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Abstract— This paper studies routing schemes and their dis-
tributed construction in limited wireless networks, such as sensor
or mesh networks. We argue that the connectivity of such
networks is well captured by a constant doubling metric and
present a constant stretch multicast algorithm through which any
network node u can send messages to an arbitrary receiver set
U . In other words, we describe a distributed approximation algo-
rithm which is only a constant factor off the NP-hard Minimum
Steiner Tree on u∪U . As a building block for the multicasting,
we construct a 1+ ε stretch labeled routing scheme with label
size O(logΘ) and storage overhead O(1/ε)α (logΘ)(O(α)+ log∆),
where Θ is the diameter of the network, ∆ the maximum degree
of any network node, and α a constant representing the doubling
dimension of the network. In addition to unicast and multicast,
we present a constant approximation for anycasting on the basis
of

√
6-approximate distance queries. We provide a distributed

algorithm to construct the required labeling and routing tables.

I. INTRODUCTION

Sensor networks and wireless mesh networks in general
have received a lot of attention lately, last but not least because
of their countless applications. Examples include wild life
observation, fire detection, battlefield support, environment
monitoring and diverse distributed applications that require
communication. Most use cases have in common that the
quality of the network improves when more network nodes
are deployed. On the one hand, this calls for less expensive
hardware, which mostly comes along with limited capabilities,
such as small storage, slow processors, and limited energy
resources. On the other hand, the drift towards larger networks
also requires appropriate programming of the devices using
scalable algorithms that cope with large networks.

In this paper, we consider one of the most fundamental
building blocks of such limited networks: the exchange of
information between network nodes. In most cases, the only
means to divulge information is by routing, either as unicast,
anycast, multicast, or broadcast. Whereas there are standard
approaches for the latter, it is much more challenging to
implement efficient single destination routing, anycasting, and
multicasting. The efficiency is not only concerned with how
fast a message is delivered, but also how much overhead
the algorithm generates. For example, optimal routing is
straightforward if each node stores the optimal path to every
other node in the network. But this comes at a cost of O(n)
routing entries, which easily exceeds the memory capacity of
hardware limited network devices when the network grows.

We want to point out that there exist routing protocols
that require no routing tables at all. For instance, geographic
routing [5], [2], [10] routes messages solely based on the
position information of the nodes: every node knows the
position of itself and its neighbors, and greedily forwards
a message to its neighbor closest to the destination. A first
drawback of georouting is that the length of its paths may
be up to the square of the optimal path length. Also, the
algorithms presume precise position information, which is
very hard to obtain [12]. Furthermore, these algorithms have
been studied on the oversimplified unit disk graph (UDG)
connectivity model where all transmission ranges are assumed
to be perfectly circular and of equal radius.

The labeled routing scheme presented in this paper over-
comes the above issues: With small routing tables of bounded
size, we provide close to optimal unicasting, and constant
approximations to anycast and multicast. The proposed al-
gorithms are analyzed on a connectivity model that can be
applied to virtually any wireless network. In addition, our
assumption about the capabilities of the nodes is minimal: we
only require that each node has a unique ID and that it can
communicate with its direct neighbors.

The multicasting feature may be extremely helpful to exe-
cute a query only on a subset of nodes. E.g. suppose a fire
detection system where a coordinator first determines the set
of nodes measuring a critical state. In subsequent rounds, it
may only need to survey these nodes. Talking to each of them
individually introduces a much higher message overhead than
efficiently multicasting a single message, cf. Figure 1. The
gain of multicasting becomes even more substantial when the
receiver set tends to be clustered. In contrast to multicasting,
anycasting becomes interesting when a node needs to send
some data to any node of a given set. In the example of the
fire detection network, this may arise when a node measuring
a critical state wants to inform one of several coordinators.
The anycasting algorithm picks the coordinator as to minimize
transmission cost.

We have already noted that the often studied UDG con-
nectivity model is not appropriate for real wireless networks
because it does not consider perturbations of the wireless
medium, e.g. caused by obstacles. However, to ensure applica-
bility of the proposed algorithms, they should be analyzed on a
connectivity model that characterizes real wireless networks as
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Fig. 1. Support for efficient multicasting is crucial. If node n sends a separate
message to all destination nodes marked with solid circles (left image), it
causes a much higher message overhead than if it utilizes an efficient multicast
algorithm (right image).

accurately as possible. Clearly, any network connectivity can
be described using a general graph. But taking into account
the limited range of wireless devices, we observe that nodes
are mostly connected with other nodes in their proximity,
which results in a far more regular connectivity graph than
a general graph. Although close-by nodes may be out of
communication range due to obstacles, a node is typically
highly connected to nodes in its surroundings. In other words,
even in environments with many obstacles, the total number
of mutually independent1 neighbors of a node is likely to be
small [14].

We exploit the slightly more general formulation of this
property that takes into account the multi-hop nature of the
network: Given a h-hop neighborhood of a node v, it is
possible to cover all these nodes with only a small number
of h

2 -hop neighborhoods. Similar to before, this property states
that in any h-hop neighborhood, one can pick only a relatively
small subset of nodes with pairwise distance larger than h

2 .
Figure 2 shows the deployment of 39 sensor nodes in our
office building and how the nodes are connected [4]. In this
network, the 2-hop neighborhood of any node can be covered
by at most five 1-hop neighborhoods. The figure shows the
2-hop neighborhood of node v, which is covered by four 1-hop
neighborhoods.

These observations motivate to characterize the network
connectivity by A , the maximum number of half-sized neigh-
borhoods that are necessary to cover any given neighborhood.
This number is expected to be quite small for most wireless
networks, e.g. a small two-digit number. Being the only pa-
rameter to describe the network, we can adjust A to apply our
analysis to virtually any wireless network topology, including
obstacle-rich deployments in 3D and worst case scenarios.
Furthermore, because the presented routing algorithms are
self-adaptive and need not to know the value of A , they are
good for any network. It is only the performance of the routing
algorithms that depends on the value of A .

In the sequel we describe the network connectivity by
a weighted graph G = (V,E) where each network node is
mapped to a node of the graph, and a weighted edge is present
between any two nodes within mutual transmission range.
We observe that the coverability property described above
matches the definition of a constant doubling metric2 on G
(see Definition 1.2). The distance metric M associated with
G corresponds to the metrization of G using the cost-function

1Two nodes are independent if they are not (direct) neighbors.
2A metric assigns to each node-pair (a,b) ∈ V ×V a cost satisfying non-

negativity, identity of indiscernibles, symmetry and triangle inequality.

v

Fig. 2. The figure shows a deployment of 39 nodes in an office building and
how they are connected. The nodes in black denote a 2-hop neighborhood of
node v. These nodes can be covered by four 1-hop neighborhoods indicated
with the dashed lines and rooted at the nodes with the small white dot.

dM (a,b) which assigns to each pair (a,b) ∈ V ×V the cost
of the least cost path between a and b. Our analysis holds
for a more general class of networks, where each link may be
assigned a cost, e.g. the number of retransmissions needed to
send a message over the link. Setting all link costs to 1, we
obtain the hop-metric discussed above.

Definition 1.1 (Ball): Given a node v ∈ V , the ball Bv(r)
with radius r denotes the set of nodes with distance at most r
from v: Bv(r) = {u|dM (v,u)≤ r}.

Definition 1.2 (Constant Doubling Metric): A graph G =
(V,E) fulfills the doubling metric property if any ball Bv(r)
can be covered3 by a constant number of balls B( r

2 ) with
half the radius: For r ≥ 0 and ∀v ∈ V : ∃U ⊆ Bv(r) such that
|U |= O(1) and Bv(r)⊆

⋃
u∈U Bu( r

2 ). If |U | is bounded by 2α

for a constant α, we say that the metric associated with G has
doubling dimension α.

We point out that the value of α = dlog2 Ae is quite small
for most wireless networks, e.g. around 3 or 4.

II. RELATED WORK

There is a huge body of work regarding routing on wireless
networks consisting of hardware limited participants. In this
paper, we are particularly interested in scalable routing algo-
rithms that consider the limited hardware capabilities, but still
achieve excellent routing performance. One milestone in this
area was laid by Peleg and Upfal in [13], where they examine
the trade-off between the efficiency of a routing algorithm
and its space requirements. They present a stretch-k routing
algorithm for general graphs with an average routing table size
of O

(
k3n1/k logn

)
bits and O(logn) bit labels. The renaming

(labeling) of the network nodes is a widely used technique to
reduce the routing table size. In fact, any routing algorithm
that does not rename the nodes and requires a stretch below 3
may need routing tables of Ω(n) bits [6]. For constant doubling
metrics, we know that the stretch is above 9−ε if the routing
tables size is o

(
n(ε/60)2

)
[7].

In his recent work [16], Talwar described a (1 + ε) stretch
routing scheme for α-doubling metrics with routing tables of

3A ball B is covered by a set of balls {b1, . . . ,bn} if ∀u ∈ B : ∃i such that
u ∈ bi.



O(1/(εα))α log2+α
Θ bits and label-size O(α logΘ) bits. This

work was improved by Chan et al. in [3] by reducing the
storage overhead to (α/ε)O(α)(logΘ)(log∆) bits per node and
a label size of O

(
α log(ε−1)

)
logΘ bits.

Slivkins presented two improved compact routing schemes
in [15]. The first uses (ε)−O(α)(logΘ)(log∆) bits per routing
table and O

(
α log(ε−1)

)
logΘ bits per label, whereas the

second scheme uses ε−O(α)(logΘ)(log logΘ)(logn) routing
table bits and 2O(α)(logn) log(ε−1 logΘ) bits for each label.

In their seminal work [1], Abraham et al. presented the first
compact routing scheme with dlogne bit labels and routing
tables of ε−O(α) logn log(min(Θ,n)) bits. This work empha-
sized on scale-freedom, i.e. independence of Θ. Dropping this
constraint, their technique easily yields O(Θ) bit labels. In
addition, the authors provide a scale-free name-independent
routing scheme, including the matching lower bounds.

Our work does not quite achieve the bounds of [1], our
routing tables are of size O

( 1
ε

)α (logΘ)(O(α) + log∆) and
the routing labels require 2αdlogΘe+dlogne bits4. This small
overhead allows us to build an all-in-one routing scheme that
not only supports unicasting (Section V), but also provides
constant approximations to anycasting (Section VII) and mul-
ticasting (Section VI). Furthermore, we present a distributed
algorithm to construct the labeling and routing tables in
Section VIII.

III. DEFINITIONS AND PRELIMINARIES

We first define some further terms and state properties of
doubling metrics that will turn out to be handy. We start with
the definition of a ρ−net, which is closely related to maximal
independent sets and dominating sets.

Definition 3.1 (ρ−net): A subset U of the node-set V of a
graph G = (V,E) is a ρ−net if each node in V has distance
at most ρ to at least one node in U , and the mutual distance
between any two nodes in U is strictly larger than ρ. Formally,
a set U ⊆V is a ρ−net of G = (V,E) if

∀v ∈V : ∃u ∈U : dM (v,u)≤ ρ and
∀u1,u2 ∈U : dM (u1,u2) > ρ.

We say that a node u ∈ ρ−net covers the nodes contained
in Bu(ρ). Thus, each node of the network is covered by at
least one u ∈ ρ−net. In the sequel, we denote the nodes of a
ρ−net as net-centers of the ρ−net.

Given a constant doubling metric, we know that for every
ball Bv(r), it is possible to cover all nodes in Bv(r) with 2α

balls of half the radius. However, this is only a feasibility
statement and does not give an upper bound on the number
of B( r

2 ) that may be deployed to cover Bv(r). The following
property gives an upper bound on the number net-centers of
r
2−net a ball Bv(r) may cover.

Property 3.1 (Sparseness): For x ∈ N0, each ball Bv(2xρ)
covers at most 2(1+x)α nodes from an arbitrary ρ−net on the
same graph with constant doubling dimension α.

4Note that even for a huge network of 106 nodes, diameter 104, and α = 4,
the routing labels are still below the size of an IPv6 address and easily fit in
the tiny messages of today’s sensor nodes.

Proof: By recursively applying the definition of the
doubling metric, we observe that it is possible to cover Bv(2xρ)
with at most 2(1+x)α balls of radius ρ

2 . Assume we know such
a covering C with |C| ≤ 2(1+x)α.

In order to see that Bv(2xρ) covers at most 2(1+x)α net-
centers U = {u1,u2, ...,u|U |} from any ρ−net, we first observe
that the distance between any two distinct nodes in U exceeds
ρ. Secondly, by the definition of a cover, each u j ∈ U is
covered by at least one ball from the cover C. Because the
balls in C have radius ρ

2 and the distance between any two u j
is more than ρ, any c ∈C covers at most one u j ∈U . Thus,
|U | ≤ |C| ≤ 2(1+x)α, which completes the proof.

Along with this upper bound on the number of net-centers
covered by a ball, we can give an upper bound on the number
of net-centers of a given ρ−net that may cover any given node
v. In particular, we are interested in the maximum number of
net-centers of a ρ−net that cover a node v, if each net-center
u covers an extended ball Bu(2xρ).

Property 3.2 (Dominance): Given a ρ−net on a α-doubling
metric represented by the graph G = (V,E) where each net-
center u covers Bu(2xρ) with x ∈ N0, then any node v ∈V is
covered by at most 2(x+1)α net-centers from the ρ−net.

Proof: If v is covered by a net-center u, then u is at
most 2xρ away from v. Therefore, it is sufficient to show that
Bv(2xρ) contains at most 2(x+1)α ρ−net-centers, which follows
from Property 3.1.

Corollary 3.1 (Dominance): Given a ρ−net on a α-
doubling metric represented by the graph G = (V,E) where
each net-center u covers Bu(iρ) with i ∈ R+, i > 1, then any
node v ∈ V is covered by at most 22αiα net-centers from the
ρ−net.

IV. DOMINANCE NET

Due to our minimal assumptions about the node’s capabil-
ities (unique ID and communication with direct neighbors),
our routing algorithms need some means to characterize the
network.

We propose to obtain this information through a dominance
net, which is a hierarchic locality-preserving decomposition
of the network. In a nutshell, the dominance net is built of
several layers of ρ−nets with exponentially increasing radius
ρ, each of which covers the entire network. In the sequel, we
will show how to build a dominance net with the following
properties:

1) The number of layers is at most 1 + dlogΘe, where Θ

is the diameter of the network.5

2) Each node is dominated by at most O(logΘ) nodes.
3) The parent-tree induced by the dominance net allows for

an unique distance labeling with label-size O(logΘ) and
stretch at most

√
6.

4) Adding routing tables of O(1/ε)α log∆ logΘ bits to the
nodes allows for a routing scheme with stretch 1+ε. (∆
is the maximum degree of any node.)

5Throughout the paper, log stands for the binary logarithm.
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Fig. 3. A small dominance net with only three levels. R is the root and
therefore the only net-center of level-2. It covers all nodes of the network.
The net-centers of level-1 are Γ1 = {a,b,R} and Γ0 = {c,d,e, f ,g,a,b,R} for
level-0. (Note that some nodes are net-center on several levels.) The solid
circle around each net-center indicates its coverage area, whereas the dashed
circle indicates the extended coverage area. Note that the coverage area may
have arbitrary shape – the circular coverage area is only used for this schematic
representation.

For the rest of the paper, we assume w.l.o.g. that the smallest
distance between any two nodes is 1, that the diameter of the
network is given by Θ, and ϑ = 1+dlogΘe. Furthermore, we
use G = (V,E) to denote the graph induced by the network,
whose metrization has constant doubling dimension α.

A. Dominance

For building the dominance net, we construct a hierarchy
of ρ−nets on G with ρ = 2i, where i is chosen from the range
{0,1,2,3, ...,ϑ−1}. In the following, we call the the (2i)−net
the level-i of the hierarchy, and we denote its net-centers by
Γi. Note that on level-(ϑ−1), a single (arbitrary) node of the
network becomes net-center. We call this node the root of
the hierarchy. An algorithm to construct these ρ−nets in a
distributed manner is presented in Section VIII.

We define the dominance on this ρ−net hierarchy in the
following way: A net-center γi ∈ Γi is dominated by a net-
center γ∈ Γi+1 iff γi ∈Bγ(2i+1). Thus, each net-center (except
the root) is dominated by at least one net-center of the next
higher level.

B. Naming Scheme

Given the dominance-net, we name the net-centers in the
following way: Each net-center v except for the root node
selects exactly one6 of its dominators to be its parent P (v).
This results in a dominance-tree with depth ϑ−1. Each parent
enumerates its children and informs each of them about the
assigned enumeration value. The naming scheme is defined
recursively: The root has an empty name, while any other net-
center obtains its name by appending its enumeration value to
its parents name.

Figure 3 shows a sample dominance net with only three
levels. The left picture of Figure 4 shows the dominance-tree
with the assigned enumeration values. The name of a net-
center is obtained by walking from the corresponding node
of the dominance-tree towards the root and concatenating the

6For performance reasons, each net-center may choose the closest net-center
of the next higher level.
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Fig. 4. The left picture shows the dominance-tree corresponding to the
dominance-net of Figure 3. The tree on the right is the cover-tree of node v, a
tree-representation of v’s label. At depth i, this tree contains the enumeration-
values of the net-centers of level-(ϑ− i− 1) which cover v. The letter p
indicates a primary net-center, s a secondary net-center.

enumeration values of the visited nodes. E.g. the name of
net-center g is R:1:2 whereas the name of c is R:2:3. The
uniqueness of the names is guaranteed due to the tree structure,
where each net-center is identified through its parent and the
enumeration value assigned by the parent.

Because any net-center may be parent of at most 22α

net-centers (Property 3.1), the enumeration values can be
represented with at most 2α bits. Thus, the name may grow
by 2α bits on each level, which results in a maximum name
size of 2αdlogΘe= O(logΘ) bits for net-centers on level-0.

C. Dominance Labeling

Based on the dominance-net and the corresponding naming
scheme, each node v of the graph G assigns itself a label L(v)
of size O(logΘ) which allows for efficient routing, multicast-
ing, anycasting, and distance labeling. In the remainder of this
section, we show the following theorem:

Theorem 4.1 (Compact Labels): The nodes of G can be
assigned unique labels of size O(logΘ) allowing approximate
distance queries of stretch

√
6 between any two nodes.

We use an extended dominance net for the labeling, where a
net-center γ∈Γi covers all nodes in Bγ(2i+1), cf. Figure 3. This
extension results in an overlap of the net-covers, which allows
to rule out borderline effects where two close-by neighbors
are not covered by common net-centers. Given this extended
dominance set, each node v determines the net-centers by
which it is covered. Essentially, the label of v contains the
name of all net-centers that cover v.

In order to obtain the desired label size for a node v, we
cannot simply store all names of the covering net-centers: By
construction, there are at most ϑ levels, each of which has
at most 22α net-centers covering v (Property 3.2). From the
previous section, we know that the naming for the net-centers
uses at most 2α(ϑ− i− 1) bits on level-i, which bounds the
maximum label length to ∑

ϑ
i=0 22α2α(ϑ− i−1) = O

(
ϑ2

)
=

O
(
log2

Θ
)
. To receive the O(logΘ) label size, we make use of

the following lemma which shows that only partial net-center
names need to be stored for each covering net-center.

Lemma 4.2 (Parental Cover): If a net-center c ∈ Γi covers
a node v in the extended dominance net, then its parent P (c)∈
Γi+1 covers v as well.

Proof: The net-center c on level-i only covers nodes in
Bc(2i+1) in the extended dominance net. Therefore, dM (v,c)≤



2i+1. Because the parent P (c) of c is chosen from the ordinary7

dominance net and P (c)∈Γi+1, dM (c,P (c))≤ 2i+1. Using the
triangle inequality we receive that dM (v,P (c)) ≤ dM (v,c)+
dM (c,P (c)) ≤ 2i+2. The claim follows because P (c) covers
BP (c)(2i+2) in the extended dominance net, which includes v.

D. Cover Tree

The label L(v) of a node v is the flat representation of a
cover tree that efficiently describes all net-centers that cover
v. This tree is rooted at the root node. The body of the cover
tree is defined recursively: At depth i, the tree contains the
net-centers γ ∈ Γϑ−i−1 that cover v. Each γ in the cover tree
is connected to its parent P (γ). This is possible because we
know from Lemma 4.2 that if γ covers v, then also P (γ) covers
v and therefore must be present in the cover tree.

Because the name of a net-center is defined as the recursive
concatenation of the enumeration values of its parents in the
dominance net (see Section IV-B) and the same parenthood
persists in the cover tree, each node of the cover tree only
needs to store the enumeration value of its corresponding net-
center. The name of a net-center c in the cover tree can be
obtained by prefixing the enumeration value of c with the name
of P (c), which is obtained recursively. Therefore, each node
of the cover tree carries at most 2α bits, see Figure 4 for an
example. We also know from Property 3.2 that there are at
most 22α net-centers per level covering node v. Because the
depth of the tree is at most ϑ− 1, we deduce that the cover
tree holds at most α22α+1ϑ bits. The serialization of the cover
tree to a flat data structure is straightforward and can be done
introducing only two additional bits per net-center, which leads
to a label size of (2α+2)22αϑ = O(logΘ) bits.

In the remainder of this paper, we rely on a slightly
enhanced node labeling where each node v not only stores
the net-centers by which it is covered, but also indicates their
type. We distinguish two types of net-centers depending on
their distance to v: A net-center c ∈ Γi is called primary if
v∈Bc(2i). Otherwise, the net-center is called secondary, i.e. a
secondary net-center covers v only in the extended dominance
net, whereas a primary net-center covers v already in the
ordinary dominance net. This additional bit per net-center does
not significantly increase the size of the cover tree, which
becomes at most (2α + 3)22αϑ = O(logΘ) bits. This proves
the first part of Theorem 4.1.

E. Distance Approximation

To obtain the distance between two nodes a and b given
their labels L(a) and L(b), we determine the smallest level-i
for which a and b have at least one common net-center. Let
ρ = 2i be the ordinary coverage radius of level-i and C ⊆ Γi
the set of common net-centers on level-i.

We immediately get a lower bound on the distance between
a and b by observing that if dM (a,b)≤ ρ/2, there exists a net-
center c∈Γi−1 that covers both a and b. Therefore, dM (a,b) >

7Ordinary means not in the extended dominance net.

ρ/2. For the remainder of this proof, we need to consider the
following three cases only:

1) If there is a net-center c ∈C s.t. c is primary for both
a and b, then dM (a,b) ≤ 2ρ and therefore dM (a,b) ∈
(ρ/2,2ρ]. This property holds due to the triangle in-
equality: Because a and b are primary, dM (a,c)≤ ρ and
dM (b,c)≤ ρ, which implies that dM (a,b)≤ dM (a,c)+
dM (c,b)≤ 2ρ.

2) If all net-centers c ∈ C are secondary for a and b,
dM (a,b) ∈ (ρ,4ρ]. Again, the upper bound is given by
the triangle inequality: dM (a,c)≤ 2ρ and dM (b,c)≤ 2ρ,
and therefore dM (a,b) ≤ 4ρ. The lower bound stems
from the fact that any primary net-center of a would
cover b if dM (a,b)≤ ρ, and vice versa.

3) Finally, if there is at least one net-center c ∈C s.t. c is
primary for either a xor b, then dM (a,b) ∈ (ρ/2,3ρ].
W.l.o.g. assume that c is primary for node a. Then
dM (a,c)≤ ρ and dM (c,b)≤ 2ρ. Therefore, dM (a,b)≤
dM (a,c)+dM (c,b)≤ 3ρ.
Note: If for either a xor b there is no c ∈ C s.t. c
is primary for the node, then dM (a,b) ∈ (ρ,3ρ]. The
increase in the lower bound holds because no primary
net-center of a xor b covers the other node, which is
only possible if dM (a,b) > ρ.

Given the interval (r1,r2] for the possible values of
dM (a,b), we set dM (a,b) =

√
r1r2, the geometric mean of the

two bounds. The maximum factor by which the approximation
is off from the actual distance is

√
r2/r1. Therefore, our

labeling scheme suffers from a maximum stretch in the third
case, which is at most

√
6. This concludes the proof of

Theorem 4.1.

V. ROUTING

We present a single destination routing algorithm (SDR)
which will be used as a building block for multicasting and
anycasting. In SDR, a message needs to be forwarded from
a sender node s to a single target node t. The stretch SA
of a routing algorithm A is defined as SA = maxs,t∈V

dA(s,t)
dM (s,t)

where dA(s, t) is the length of the path found by the routing
algorithm. Clearly, we desire the stretch to be as small as
possible, but this comes at a certain cost. In our approach,
the stretch is coupled with the routing table size, i.e. lowering
the stretch induces bigger routing tables. Our unicast routing
result is summarized in the following theorem, where Θ is
the diameter of the network, and ∆ stands for the maximum
degree of a node.

Theorem 5.1: For a fixed ε with 0 < ε ≤ 2, SDR routes
messages with stretch (1+ε) such that the chosen path by SDR
is at most (1+ε)dM (s, t). The header size of each message is
at most 2αdlogΘe+dlogne bits, and the routing tables stored
at each node require only O

( 1
ε

)α (logΘ)(O(α)+ log∆) bits.

The routing scheme is based on the node labeling introduced
in Section IV-D and is quite simple: The sender node s extracts
from L(t) the name N of an arbitrary primary net-center γ∈Γ0



that covers the target node t. This name N and the ID of t
serve as header information in the message, which uses at
most 2αdlogΘe+ dlogne bits (cf. Section IV-B). Remember
that N is a concatenation of the enumeration values of γ and
its ancestors in the dominance tree. Therefore, N encodes the
names of exactly one net-center (primary or secondary) per
level that covers t (Lemma 4.2). Let us denote these net-centers
by {c0,c1,c2,c3, . . . ,2ϑ−2}, where ci is the net-center on level-
i. The forwarding mechanism works as follows: Each node that
receives a message finds the net-center ci on the lowest level
for which it has routing information and forwards the message
in this direction. This is repeated until the message hits a direct
neighbor of t which sends the message directly to t based on
its neighborhood list.

In order to support this forwarding scheme, each node needs
to store how to reach some of the net-centers in its surround-
ings. For this purpose, each net-center γ ∈ Γi advertises itself
to Bγ(η2i) with η = 8

ε
+ 6. I.e. every node in this ball stores

how to reach γ on an optimal path. In fact, it suffices to store
the neighbor node lying on the optimal path. This corresponds
to the shortest path problem (in a restricted area) and can
be obtained by distributed versions of the Dijkstra algorithm.
Thus, the routing table of each node v stores how to reach
any net-center γ ∈ Γi iff dM (v,γ) ≤ η2i. This can be seen as
a mapping from the name of the net-center γ to the neighbor
of v which lies on the shortest path to γ. Before we show
in Section V-B that the routing information can be stored
efficiently, we prove that SDR finds good routing paths.

A. (1+ ε)-Stretch Routing

We first observe that once the message has reached a net-
center covering t, it can be forwarded to a net-center covering
t on a lower level:

Lemma 5.2 (Net-Center Hopping): Given a net-center ci ∈
Γi that covers the destination node t, the routing table of ci

contains entries for all net-centers ci−x ∈ Γi−x covering t. This
holds for x ≤ blog2

η−2
2 c.

Proof: Suppose that c j ∈ Γ j with j < i is a net-center of
t. Due to the routing table construction, all nodes in Bc j(η2 j)
have routing table entries to c j. Using the triangle inequality,
we know that dM

(
c j,ci

)
≤ 2 j+1 + 2i+1. Therefore, ci is sure

to have a routing table entry if dM
(
c j,ci

)
≤ η2 j, which holds

if x = i− j ≤ blog2
η−2

2 c.

The following proof of the routing stretch describes the
worst case scenario where the message visits the net-centers
{ci, ci−x, ci−2x, . . . }, where ci is the net-center towards which
s forwards the message, cf. Figure 5.

Proof: (Routing Stretch) Let ci be the net-center on the
lowest level for which s has routing information. Following
the routing algorithm, the message is first forwarded to ci,
from where it can be forwarded to ci−x with x = blog2

η−2
2 c

(Lemma 5.2). This step is repeated until the message reaches
a net-center on level-0, which directly delivers the message.

s t
dM(s, t)

ci

ci−x

ci−2x

Fig. 5. Schematic illustration (out of scale) of the worst case scenario where
a message to be sent from s to t first visits ci, then ci−x and so on, until it
reaches a level-0 net-center covering t which directly delivers the message.

Thus, the total distance dSDR(s, t) of SDR is bounded by

dM
(
s,ci)+dM

(
ci,ci−x)+dM

(
ci−x,ci−2x)+ · · ·+1

Using the triangle inequality, we obtain that dM
(
s,ci

)
≤

dM (s, t)+2i+1 and for j≥ 0 : dM

(
ci− jx,ci−( j+1)x

)
≤ 2 ·2i− jx +

2 ·2i−( j+1)x. Therefore,

dSDR(s, t) ≤ dM (s, t)+4
∞

∑
j=0

2i− jx (1)

= dM (s, t)+4
∞

∑
j=0

2i

2blog2
η−2

2 c j
(2)

≤ dM (s, t)+2i+2
∞

∑
j=0

(
4

η−2

) j

(3)

≤ dM (s, t)+2i+2 η−2
η−6

(4)

We obtain (3) from (2) by observing that 2blog2
η−2

2 c j ≥
2 j log2

η−2
4 = ((η− 2)/4) j. To obtain (4), note that the sum

in (3) sums the elements of a geometric series with factor
4

η−2 = ε

2+ε
< 1.

Because s does not have a routing table entry for c j with j <
i, we deduce that dM (s, t) > (η−2)2i−1. This holds because
dM

(
ci−1, t

)
≤ 2 ·2i−1 and ci−1 advertises itself to Bci−1(η2i−1).

Therefore, s has a routing entry to ci−1 if dM (s, t) ≤ (η−
2)2i−1.

Putting together the two results, we obtain that the routing
stretch of SDR is

SSDR ≤ dSDR(s, t)
dM (s, t)

≤ 1+
2i+2 η−2

η−6

2i−1(η−2)

= 1+
8

η−6
= 1+ ε.

This constitutes the proof for the routing stretch statement
in Theorem 5.1.

Throughout the proof, we assumed that the message visits
the net-centers {ci, ci−x, ci−2x, . . . }, which is the worst case
scenario. A considerable performance boost can be achieved
in the average case if the routing algorithm tests in each step
for a closer net-center. The key idea is that while the message
is being routed towards c j, it tests after each hop whether the



current node can route towards a closer net-center ck with k <
j. If this is the case, the message immediately routes towards
ck. This produces a shortcut towards t, reducing the routing
path and therefore the stretch.

B. Compact Tables

The construction of the routing table is similar to the
cover tree presented in Section IV-D with the main difference
that each net-center γ ∈ Γi covers an area which depends on
ε, namely Bγ(( 8

ε
+6)2i). Because of this mutable coverage

radius, we need to restate Lemma 4.2:

Lemma 5.3 (Parental Cover II): If a node v has routing
information about net-center γ ∈ Γi, then v also has a routing
entry to P (γ) unless γ is the root node.

Proof: Node v has routing information about γ ∈ Γi
iff v ∈ Bγ(η2i) with η = 8

ε
+ 6. Because dM (γ,P (γ)) ≤ 2i+1

and dM (γ,v)≤ η2i, dM (v,P (γ))≤ (η+2)2i using the triangle
inequality. Therefore, it is sufficient to show that (η+2)2i ≤
η2i+1 such that v∈BP (γ)(η2i+1). The inequality holds because
η = 8

ε
+6 ≥ 2.

Using the same arguments as in Section IV-D, we can
show that all net-centers for which a node v needs to store
routing information can be be stored in a tree, where each
tree node corresponds to one net-center. Each node of the
tree only holds the enumeration value of the corresponding
net-center γ and the routing information on how to reach γ.
Recall that the enumeration value fits in 2α bits and the routing
information is the neighbor node which lies on the optimal
path between v and the corresponding net-center. Thus, the
routing information uses at most log∆ bits, where ∆ is the
maximum degree of a node.

Each node v needs to keep routing information for at most
22α

( 8
ε
+6

)α
net-centers per level (Corollary 3.1). Because

there are at most ϑ levels, the tree has at most 22α
( 8

ε
+6

)α
ϑ

nodes, each of which needs to store 2α+ log2 ∆ bits. We have
already noted that such a tree can be stored in a flat data
structure adding only two bits per node, which results in a
total routing table size of (2α + log2 ∆ + 2)22α

( 8
ε
+6

)α
ϑ =

O
( 1

ε

)α (logΘ)(O(α)+ log∆) bits. This concludes the proof of
Theorem 5.1.

VI. MULTICASTING

We now have developed all tools that allow for efficient
multicasting from a sender node s to a set U of receivers.
In a nutshell, the sender s approximates a minimum spanning
tree (MST) on the set s∪U using Kruskal’s algorithm and
then routes the message along this tree towards all receivers.
Note that in contrast to the centralized multicasting presented
in [17], our approach is distributed. We show the following
result:

Theorem 6.1: Consider a network G = (V,E) on which a
dominance net with the associated labeling and routing tables
was created. Then, any sender node s ∈ V can multicast
messages to any set U ⊂ V with constant stretch. The cost

associated with the multicasting is at most 12(1+ε) times the
cost of an optimal multicasting algorithm, which knows the
entire network topology.

Proof: We need to show that the path along the MST
approximation is at most 12(1 + ε) longer than the optimal
path, which is given by a minimum Steiner tree (MStT) on
the set s∪U and the remaining nodes as Steiner points. The
stretch is composed of three parts: First, a MST on s∪U
is a 2-approximation of the corresponding MStT. This result
was shown by Kou et al. in [8]. The (1 + ε) part is caused
by the SDR routing scheme, which is responsible to forward
the message along the tree. Lastly, the construction of the
MST is based on the stretch-

√
6 distance labeling. As a result,

Kruskal’s algorithm may not choose the shortest, but up to a
factor 6 longer edges in each step, which results in a MST
approximation at most 6 times longer than the MST.

VII. ANYCAST

As for the special case of anycasting, where a message has
to be routed to exactly one node of a given node set U , we
provide a constant stretch algorithm to deliver the message:

Theorem 7.1: The node labeling from Section IV-D and
SDR from Section V allow for a 6(1 + ε)-approximation to
anycast.

Proof: Based on the distance labeling, pick the node
u ∈U which seems closest to the sender node s and send the
message to u. Because of the stretch of the distance labeling,
this approach may pick a receiver that is up to 6 times further
away from s than the optimal receiver. The (1+ε) factor stems
from the SDR routing scheme.

VIII. DISTRIBUTED DOMINANCE NET CONSTRUCTION

In this last section, we describe an efficient distributed
algorithm to build the ρ−nets that constitute the dominance
net. Recall from Section IV-A that the dominance net consists
of ϑ ρ−nets with exponentially increasing ρ chosen from
{1,2,4, ...,2ϑ−1}.

To start, we would like to point out that a centralized
algorithm to build a ρ−net on G = (V,E) is straightforward:
Greedily pick an arbitrary v ∈ V , add v to Γ and remove
all nodes in Bv(ρ) from V . Repeat until V is the empty set.
By construction, the distance between any two net-centers is
longer than ρ and each node v ∈V is covered by at least one
net-center.

For our distributed algorithm, we exploit the fact that a
ρ−net is a maximal independent set (MIS) for the ρ metric
closure8 Gρ = (V,Eρ). This immediately leads to a simple
distributed algorithm to create a ρ−net: create a ρ metric
closure where each node v ∈ V has all nodes in Bv(ρ) as
direct neighbors. Then, run a distributed MIS algorithm on the
closure and pick the nodes in the MIS to be the net-centers
of the ρ−net. There exists a broad assortment of distributed

8The n metric closure of a graph G = (V,E) is the graph Gn = (V,En) with
En = {(u,v)|u,v ∈V ∧u 6= v∧dM (u,v)≤ n}



Algorithm 1: Dominance Net (Code for node v)

state = active1

Main()2

N = nodes in Bv(1)3

Build MIS with neighbor set N4

if v /∈ MIS then5

state = passive6

else7

Inform Bv(1) v is a net-center of level-08

Add routing entries to v in Bv(η) η = 4
ε
+39

JoinMIS(1)10

end11

JoinMIS(i)12

ρ = 2i
13

N = active nodes at most ρ away14

Build MIS with neighbor set N15

if v /∈ MIS then16

state = passive17

v is not covered if @ net-center u of level-i s.t. v ∈ Bu(ρ)
while ∃w ∈ Bv(

ρ

2 ) s.t. w not covered do18

P = arbitrary uncovered node in Bv(
ρ

2 )19

Send EXC(i) to P and wait for answer20

end21

Send ACK(i) to N22

else23

Inform Bv(ρ) v is a net-center of level-i24

Add routing entries to v in Bv(ηρ)25

Collect ACK(i) from all neighbors N26

JoinMIS(i+1)27

end28

ReceiveMessage(EXC(i) from u)29

state = excited, ρ = 2i
30

Add temporary routing entries to v in Bv(ρ)31

N = excited nodes at most ρ away32

Build MIS with neighbor set N33

if v ∈ MIS then34

state = active35

Inform Bv(ρ) v is a net-center of level-i36

Add/validate routing entries to v in Bv(ηρ)37

JoinMIS(i+1)38

else39

state = passive40

Remove temporary routing entries to v in Bv(ρ)41

end42

Send ACK(state) to u43

MIS algorithms, e.g. there is an elegant randomized algorithm
with expected running time in O(logn) by Luby [11]. More
recently, Kuhn et al. [9] described a deterministic MIS con-
struction for bounded independence graphs with running time
O(log∆ log∗ n).

The above algorithm is realistic for small values of ρ.
However, when ρ approaches Θ, the nodes tend to have huge
neighborhoods, consisting of nearly all other nodes of the
network. This may quickly exceed the memory capabilities
of simple network nodes, especially when considering large
networks. To overcome this issue, we present not only a
relatively fast, but also memory conservative algorithm to
construct the ρ−net hierarchy.

ρ
a bc

ρ/2

Fig. 6. A MIS on the ρ metric closure on the net-centers of a ρ

2−net does not
necessarily cover all nodes of the network: Suppose that the ρ

2−net consists
of {a,b,c}. One possible MIS on these 3 nodes is to pick a, which covers b
and c, but not the shaded areas. Note that coverage areas may have arbitrary
shape and need not be circular, as drawn in this example.

A. Sequential ρ−nets

Algorithm 1 describes in high-level pseudocode the steps
each node v of the network performs in order to create the
dominance nets. At the end of the algorithm, each node knows
for which ρ−nets it is a net-center, and it already holds the
complete routing table for the SDR routing scheme presented
in Section V. In a nutshell, the algorithm is recursive and
performs the following two steps to build the ρ−net of level-
i.

1) Approximate a ρ−net given the ρ

2−net, i.e. build a MIS
on the ρ metric closure of Γi−1, the independent nodes
join Γi. Note that this MIS only guarantees that the net-
centers of the ρ

2−net are covered, but it does not ensure
coverage of all nodes of the network.

2) Add additional net-centers to Γi until all nodes v ∈ V
are covered by at least one γ ∈ Γi.

We obtain the desired memory relaxation by building the
ρ−nets sequentially on top of each other. Initially, all nodes
participate in a MIS construction on a 1 metric closure of
the network, which results in the 1−net (lines 2–4). Then,
for any level-i, the ρ metric closure is constructed only with
the net-centers Γi−1 and induces at most 22α neighbors per
node, independent of the network size (Property 3.1). The
downside of this approach is a longer running time and that
the MIS on the net-centers of level-(i−1) does not necessarily
cover all nodes of the network, see Figure 6 for an example.
This requires a second phase, where additional net-centers are
added until full coverage is obtained.

The recursive call to join the next higher MIS is handled
on the lines 13–15. Note that only nodes that are net-centers
on level-(i−1) participate in the MIS construction for level-i.
If node v does not make it into the MIS of level-i, it becomes
passive (line 17) and is responsible that all nodes in Bv(2i−1)
are covered (lines 18–22). This covering algorithm works
in several rounds, where v participates as long as Bv(2i−1)
contains uncovered nodes. In each round, each net-center
whose B(2i−1) contains uncovered nodes picks an uncovered
node and sets its state to excited by sending an EXC message.
The set of excited nodes build a MIS on their ρ metric closure
(lines 32–33), and the independent excited nodes join the
(2i)−net (lines 35–38). The temporary routing entries added
on line 31 and, if the node does not make it into the MIS,



removed on line 41 enable the MIS algorithm to exchange
messages on the optimal path between any two neighbors in
the corresponding metric closure.

Due to space constraints, we did not address the following
issues in the pseudocode of Algorithm 1.

• If a node v receives several EXC requests in the same
round, it executes lines 30–42 only once, but finally
acknowledges on line 43 to all nodes that sent the request.

• The net-centers need to obtain their enumeration values
(see Section IV-B) in order to construct their labels.
Because these labels are incomplete until all ρ−nets are
constructed, the routing table entries (constructed on lines
9, 25, 31, 37) are built using a partial labeling.

• The algorithm requires a rough synchronization between
consecutive MIS constructions, such that a MIS construc-
tion only starts when the previous one finished. This can
be obtained during the construction of the metric closure
for the next MIS (lines 14 and 32), where any node can
ask the others to wait. To support this synchronization,
each node that joined the ρ−net waits until all of its
neighbors (in the metric closure) have terminated the
coverage procedure (line 26).

• Whenever N = /0 on line 14, node v trivially joins the
MIS and tests whether it covers all nodes of the network.
If this is the case, v becomes the root of the network and
stops the recursive call to JoinMIS().

• Before the first MIS can be constructed, the nodes need
to determine the lowest cost associated with any edge of
the network, as to determine the scaling factor that scales
this cost to 1.

Theorem 8.1: Algorithm 1 constructs a dominance net as
described in Section IV-A. Furthermore, the algorithm requires
to build a total of at most ϑ(1+23α) = O(logΘ) MIS, which
gives an upper bound on its running time.

Proof: We show the first property by induction on the
levels: Initially, all nodes participate in a MIS election on the
1-metric-closure, which corresponds to building a MIS on the
network where only the edges with cost 1 are considered. By
construction, the resulting MIS is a 1−net.

Given the points Γi−1 of a 2i−1−net, the algorithm first
approximates Γi by a MIS on the 2i metric closure of Γi.
By construction, a,b ∈ Γi =⇒ dM (a,b) > 2i. Because only
nodes that are not covered by Γi may become excited (line 19),
the addition of any excited node to Γi does not break this
property. Furthermore, the excited nodes added to Γi in one
round are independent w.r.t. the 2i metric closure on the set of
excited nodes (lines 32–34). Therefore, the minimum distance
between net-centers of level-i is preserved. Because every γ ∈
Γi−1 repeats the completion process until all nodes in Bγ(2i−1)
are covered (line 18), Γi finally covers all nodes and is a valid
2i−net.

As for the running time, we show that the algorithm may
have to build at most 1 + 23α MIS per level: The first MIS
is built on line 15, the remaining ones on line 33. Therefore,
we need to show that a node v may execute the while-loop

of line 18 at most 23α times until all nodes in Bv(2i−1) are
covered. We first note that an excited node P (line 19) may
not join the MIS if another excited node Q with dM (P,Q)≤ 2i

joins. Therefore, any excited node Q that may interfere with
P must lie in Bv(3 ·2i−1), and the net-center that excited Q in
Bv(2i+1). By Property 3.2, there are at most 23α net-centers
of level-i−1 in Bv(2i+1) and therefore at most 23α−1 excited
nodes that may interfere with P. Just looking at P, we know
that either P or one of its interfering nodes is selected in each
round of the while loop. Thus, after at most 23α−1 rounds, P
can join the MIS, which shows that at most 1+23α MIS are
necessary per level. Because there are at most ϑ levels, the
number of MIS to construct is bounded by ϑ(1+23α).

IX. CONCLUSION

This paper discussed an effective all-in-one solution for
unicasting, anycasting, and multicasting in static wireless
sensor and mesh networks. Being the probably most important
building block, we feel that support for all of these routing
schemes is crucial as to allow for performance-oriented appli-
cations building on top. Just as with IP-routing in the Internet,
this routing scheme may be extended with security, support
for mobility, fault tolerance and many other features, which
we leave open for future work.
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