
addition, our system particularly differs from previous work
in the chosen statistical approach, which explicitly copes
with signal strength fluctuation over time and allows con-
trol over system accuracy by means of specification of con-
fidence intervals.

1 Introduction

Positioning based on received signal strength patterns is
difficult [8]. Scattering and reflection of electromagnetic
waves can strongly distort the signals [6]; shielding severely
attenuates the signal strength. A single person can alter the
signal strength by up to −3.5dBm [2]. What is more, when
measuring signal strengths, a high level of measurement
noise is to be expected, especially when using standard
hardware [9]. Moreover noise and interference can cause
the received signal strengths to fluctuate significantly over
time. Nevertheless there is a strong correlation between the
distance of a base station and its signal strength [1], which
can be exploited by a suitable positioning system.

Most of the existing approaches to positioning based on
received signal strengths assume to have knowledge about
base station positions and use trilateration or triangulation
methods. Both trilateration—determining the position of a

device by measuring distances to base stations with known
positions—and triangulation—position inference based on
measured angles to base stations—are however highly sen-
sitive to errors caused by signal attenuation, reflection, and
scattering.

Consequently positioning maps are in most cases not
sufficient if they only contain information about base sta-
tion positions. Satisfactory results are hardly achievable
unless these maps include additional information about fac-
tors and conditions influencing signal propagation, such as
walls, buildings, or mountains. Even if such information is
available, however, modeling their effect is highly complex,
error-prone, and in most practical cases impossible. In this
paper we choose an approach that—instead of requiring a
priori information about such architectural or environmen-
tal conditions—is based on a relatively short, simple, and
effortless calibration of the system and is therefore more
suitable for most practical purposes.

Unlike most of the related work our approach is exclu-
sively based on signal patterns received from base stations
without knowledge about base station positions. As a result,
our system does not aim at approximating coordinates of
the current position of the mobile user, but finding the most
probable logical location, such as a room, floor or area,
among the set of previously learned logical locations. For
that purpose several measurements are performed at each
logical location and the measured signal strength patterns
are recorded in a calibration phase. This information is then
used in an operation phase to infer the currently most prob-
able logical location.

However, even if errors induced by insufficient modeling
of signal attenuation, reflection, and scattering can thus be
alleviated, the problem remains that noise and interference
give rise to significant signal fluctuation over time. Our ex-
perimental measurements show that this fluctuation is sig-
nificant and cannot be neglected.

Due to the aforementioned correlation between the dis-
tance of a base station and the measured signal strength, a
simple procedure to estimate the mobile user’s current loca-



tion is to create a straightforward mapping between signal
strength patterns and locations. However, since the signal
strengths fluctuate over time, a statistical approach man-
ages to capture the characteristics of the locations more ac-
curately. Several other approaches applying different sta-
tistical schemes with a varying degree of complexity have
been proposed. Our system model distinguishes itself from
these proposals in that our statistical approach explicitly ac-
counts for high fluctuation of signal strengths. Furthermore,
a confidence interval can be specified in order to specify or
measure the quality of the result.

Another aspect in which our system differs from related
work, is that the signal strength of a base station measured
at a specific position is assumed to be normally distributed
over time. A series of measurements have been carried out
and suggest this assumption.

The paper is organized as follows: The subsequent sec-
tion discusses previous approaches to the problem of po-
sitioning based on received signal strengths. Section 3
presents our experimental measurements with respect to
signal strength fluctuation and its modeling. Section 4 de-
scribes the statistical approach chosen in our system for
both the calibration and the operation phases. Section 5
discusses experimental results gained as well as problems
and limitations experienced with our implementation of the
system. Section 6 concludes the paper.

2 Related Work

The goal of the majority of the systems presented in
this section is to determine the mobile user’s physical po-
sition. There is one system, called Nibble [3] forming an
exception in that it is similar to our approach, also working
with logical locations; yet the system models differ. Nib-
ble’s modular probabilistic approach for inferring location
uses Bayesian networks. A Bayesian network is a graphi-
cal representation of a joint probability distribution that ex-
plicitly declares dependency relationships between random
variables in the distribution.

As mentioned above, in the systems presented in the
following paragraphs, the physical position of the mobile
user is approximated. Therefore, the geometry of the sur-
rounding area has to be known to a certain extent. Even
the knowledge of the exact positions of all base stations is
often a prerequisite. Due to the correlation between sig-
nal strength and distance, one simple approach used in the
RADAR system [2] to solve the positioning problem is to
build up a so-called radio map, which stores position-signal
strength pairs. In order to approximate the user’s current
position, the average of the k nearest neighbors is returned.
A problem of this approach is the choice of k. A variation
of this approach is the joint clustering technique [12]. A
cluster is a set of positions where signals from exactly the

same base stations are received. This set of base stations
is denoted the cluster key. Once the right cluster is found
in the operation phase, Baye’s theorem is used to determine
the probability of each location within the cluster. The crit-
ical aspect here is the choice of the dimension of the joint
distribution. An advantage is on the other hand the use of a
probability distribution for the signal strengths. It has been
stated that an optimal strategy must consider the probabil-
ity distribution of the signal strengths and that taking the
average of several signals received reduces the error [11].

Another system, called GPPS [9], uses a maximum like-
lihood estimator. Gaussian process models are built for the
distribution of the signal strengths, using the Matérn ker-
nel function. The resulting maximum likelihood estimator
is returned as the solution, that is, there is no error bound.
The positions of all the base stations ought to be known,
otherwise they are approximated.

A totally different approach is used in the LEASE sys-
tem [7]. This infrastructure-based system uses a small num-
ber of stationary emitters and sniffers in order to locate the
user. The sniffers collect information about the user and
the stationary emitters. Afterwards, the collected informa-
tion is forwarded to the location estimation engine (LEE),
which knows the positions of the stationary emitters. A sim-
ilar system called Palantir has been proposed [4]. In this
system, the floor of a building is divided into grids and the
signal strength in the middle of each grid is approximated
again using sniffers, which are the main component of this
system. A nearest neighbor search is performed in order to
approximate the user’s current physical position.

Another interesting idea is the combination of various
localization techniques [5]. Since it is not clear whether a
single positioning algorithm can find the optimal solution,
several different methods are combined in order to achieve
more accurate results. The contributions of all methods
have to be weighted to minimize erroneous information.

3 Experimental Received-Signal-Strength
Measurements

This section discusses signal strength fluctuation over
time. First, experimental measurements show that the vari-
ance over time of signals received from base stations are sig-
nificant and therefore deserve special attention. Second, our
measurements suggest the assumption that signals received
over a certain period of time may be modeled as normally
distributed.

To illustrate the problem of signal fluctuation, sig-
nals were measured using the WRAPI Wireless Research
API [10] with standard IEEE 802.11b Wireless LAN net-
work adapters. The following table shows the signal
strength pattern measured at one specific sample loca-
tion (60 measurements over a period of 6 seconds, signal
strengths in mW):



Base station Average Variance
00-07-50-D6-00-FC 1.640386e-7 1.664545e-15
00-07-50-D6-01-0F 2.299025e-5 8.428953e-11
00-07-50-D6-02-F8 2.384267e-9 3.631800e-19
00-07-50-D6-02-FA 2.760481e-6 1.499120e-12
00-07-50-D6-03-CB 4.656942e-9 1.664351e-18

Merely 15 minutes later the following pattern was deter-
mined at exactly the same position:

Base station Average Variance
00-07-50-D6-00-FC 1.762277e-7 4.949886e-15
00-07-50-D6-01-0F 2.219300e-5 1.057022e-10
00-07-50-D6-02-F8 3.073024e-9 3.603822e-18
00-07-50-D6-02-FA 1.809146e-6 7.098445e-13
00-07-50-D6-03-CB 4.461042e-9 3.218017e-18

While the average signal strength differs from the older
measurements by a factor of at most 1.5 (fourth entry in
above base station table), the difference in variance reaches
a factor of 10 (third base station). Fluctuation becomes
even clearer when the period of time between those mea-
surements is increased to one day:

Base station Average Variance
00-07-50-D6-00-FC 1.481586e-7 8.501779e-16
00-07-50-D6-01-0F 1.974024e-5 1.851989e-11
00-07-50-D6-02-F8 1.798881e-8 7.769301e-17
00-07-50-D6-02-FA 6.498956e-7 5.176300e-14
00-07-50-D6-03-CB 2.202195e-8 1.167230e-16

In this case, even the average signal strength differs by a
factor of up to 7.5, while the difference in variance reaches a
factor of 214 (third base station). It has to be noted that there
are differences between base stations. The signal strengths
of some base stations appear to be more stable than those
of others. For example, the third base station in the above
tables is responsible for the highest factors as far as both the
average and the variance is concerned.

As a consequence to the observation that signals received
from base stations can fluctuate significantly, the question
arises how signal strengths measured over time are dis-
tributed. Figure 1 shows sample histograms of signal values
received from a base station with weak signals and strong
signals, respectively, both measured over a shorter and a
longer period of time, respectively. Not only the shapes of
the resulting histograms depicted but of most of our mea-
surements suggest that received signal strengths of a base
station can be modeled as normally distributed over time.

4 System Model

In our system model, the positions of the base stations
are not required. In the so-called calibration phase, the sys-
tem learns the logical mapping between base station iden-
tifiers, their signal strengths and the logical locations. The

system memorizes this mapping and uses it in the operation
phase, when the current logical position is to be determined.

The system allows for the specification of a confidence
interval. The result of the system is the logical location that
best matches the received signals. If the measured signals
are not compatible with any logical location, considering
a specific confidence interval, then no solution is to be re-
turned. Alternatively, all logical locations that are compat-
ible with the given confidence interval can be returned to-
gether with the probability that the mobile user currently is
located at the respective logical location.

4.1 Calibration Phase

Let M denote the mobile user and bi denote the ith base
station as seen by M . bi is a pair (ai, si), where ai is the
identifier of the base station and si is the received signal
strength (in dBm or mW). M collects data in order to char-
acterize a logical location L. For that purpose, M performs
k measurements at that logical location.

A measurement is a set of pairs bi=(ai, si), that is, a mea-
surement has the form S (j) =
{b1, b2, . . . bn}, where j ∈ [1, k]. n is the number of differ-
ent base stations from which signals are received. Techni-
cally, n is not known until the kth measurement has been
carried out. Each measurement probably receives a signal
from one or more base stations that another measurement
does not. If there is no signal of bi in the jth measure-
ment, bi however occurs in another measurement taken at
the same location, then s

(j)
i is set to 0.1

The characteristics of L have to be determined utiliz-
ing this data. First, S is calculated, which for each ai

stores all the average signal strengths si, that is, S =
{(a1, s1), . . . , (an, sn)}, where si = 1

k

∑k
j=1 s

(j)
i ∀ i ∈

[1, n]. Either all bi are considered, or the dimension is
reduced by excluding those base stations from which sig-
nals were rarely received in those k measurements. Assum-
ing that such a reduction has been performed, let there be
m ≤ n base stations from which signals have been received
sufficiently often. Because of noise and interference, it is
not sufficient to consider only S as the characteristics for L.
In order to take these factors into account, a probabilistic ap-
proach appears to be appropriate. The normal distribution
is used as an approximation of the distribution of the signal
strengths over time. For that purpose S has to be extended
to include the variance vi of each of its associated base sta-
tions, that is, S∗ = {(a1, s1, v1), . . . , (am, sm, vm)} and

vi = 1
k−1

∑k
j=1(s

(j)
i − si)2 ∀i ∈ [1, m] where S∗ is the

extended form of S. Not only does S ∗ describe the aver-
age signal strengths, but also the variance of the individual

1This is only reasonable if signal strengths are measured and stored in
mW and not in dBm.
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Figure 1. Histograms of measured signal strengths of a base station with weak signals measured
over a period of 3 minutes (a) and one hour (b) and of a base station with strong signals measured
over the same periods (c and d).

contributions; therefore S ∗ captures the characteristics of
a particular location more precisely since—as illustrated in
Section 3—the fluctuation of signal values of different base
stations can vary significantly.

4.2 Operation Phase

In the operation phase, the system is interrogated. In
order to derive M ’s current logical location, a fresh set of
measurements S = {b1, b2, . . . , bd} is acquired. Let L =
{L1, L2, . . . , Lp} be the set of all logical locations known
to the system and let ni be the dimension of Li, that is the
number of base stations constituting the characteristics of
Li. In addition, let S∗

i denote the characteristic set of Li.
Given that all measurements are probabilistic, it is de-

sirable to find the logical location L̂ ∈ L that maximizes
the probability of M being at this location, as opposed to
being at any of the other locations of L . Naturally, L̂ also
has to respect the given confidence interval. As mentioned,
alternatively all locations that comply with the confidence
interval together with their likelihood could be given as the
result.

In order to achieve these goals, the value Z i is calculated
for each logical location of L according to the formula

Zi :=
ni∑

j=1

(sij − sj)2

vij
,

where sij and vij denote the average signal strength of the
jth base station of the logical location Li and the vari-



ance thereof, respectively; sj denotes the (averaged) sig-
nal strength obtained from the same base station in the new
measurements (the canonical order of S being adapted to
S∗

i ). If there is a particular base station bj that appears in
S∗

i , but not in S, then sj is simply set to 0.2 If, in contrast,
there is a base station appearing in S, but not in S ∗

i , then
it is ignored since it is not part of the characteristics of L i.
Alternatively, the characteristic signal strength of this base
station could be set to 0; however, filtering certain base sta-
tions in the calibration phase could not be applied in that
case.

Assuming that the signal strength of a base station re-
ceived at a logical location is normally distributed, the indi-
vidual terms of Zi are squared normal variables. Hence Zi

is χ2-distributed with ni degrees of freedom. Li can only
be considered M ’s current location, given a confidence in-
terval p, if Zi is at most γi. γi denotes the value for which
it holds that the integral of χ2

ni
(t) from 0 to γi is equal to

p, where χ2
ni

(t) is the χ2-probability density function with
ni degrees of freedom. In order to obtain the value γ i, the
inverse cumulative density function is used:

inverseCumulativeDensity(ni, p) = γi

⇐⇒
∫ γi

0

χ2
ni

(t) dt = p.

Given the Zi for all logical locations, it is straightfor-
ward to determine the best logical position. Moreover, by
choosing the Li ∈ L for which Zi is minimal, we obtain
the solution that not only minimizes the least squares error
weighted with the inverse of the variance but also consti-
tutes the maximum likelihood estimator, which is shown in
the remainder of this section.

The chosen Li minimizes the least squares error by def-
inition. It remains to be shown that it is at the same time
the maximum likelihood estimator. For that purpose, the
characteristic set S∗ of one logical location is considered.
Since there is a canonical order imposed on the elements
of S∗, it is possible to omit the identifiers in each ele-
ment for simplicity. Furthermore, all the average signal
strengths and the variances thereof are renamed in order
to emphasize their statistical meaning, that is, S∗ has the
form {(μ1, σ

2
1), . . . , (μn, σ2

n)}. According to our assump-
tion about the distribution of the signal strengths, the prob-
ability density function for the measured signal strength
value x given μi and σi is3

∀ bi : prob(x|μi) =
1√

2πσi

e
− (x−μi)

2

2σ2
i ,

2Again, this is only reasonable if signal strengths are stored in mW and
not in dBm.

3For simplified representation, the expression prob(x|µi) denotes that
both µi and the corresponding variance are given.

where the base stations bi are the base stations that consti-
tute the characteristics of the logical location with the char-
acteristic set S∗. The formula can be extended to include all
those base stations together:

prob((x1, ..., xn)|(μ1, ..., μn)) =
n∏

i=1

( 1√
2πσi

e
− (x−μi)

2

2σ2
i

)
.

The definition of lik((μ1, . . . , μn)), the likelihood of the
currently measured location to be the logical location with
(μ1, . . . , μn), is useful in the analysis:

lik((μ1, . . . , μn)) = prob((x1, . . . , xn)|(μ1, . . . , μn)).

The maximum likelihood estimator maximizes
lik((μ1, . . . , μn)):

max{lik((μ1, . . . , μn))} =

=
n∏

i=1

( 1√
2πσi

)
max

{ n∏
i=1

e
− (x−μi)

2

2σ2
i

}
=

n∏
i=1

( 1√
2πσi

)
max

{
e
− Pn

i=1
(x−μi)

2

2σ2
i

}
.

It holds that

e
− Pn

i=1
(x−μi)

2

2σ2
i

is maximal if and only if
n∑

i=1

(xi − μi)2

σ2
i

is minimal. This means that the maximum likelihood esti-
mator is in fact obtained by minimizing the weighted error
in the least squares sense.

Finding all logical locations that comply with the given
confidence interval p and computing their likelihood is
straightforward: All logical locations Li for which Zi ≤ γi

holds are possible solutions.

5 Experimental Results

In order to assess the feasibility of our approach and
to evaluate the quality of the results thereby achieved, we
implemented our system using standard off-the-shelf hard-
ware. In particular we employed a standard IEEE 802.11b
network adapter in combination with the Wireless Research
API [10] to acquire signal strength patterns from Wireless
LAN base stations.

The experimental results can be grouped into two parts.
The first part, which is treated in Section 5.1, focuses on
the performance of the system presented in this paper. In
particular, the effect of parameters such as the number of
measurements performed and the confidence interval are
analyzed. In the second part, problems and limitations of
positioning with WLAN are described.
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Figure 2. Floor plan of the building where the described system evaluation has been carried out.
Base station positions are indicated by crosses; room H02 is on the next higher floor.

5.1 Accuracy of the System

The measurements to determine how accurately the sys-
tem is able to infer the correct position included one experi-
ment where the system was presented five logical locations
to be learned, in particular five different rooms in one build-
ing. Four of them are on the same floor, while the fifth
room (H02) is on the next higher floor (cf. Figure 2). For
every room, 60 measurements were performed in the cali-
bration phase with an interval of 100 milliseconds between
consecutive measurements. Operation phase measurements
were started immediately after calibration of the complete
setting. The different operation experiments described in
the following were taken during a period of approximately
2 hours. In the first experiment, 10 measurements with the
same interval of 100 milliseconds were performed in the
operation phase. The confidence interval was set to 80%.
Since the system never displayed an incorrect location—it
either displayed the correct answer or it concluded that no
location matched the new measurements—, it is sufficient
to list how often it found the right solution:

Room Correct No Match
G05 70% 30%
G21 90% 10%
G26 70% 30%
G31 60% 40%
H02 80% 20%
Total 74% 26%

The accuracy can be improved by prolonging the operation
phase. In the second experiment, 20 measurements were
performed in the operation phase with an interval of 1 sec-
ond between successive measurements:

Room Correct No Match
G05 75% 25%
G21 50% 50%
G26 75% 25%
G31 100% 0%
H02 100% 0%
Total 80% 20%

Since the system never returned a bad result, the confidence
interval could be increased in order to allow more inaccu-
rate measurements to be considered and thus reduce the fre-
quency of “no matches.” However, in doing so, the set of
possible locations increases and the system starts yielding
erroneous results. There is clearly a tradeoff between ob-
taining a result in most cases and allowing the system to
make mistakes. Therefore, the appropriate setting of the
confidence interval is crucial. As an extreme example, in
the following experiment, the confidence interval has been
set to 100%, that is, every logical location is considered to
be a possible location. On this account, it is only reason-
able to retrieve the best matching location. The system then
always returns the location with the lowest least-squares er-
ror:

Room Correct Wrong
G05 90% 10%
G21 90% 10%
G26 100% 0%
G31 100% 0%
H02 100% 0%
Total 96% 4%

Surprisingly, the best matching location is in most cases the
right location, indicating that the confidence interval can
be set to a high value without rendering the localization
scheme inoperative.



5.2 Problems and Limitations

Besides high signal fluctuation over time, the signals
measured at different positions even in the same room can
also vary strongly. In the same room, the following pattern
was obtained at a different position a few seconds after the
first measurements displayed in Section 3:

Base station Average Variance
00-07-50-D6-00-FC 8.590684e-9 2.350362e-17
00-07-50-D6-01-0F 9.444324e-6 5.584365e-12
00-07-50-D6-02-F8 2.700181e-9 1.164344e-18
00-07-50-D6-02-FA 1.877516e-5 1.999351e-10
00-07-50-D6-03-CB 2.871098e-7 1.592052e-14

The signal strengths deviate from the former measurements
to such an extent that it is scarcely reasonable to consider
the two patterns the characteristics for the same logical lo-
cation. Apparently—at least in an indoor setting—signal
propagation depends on edificial conditions to a degree that
prohibits formulation of one logical location to represent a
whole architectural unit, such as a room. It appears that
consequently the approach presented in this paper can in
some cases require more finely grained subdivision of logi-
cal units to become reasonably accurate.

A further limitation of the system lies in the fact that the
quality of the results depends highly on the constellation of
the mobile user and the base stations. Also moving objects
influencing signal propagation, such as vehicles, are not ac-
counted for. All these issues however form a difficulty for
any system based on received signal strength patterns, inde-
pendently of the chosen approach.

6 Conclusion

Positioning based on received signal strength patterns is
difficult not only due to radio signal shielding, reflection,
and scattering. Our experimental measurements show that
signals received from Wireless LAN base stations can also
fluctuate significantly over time. However, this effect is
shown to be plausibly modeled as received signal strength
values following a normal distribution.

In contrast to most of the related work which aims at
computing the mobile user’s current position coordinates
based on a priori knowledge about base station positions—
a process highly sensitive to signal shielding, reflection,
and scattering—our approach exclusively operates with re-
ceived signal strength patterns. Consequently our system
tries to match the user’s current position with previously
learned logical locations. Furthermore, our system dis-
tinguishes itself from previously proposed solutions in the
chosen statistical approach, explicitly accounting for high
signal fluctuation over time and allowing for a tradeoff be-

tween result accuracy and error rate by specification of con-
fidence intervals.

In particular, our experimental system evaluation shows
that, in order to achieve high accuracy, many measurements
ought to be performed in the calibration phase. By repeat-
edly adding measurements after a longer period of time and
by also prolonging the operation phase, the problem of sig-
nal fluctuation over time can be controlled to a reasonable
extent.
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