
Rescuing Tit-for-Tat with Source Coding

Thomas Locher, Stefan Schmid, Roger Wattenhofer
{lochert, schmiste, wattenhofer}@tik.ee.ethz.ch

Computer Engineering and Networks Laboratory (TIK), ETH Zurich, 8092 Zurich, Switzerland

Abstract

Tit-for-tat is widely believed to be the most effective
strategy to enforce collaboration among selfish users.
However, it has been shown that its usefulness for de-
centralized and dynamic environments such as peer-to-
peer networks is marginal, as peers can rapidly end up
in a deadlock situation. Many proposed solutions to this
problem are either less resilient to freeloading behavior
or induce a computational overhead that cannot be sus-
tained by regular peers. In contrast, we retain tit-for-
tat, but enhance the system with a novel form of source
coding and an effective scheme to prevent peers from
freeloading from seeding peers. We show that our sys-
tem performs well without the risk of peer starvation and
without sacrificing fairness. The proposed solution has a
reasonably low overhead, and may hence be suitable for
fully distributed content distribution applications in real
networks.

1 Introduction

Tit-for-tat has become a popular and well-studied
strategy since the famous experiment by the sociologist
Robert Axelrod [3] who proved its effectiveness in situ-
ations where rational players aiming at maximizing their
own utility have repeated interactions. In this strategy, a
player initially cooperates, and then responds in kind to
an opponent’s previous action. Tit-for-tat is also applied
as a strategy to ensure fairness in distributed networks
such as peer-to-peer (p2p) systems which do not possess
a centralized control facility, and where the participants
can often be regarded as selfish players. For example, tit-
for-tat serves as a design principle in the p2p file sharing
system BitTorrent [6]. In this context, peers follow the
tit-for-tat policy if they keep providing parts of a partic-
ular file as long as they receive something of interest in
return. Generally, fairness in p2p computing is of prime
importance, as any system’s performance crucially de-
pends on collaboration.

While tit-for-tat is considered to be the most success-

ful strategy to enforce collaboration, there are several
problems in practice. In a pure tit-for-tat environment,
a peer is only provided with a certain contribution re-
peatedly if it continues to give something in return. Un-
fortunately, this is often impossible: In a file sharing en-
vironment, a newly joining peer inherently has to down-
load some parts of the file before it is able to upload and
hence collaborate with the other peers. Another prob-
lem with tit-for-tat in file sharing applications is that a
peer’s neighbors sometimes have nothing to offer which
the peer does not already have, inhibiting any exchanges.
Hence, pure tit-for-tat is not a suitable strategy to en-
sure fairness in dynamic, distributed systems. While sys-
tems like BitTorrent have proposed mechanisms to mit-
igate these problems, the deviation from tit-for-tat im-
plies a loss of fairness and enables malicious peers to
freeload [14, 15, 16, 19].

This paper presents and analyzes efficient mecha-
nisms that enforce fairness. In particular, a novel form of
source coding is introduced which can accelerate tit-for-
tat exchanges significantly. We advocate a source cod-
ing approach as the resulting data block diversity is large
enough for fast content distribution, while the computa-
tional burden on the peers is greatly reduced compared
to network coding approaches. The bootstrap and seeder
problems are addressed as well. Our solution is inspired
by the so-called Allowed Fast message which is part of
BitTorrent’s Fast Extension mechanism1: Newly arrived
peers can retrieve a limited amount of encoded packets
for free from the seeders. This “seed capital” allows
peers to quickly start exchanging data with other peers.

Concretely, in our approach, a distributor or seeder
divides a file into several blocks, and then—instead of
sending the blocks directly and individually—computes
a linear combination of a small number k of these blocks.
We show that with this technique, the number of ex-
changes a peer is interested in with its neighbors is con-
siderably larger, and that networks can survive much
longer compared to pure tit-for-tat environments without
coding. Moreover, due to the small number k, the matri-
ces used to describe the encoded data are sparse.

1See http://www.bittorrent.org/fast extensions.html.

1

This paper is organized as follows. We will present
the main foundations of our approach in Section 2. Sec-
tion 3 explores the parameter space and discusses pos-
sible trade-offs. We further evaluate the performance of
our system and the achieved fairness. Related work on
existing fairness mechanisms and coding schemes is re-
viewed in Section 4. Finally, Section 5 concludes the
paper.

2 System Overview

We assume that several peers are interested in the
same file f offered by one or more peers. The peers
still in the process of downloading the file are commonly
referred to as leechers while the peers possessing the
entire file are called seeders. Apparently, at least one
seeder must be present in the beginning and, while hav-
ing several seeders is beneficial, our simulations show
that typically one seeder suffices to successfully dissemi-
nate the content. The file f is divided into m data blocks
b1, . . . , bm which are used as the atomic units of trade.
These data blocks are not shared directly: The seeders
encode them first and offer these encoded blocks to the
leechers. How these data blocks are encoded and subse-
quently decoded by the leechers once they have obtained
enough encoded data blocks is described next.

2.1 Source Coding Mechanism

Each data block is considered to be a sequence of el-
ements from a certain alphabet. Typically, in network
coding, these elements are elements from a Galois field
GF (2q) where q denotes the length in bits of each el-
ement in the sequence. In contrast, in our encoding all
computations are carried out in a finite field modulo a
Mersenne prime number. A Mersenne prime number P
is a prime number for which it holds that there is a num-
ber x ∈ N such that P = 2x − 1. In our implementa-
tion we use the Mersenne prime number 231 − 1 and a
data block size of 128KB, which means that each block
consists of a sequence of 33,825 elements from the fi-
nite field, as each element requires 31 bits, plus one “par-
ity bit.” This last bit in each block is special and will be
treated later. Let bi[j] denote the jth element of the ith
data block. When performing basic algebraic operations
(such as addition and subtraction) on data blocks, the op-
erations are performed on all the elements in the blocks
separately, i.e., when an operation � ∈ {+,−,×,÷} is
applied to data blocks bx and by , we get the data block
b∗ for which it holds that b∗[i] = bx[i] � by[i] for all
i. The reason we use Mersenne prime numbers is that
these numbers are almost a power of two, which allows
for efficient implementations of the basic algebraic oper-
ations. In fact, the multiplication and division operations

are similar to the corresponding operations in a Galois
field GF (2q); for instance, when computing the inverse
of an element, the extended Euclidean algorithm can be
applied. In contrast to systems based on GF (2q) where
addition and subtraction are both XOR operations, we
perform regular addition and subtraction operations mod-
ulo P in our system. Because P is a Mersenne prime
number, these operations can be performed fast: When-
ever the result of an addition exceeds P , which means
there is a “carry bit,” this bit can simply be dropped and
the result incremented by one.2

Seeders never distribute data blocks directly, they
compute additions (or linear combinations) of exactly k
randomly chosen data blocks for some small number k
(the optimal parameter k will be determined later) and
advertise these blocks. A leecher downloading such a
block additionally needs to download a vector contain-
ing the information which blocks have been added up to
form this new block. Even for small k, the block diver-
sity increases substantially compared to systems which
do not use coding, ensuring that peers do not starve and
do not run into a deadlock situation when exchanging
blocks according to the tit-for-tat policy. The follow-
ing simple example motivates this point. Consider two
peers, p1 and p2, both of which already have downloaded
m/2 blocks from distinct sources, and assume the down-
loaded subsets of all blocks are more or less random. If
no coding is used, i.e., k = 1, p1 is expected to be in-
terested in about half of the blocks p2 has already down-
loaded and vice versa. They will thus play tit-for-tat un-
til they both acquire approximately 3m/4 blocks after
which they will need new peers to share their data blocks
with. In case source coding is used, the space of pos-
sible blocks is considerably larger. Peer p1 is interested
in about m/2

(
1 −m/

(
2
(
m
k

)
)
)

blocks possessed by p2,
and hence the two peers are able to almost finish their
download with tit-for-tat without the help of any addi-
tional peers, even for small k.

In order to reconstruct the original data blocks, a peer
has to download at leastm—ideally exactlym—encoded
blocks which are all created from different linear combi-
nations of the original blocks. The original blocks are
then retrieved by solving a linear system of equations.
Let C denote the coefficient matrix containing the infor-
mation which blocks have been used to form each down-
loaded block. Note that the coefficient matrix C is sparse:
In each row, there are precisely k � m ones, and the
rest are zeros. More importantly, observe that the orig-
inal data can be reconstructed from this linear system
if and only if the rank of C is m. Simulations reveal
that the rank of such a matrix is basically always less

2Of course, there is a small overhead whenever the result has to be
incremented by one. According to our simulations, this does not happen
exceedingly often and it consequently does not have a noticeable impact
on the running time.

2

than m if XOR is used as the addition operation. This
problem can be circumvented by multiplying each block
with a random weight before adding them up which re-
sults in a matrix that has a full rank with high probabil-
ity; such weights are commonly used in network coding.
However, in our system, by performing regular addition
operations modulo P rather than modulo 2, the rank is
practically always exactly m. In the decoding phase, the
matrix C is inverted and this inverse matrix is then used
to solve the linear system of equations. Computing the
inverse first is much more efficient because it does not
involve any data blocks, and the subsequent computation
to retrieve the original data blocks requires O(m2) oper-
ations.

Our source coding technique has several interesting
properties. First, there is no need for weights which sim-
plifies the system and yields efficient block generation
operations. Second, because each block is either used in
a linear combination or not, a simple bitmap as a charac-
terization of each encoded block suffices, while a vector
containing all weights have to be sent in case weights are
used. Third, due to the simple structure of the coefficient
matrix, the matrix can be inverted quickly.

There are some disadvantages of our approach which
have to be addressed. As computations are performed
modulo P = 2x − 1, the bit pattern consisting of x ones
cannot be distinguished from x zeros. Moreover, the last
bit in each block cannot be reconstructed using the ma-
trix, because the matrix does not have a full rank when
calculating modulo 2 as mentioned before. Our solution
is to create a helper block at the seeder containing the
positions where x consecutive bits set to 1 appear in the
file and also the last bit from each block. Typically, in
compressed files, such sequences of length x (31 in our
case) are scarce. Storing the last bit of every block is also
cheap, e.g., when using a block size of 128KB, only 1KB
is needed to store the last bits of each block of a 1GB file.

While the trades between leechers are fair using tit-
for-tat because every peer is required to exchange blocks
in order to acquire other blocks, peers still have to be pre-
vented from exploiting the benevolence of seeders which
merely remain in the system to assist leechers in their ef-
fort to acquire the missing blocks. Thus, there is a need
for a suitable seeder strategy that effectively helps peers,
but successfully undermines freeloading behavior.

2.2 Seeder Strategy

Both source and network coding are powerful tech-
niques to improve the efficiency of a content distribu-
tion system for example in terms of bandwidth usage
and average download completion time. We use source
coding primarily to increase the data block diversity and
thereby establish fair trading of resources without the risk
of deadlocks. Likewise, our seeder strategy is based on

a strategy whose main purpose is to boost the download
progress by providing newcomers with initial data they
can share. The Allowed Fast message of BitTorrent’s
Fast Extension mechanism defines for any peer a small
but specific pseudo-random set of data blocks that this
peer can download immediately for free, i.e., without up-
loading anything in return. This set is created according
to the peer’s IP address and hence all seeders produce the
same free set for a given requesting peer. Consequently a
peer is not able to get additional blocks for free by inquir-
ing another peer or by reconnecting to the same seeder at
a later time.

Our system adapts this idea to provide an initial
pseudo-random set of encoded blocks to all peers. In
contrast to the original Fast Extension mechanism, only
the seeders compute such sets of blocks since the leech-
ers by definition do not possess all blocks, and the seed-
ers are the only peers giving out blocks from such sets.
If a leecher connects to a seeder, the seeder will an-
nounce these downloadable linear combinations. An-
other alteration of the original mechanism is that the
seeders continuously modify the size of the allowed sub-
set of linear combinations according to the number of
peers in the network. If there are approximately n peers
in the network, the number of free sets can be set to
min{m,max{α, β ·m/n}}where α and β are small pos-
itive constants greater than 1. The seeders do not need
to compute the number of peers in the network, its own
number of connections to leechers can be used as an es-
timate.

The combinations a newly arrived peer receives from
the seeder forms the starting set. The chances that any
neighboring peer already possesses one of these lin-
ear combinations in its starting set are small, implying
that many data blocks can be exchanged. Apart from
these pseudo-random but individually well-defined sets
of blocks, seeders never contribute any other parts of the
file.

The benefits of this mechanism are threefold. First,
peers with different IP addresses obtain entirely differ-
ent encoded blocks. This ensures that the available num-
ber of distinct linear combinations in the network is high.
Second, the leechers are forced to collaborate because the
seeders merely provide a small and specific set of blocks
to each peer and refuse to provide any other blocks. It is
thus in any peer’s best interest to upload to other leech-
ers as much as possible, resulting in an efficient band-
width usage in the network. Moreover, it is unlikely that
seeders are inundated with requests from leechers as the
seeders only provide little data. A seeder can thus stay in
the network without having to sacrifice a large fraction
of its upload capacity. Third, as the size of the free set
depends on the number of peers in the network, the sys-
tem’s resiliency to freeloaders increases as the network
grows. Furthermore, if there are only a few interested

3

peers, each of them gets a reasonable share of the file
for free so that they can all finish their downloads by ex-
changing their blocks amongst each other.

As a final remark, we note that it is clearly more chal-
lenging to ensure data integrity in such a system because
it is unfeasible to store and provide hashes for all pos-
sible

(
n
k

)
encoded blocks. However, expedient solutions

to this problem have already been presented in the litera-
ture. For example, when using homomorphic hash func-
tions [9], merely hash values for each original data block
must be stored, and the hash codes of all linear combi-
nations can be computed using the hashes of the original
data blocks. As these hash functions are computationally
expensive, another scheme called secure random check-
sums [8] based on random masks and mask-based hashes
has been devised. These secure random checksums can
be computed very efficiently and any intended or unin-
tended corruption of data blocks can be detected. Thus, a
large data block diversity can be achieved without com-
promising the protection against the insertion and distri-
bution of polluted data blocks.

3 Evaluation

In the first part of this section, appropriate values
for the number k of original blocks used to create en-
coded blocks are derived. As the usability of the sys-
tem depends on the efficiency of decoding the obtained
blocks, we further analyze the running time of the decod-
ing phase and point out how to keep the decoding time
within reasonable bounds even for large files of several
gigabytes. We have further performed simulations of the
entire proposed protocol in different scenarios.

3.1 Parameter Space

It is essential to set the parameter k to an adequate
value. As the block diversity is already large enough to
ensure active and continuous trading when k is about 2
or 3, and both the encoding and the decoding procedures
can be performed more efficiently when k is small, it
is desirable to minimize k. However, k has to be large
enough to ensure that the coefficient matrix C has full
rank after m blocks have been received.

The analysis of the rank of C is related to the clas-
sic coupon collector problem. However, in our system, a
peer never downloads the same linear combination twice.
Moreover, we use k > 1, and compute our matrices mod-
ulo a large prime. These differences render a precise
analysis of the rank quite challenging, and to the best of
our knowledge, this problem is not studied in mathemat-
ical literature (for more information, cf Section 4).

In order for the matrix to have full rank, it is neces-
sary (but not sufficient) that each column have at least

one positive entry. For a given column, the probability
that it contains only zeros is (1−k/m)m, so roughly e−k

for large m. This implies that k must grow at least loga-
rithmically inm, such that there arem ·e−(log m+ω(1)) =
o(1) columns filled with zeros in expectation (for k > 1).
Cooper [7] considers a model where the non-trivial ma-
trix entries are chosen uniformly at random from a given
group (rather than having 1s all the time). Each entry is
chosen independently at random. In our case, k has to
be slightly larger than logm for the matrix to have full
rank. Unfortunately, it is not clear how these results can
be adapted for our model.

We have performed several simulations to analyze the
dependence of the rank on k. When setting k to a number
slightly larger than logm (we used logm + 2 in our ex-
periments), we have never encountered an example ma-
trix with a rank lower than m for any reasonably large
m. This indicates that the necessary condition of hav-
ing a positive entry in every column is also sufficient in
practice.

3.2 Decoding Phase

Increasing the block diversity by coding implies an
additional computational burden as peers are forced to
decode the blocks to obtain the desired file. Once the in-
verse of the coefficient matrix C has been computed in
O(m3) time, the inverse is multiplied with each encoded
block, requiring O(m2s) time where s denotes the num-
ber of symbols or elements in each data block (33,825
in our implementation). Since s is typically larger than
m, the reconstruction time is dominated by the time re-
quired to multiply the inverse with all blocks as shown in
Figure 1.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 200 400 600 800 1000

T
im

e
(S

ec
on

ds
)

Matrix Size

Decoding Time
Inversion Time

Figure 1. The decoding time exceeds the
times to invert the matrices for large m×m
matrices. The data block size is 128KB in
all computations.

4

These computations have been performed on a Pen-
tium Core 2 Quad desktop PC with 4GB of RAM. We
decided to test our implementation on such a computer
as its computational power reflects the performance we
can expect from regular PCs and thus from typical peers
in the near future.

In order to quantify how the system benefits from the
sparsity of C, we also measured the time it takes to invert
full matrices containing random entries from the same
field. For a matrix of size m = 512, the average time
to invert a full matrix is 6.6s, whereas a sparse matrix
of the same size with k = 11 ones in each row can be
inverted in 3.9s. The difference becomes increasingly
more pronounced as the matrices grow: Inverting a full
1, 024 × 1, 024 matrix takes roughly 15s longer (55.1s
vs. 40.4s), implying that there is a certain, albeit small,
computational gain in keeping the matrix sparse.

It is apparent from Figure 1 that m cannot be much
larger than 1,000, because the decoding phase would be-
come unacceptably long. There are several ways to cope
with larger files. A simple solution would be to increase
the block size to keep the size of the matrix bounded.
However, choosing a larger block size has the disadvan-
tage that it is more likely that the (atomic!) transfers
fail, and of potentially large waiting periods due to slow
uploading peers. Moreover, a selfish peer can get one
atomic transfer unit for free from every peer, and if this
unit size is too large, freeloading becomes possible again.
A better approach is to encode several blocks together to
form one entry in the matrix. Such a group of blocks
is also referred to as a generation. If g blocks together
form one entry in the matrix, the running time of the de-
coding phase is reduced to O((m/g)3 + (m/g)2sg). For
example, if g = 16 and the block size is again 128KB,
encoding a 1GB file results in a matrix of size m = 512,
and the running time is roughly 16 times the running time
of the decoding of a file of size 64MB without the use of
generations.

The drawback of this approach is that peers are forced
to interact with specific peers until all blocks from a cer-
tain group are obtained. Although all blocks can still
be verified individually, all downloaded blocks are use-
less if merely one block of this group is missing. Thus,
while the use of generations substantially reduces the re-
construction time, g should be kept small as large gen-
erations potentially constrain the communication in the
network.

3.3 Simulation

We now analyze the behavior of the entire system
in dynamic environments. Simulations for two different
scenarios have been performed:

1) In the first scenario, there is one seeder which is
always active. Up to 2,000 peers3 arrive as fol-
lows: In the beginning, there is a rush period
(flash crowd) where many peers join almost instan-
taneously. After this phase, the peer arrival rate
decreases steadily. Concretely, peer i arrives ac-
cording a Poisson process with parameter λi =
10/(2000− i) hours. Peers leave the network again
as soon as enough blocks are downloaded.

2) In the second scenario, the seeder leaves the net-
work immediately after it has pushed 4m linear
combinations into the network. The arrivals and de-
partures of the other peers are as described above.

In our simulations, leechers maintain up to 10 connec-
tions simultaneously and drop old connections in favor
of connections to new peers. The single seeder accepts
connections to up to 50 leechers at any given time, but
only provides a few data blocks before dropping the con-
nections again. Overall, the network resembles a typical
BitTorrent swarm with the main difference that blocks
are exchanged according to our own policy.

For our tests, we assumed a file consisting of m =
1, 024 blocks, each being of size 128KB. The source cod-
ing was performed by combining k = 12 blocks. We as-
signed each peer an upload bandwidth which we chose
uniformly at random, and slightly larger downstream
bandwidths. In reality, peers are often behind routers
using network address translation (NAT) and cannot re-
ceive incoming connections. Hence, we have also experi-
mented with different percentages of peers with restricted
connectivity.

In the first scenario, where the seeder stays online, all
peers always find new blocks to download and are con-
sequently able to finish their downloads quickly. No-
tably, the second scenario works reliably as well, and
the network is active much longer than the seeder as the
tit-for-tat exchanges alone keep the file distribution go-
ing. Figure 2 compares the diversity of all available lin-
ear combinations in the network for these two scenarios.
As expected, the constant seeder scenario features a sub-
stantially larger diversity. But also the diversity of the
second scenario deteriorates slowly; peers become stuck
only towards the end when no new peers join and a con-
siderable share of all peers have already completed their
downloads and left the network.

Our simulations confirm the observation made in [12]
that using the tit-for-tat strategy entails a high correlation
between upload and download rates, as depicted in Fig-
ures 3 and 4. The relation between upstream and down-
load duration is almost ideal, except for the case of a
large number of firewalled peers, because these peers fail

3This number of peers is what we can typically expect in a large
BitTorrent swarm.

5

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 5 10 15 20 25 30 35 40 45

D
is

tin
ct

 L
in

ea
r

C
om

bi
na

tio
ns

Time (Hours)

One Seeder Forever
One Seeder At Beginning

Figure 2. The number of distinct linear
combinations available in the whole net-
work. A higher diversity facilitates a more
effective tit-for-tat trading of blocks.

to open a sufficient number of connections and therefore
need more time.

In our tests, the ratio between the amount of data sent
by the average peer and the size of the shared file was
usually between 1.1 and 1.15—a reasonably low over-
head.4

We also compared our system to a pure tit-for-tat ap-
proach which does not use coding. We used the rarest
first block selection strategy, where a peer fetches the
block from the set of blocks it is interested in which is
found least often in its neighborhood. We have analyzed
a network of 300 peers which again join according to a
Poisson distribution Po(λi) where λi = 10/(300 − i)
hours. We added one seeder at the beginning which
leaves the network after having uploaded 4m blocks.
Note that even if the total number of peers is merely 300,
the seeder’s free contribution of 4m blocks constitutes
only a fraction of roughly 1% of the entire data load,
which means that almost all data blocks are exchanged
using the tit-for-tat policy. The peers leave the network
as soon as they have downloaded the entire file.

Figures 5 and 6 depict the difference between the two
schemes: In the coding case 254 peers finish their down-
load while in the non-coding case, merely 16 peers can
download the entire file. In Figure 5, the seeder left the
network after 0:58h, and in Figure 6 after 1:01h. In the
latter case, only 17 minutes after the seeder has left the
network, the performance degraded severely. In contrast,
our system continued to work for 22 more hours.

4This calculation does not include TCP/IP overhead but it includes
all transmissions by the user, such as handshake messages, requests,
etc.

 4

 8

 16

 32

 64

 128

 0.5 1 2 4 8 16 32 64

U
ps

tr
ea

m
 [K

B
/s

]

Time [Hours]

Figure 3. This figure plots the completion
times of the peers’ downloads. Peers hav-
ing larger upload bandwidths finish faster
than peers contributing less. The correla-
tion is almost linear, with the cloud in the
upper left corner being due to the 10% fire-
walled peers.

Several additional simulation runs with different pa-
rameters confirmed this outcome: Source coding effec-
tively helps in keeping a network diverse. Of course,
the parameter of the Poisson arrival process influences
the outcome crucially: If the peers arrive at short inter-
vals, the performance is excellent; however, when the in-
terval times increase, the system suffers as the leaving
peers take useful knowledge with them which cannot be
replaced.

4 Related Work

The existence of free riders in p2p systems has been
pointed out in several papers, e.g., see [1, 11] for stud-
ies of freeloading in the Gnutella system. Various mech-
anisms to ensure fair trading in peer-to-peer networks
have been proposed, e.g., KARMA [20] and Eigen-
Rep [13]. However, many of these mechanisms are
complex and introduce an unsustainable overhead. The
BitTorrent protocol incorporates simple countermeasures
against freeloading. Originally, BitTorrent used tit-for-
tat as the underlying strategy for piece exchange. Since
pure tit-for-tat turned out to be inoperative in highly dy-
namic networks—this fact is reconfirmed in this work—
the protocol has been modified repeatedly. Due to sig-
nificant changes such as the introduction of optimistic
unchoking the current BitTorrent protocol only vaguely
resembles the tit-for-tat mechanism. It has been shown
recently that BitTorrent does not deter selfish users from
free riding [14, 15, 16, 18], and different strategies on

6

 4

 8

 16

 32

 64

 128

 0.5 1 2 4 8 16 32 64

U
ps

tr
ea

m
 [K

B
/s

]

Time [Hours]

Figure 4. Experiment with 60% firewalled
peers. The cloud on the upper right
is larger: Since peers behind NATs and
firewalls cannot be contacted from out-
side, less connections are established and
the performance suffers. For the non-
firewalled peers, the correlation between
upload bandwidth and completion time is
roughly linear.

how to ameliorate the resistance to free riders have been
presented, e.g., [17]. In contrast to many of these works,
our approach does not alter the basic tit-for-tat mecha-
nism, but augments the piece exchange mechanism with
source encoding and applies a new strategy for seeding
peers which have no interest in downloading.

Coding, especially network coding [2], has received a
lot of attention in the last few years. Chou et al. present
a practical network coding system for streaming con-
tent in [5], and analytical evidence supporting the effec-
tiveness of coding in peer-to-peer networks is provided
in [8]. Gkantsidis and Rodriguez use these results in
their proposal of a new scheme for large scale content
distribution [10]. In their paper, the authors show that
network coding, in which each node creates new linear
combinations of blocks to be shared, allows for simple
scheduling algorithms and more efficient content distri-
bution. It is further pointed out that peers finish their
downloads even if a single seeding peer leaves shortly
after uploading merely one copy of the file to the sys-
tem and all peers selfishly depart after they finish their
downloads. This is also true if the tit-for-tat mechanism
is applied, hence network coding can be used to guaran-
tee fairness in a peer-to-peer system. Experiences made
with a real implementation of their proposed system are
presented in [8]. In their system, peers are constrained
to maintain only 4-8 connections to other peers. Due to
this limitation, network coding outperforms source cod-

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20 25
 0

 10

 20

 30

D
is

tin
ct

 L
in

ea
r

C
om

bi
na

tio
ns

N
od

es

Time (Hours)

Diversity
Nodes

Figure 5. Simulation of content distribution
using source coding with k = 12. Although
the seeder left after 58min, 254 peers are
able to download the entire file. Moreover,
even after 22 hours, the trade is still active.

ing because for any peer the chances that there are per-
manently blocks of interest in its restricted neighborhood
are smaller. The focus of this paper is on guaranteed
fairness rather than on content distribution efficiency. We
show that by allowing leechers to open up merely 10 con-
nections, which is a moderate number for content distri-
bution networks, our source coding scheme manages to
distribute the blocks efficiently. More importantly, we
provide evidence that our coding scheme works reliably
when tit-for-tat is used even if seeders only provide a
small number of blocks and refuse any further service,
demonstrating the practicability of a pure source cod-
ing scheme. In contrast to network coding solutions,
the computational overhead of the leechers is reduced,
as blocks of data are only encoded at the seeders. At
the same time, block diversity is still high, enabling effi-
cient tit-for-tat exchanges and hence making the system
appealing for practical use.

To the best of our knowledge, there is no other work
proposing a similar coding scheme. More generally, it
seems that the properties of the matrices produced by our
system are hardly explored, and hence, future research on
these matrices may help to further speed up our decod-
ing operations. For random matrices as they appear in
the study of random graphs [4], the situation is different,
and there exists a large body of literature. For example,
Cooper [7] has studied the rank of square random matri-
ces over GF (2) where each entry is independently and
uniformly distributed. We conjecture that some of these
results may be adapted for our model.

7

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200
 210
 220
 230
 240
 250
 260

D
is

tin
ct

 L
in

ea
r

C
om

bi
na

tio
ns

N
od

es

Time (Hours)

Diversity
Nodes

Figure 6. A pure tit-for-tat system without
coding. Only 17min after the seeder has
left, the piece diversity declines sharply,
and most of the peers are not able to com-
plete their downloads.

5 Conclusion

An interesting approach to increase fairness in peer-
to-peer systems is the use of coding techniques, and there
seems to be a challenging trade-off between fairness and
computational complexity. This paper advocates a novel
source coding scheme which seeks to minimize the com-
putations performed by the peers and in which only the
seeders are involved in the encoding process. We pro-
vided evidence that the overhead of our solution is tol-
erable and that fair tit-for-tat exchanges continue even
after all seeders have left, especially if peers have a rea-
sonable number of neighbors. In addition, we presented
a strategy which prevents free-riding and enforces col-
laboration in spite of the presence of seeders which can
easily be exploited in protocols such as BitTorrent. Fi-
nally, we believe that there are means to further improve
the efficiency in future research.

Acknowledgments

We are indebted to Patrick Moor for numerous helpful
discussions and for running the simulations. We would
also like to thank Reto Spöhel for pointing us to [7], and
Thierry Dussuet for his assistance during the preparation
of the paper. Our research is supported by the Swiss Na-
tional Science Foundation project “Decentralized Inter-
net Working.”

References

[1] E. Adar and B. Huberman. Free Riding on Gnutella. First
Monday, 2000.

[2] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Net-
work Information Flow. IEEE Transactions on Informa-
tion Theory, 2000.

[3] R. Axelrod. The Evolution of Cooperation. Science,
211(4489):1390-6, 1981.

[4] B. Bollobas. Random Graphs (2nd Edition). Cambridge
University Press, 2001.

[5] P. Chou, Y. Wu, and K. Jain. Practical Network Coding. In
Proc. 51st Allerton Conference on Communication, Con-
trol and Computing, 2003.

[6] B. Cohen. Incentives Build Robustness in BitTorrent. In
Proc. 1st Workshop on Economics of Peer-to-Peer Systems
(P2PEcon), 2003.

[7] C. Cooper. On the Rank of Random Matrices. Random
Struct. Algorithms, 16(2):209–232, 2000.

[8] C. Gkantsidis, J. Miller, and P. Rodriguez. Comprehensive
View of a Live Network Coding P2P System. In Proc. 6th
ACM SIGCOMM on Internet Measurement (IMC), pages
177–188, 2006.

[9] C. Gkantsidis and P. R. Rodriguez. Cooperative Security
for Network Coding File Distribution. In Microsoft Re-
search Tech Report MSR-TR-2004-137, 2004.

[10] C. Gkantsidis and P. R. Rodriguez. Network Coding for
Large Scale Content Distribution. In Proc. IEEE INFO-
COM, 2005.

[11] D. Hughes, G. Coulson, and J. Walkerdine. Free Riding
on Gnutella Revisited: The Bell Tolls? IEEE Distributed
Systems Online, 6(6), 2005.

[12] S. Jun and M. Ahamad. Incentives in BitTorrent Induce
Free Riding. In Proc. 3rd ACM SIGCOMM Workshop on
Economics of Peer-to-Peer Systems (P2PECON), 2005.

[13] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina.
The Eigentrust Algorithm for Reputation Management in
P2P Networks. In Proc. 12th International Conference on
World Wide Web (WWW), pages 640–651, 2003.

[14] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang. Exploit-
ing BitTorrent For Fun (But Not Profit). In Proc. 5th Itl.
Workshop on Peer-to-Peer Systems (IPTPS), 2006.

[15] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free
Riding in BitTorrent is Cheap. In Proc. 5th Workshop on
Hot Topics in Networks (HotNets), 2006.

[16] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and
A. Venkatarami. Do Incentives Build Robustness in Bit-
Torrent? In Proc. 4th USENIX Symposium on Networked
Systems Design & Implementation (NSDI), 2007.

[17] S. Sanghavi and B. Hajek. A New Mechanism for the
Free-rider Problem. In Proc. 2005 ACM SIGCOMM Work-
shop on Economics of Peer-to-Peer Systems (P2PEcon),
pages 122–127, 2005.

[18] J. Shneidman, D. C. Parkes, and L. Massoulié. Faithful-
ness in Internet Algorithms. In Proc. ACM SIGCOMM
Workshop on Practice and Theory of Incentives in Net-
worked Systems (PINS), pages 220–227, 2004.

[19] M. Sirivianos, J. H. Park, R. Chen, and X. Yang. Free-
riding in BitTorrent Networks with the Large View Ex-
ploit. In Proc. 6th Itl. Workshop on Peer-to-Peer Systems
(IPTPS), 2007.

[20] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer.
KARMA: A Secure Economic Framework for P2P Re-
source Sharing. In Proc. Workshop on Economics of Peer-
to-Peer Systems (P2PEcon), 2003.

8

