
A New Technique For Distributed Symmetry Breaking

Johannes Schneider
Computer Engineering and Networks Laboratory

ETH Zurich
8092 Zurich, Switzerland

jschneid@tik.ee.ethz.ch

Roger Wattenhofer
Computer Engineering and Networks Laboratory

ETH Zurich
8092 Zurich, Switzerland

wattenhofer@tik.ee.ethz.ch

Abstract
We introduce Multi-Trials, a new technique for symme-
try breaking for distributed algorithms and apply it to var-
ious problems in general graphs. For instance, we present
three randomized algorithms for distributed (vertex or edge)
coloring improving on previous algorithms and showing a
time/color trade-off. To get a ∆ + 1 coloring takes time

O(log ∆ +
√

logn). To obtain an O(∆ + log1+1/ log∗ n n)
coloring takes time O(log∗ n). This is more than an expo-
nential improvement in time for graphs of polylogarithmic
degree. Our fastest algorithm works in constant time using
O(∆ log(c) n + log1+1/c n) colors, where c denotes an arbi-

trary constant and log(c) n denotes the c times (recursively)
applied logarithm to n.

We also use the Multi-Trials technique to compute net-
work decompositions and to compute maximal independent
set (MIS), obtaining new results for several graph classes.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems – computa-
tions on discrete structures;
G.2.2 [Discrete Mathematics]: Graph Theory – graph
algorithms;
General Terms Algorithms, Theory
Keywords Local Algorithms, Parallel Algorithms, Color-
ing, Symmetry Breaking, Network Decomposition

1. INTRODUCTION
Symmetry breaking is a fundamental problem in dis-

tributed computing, and as such immensely studied. Its ap-
plications range from resource scheduling for parallel threads
in a multi-core environment (i.e. MIS) to transmission
scheduling in wireless networks (i.e. coloring) on to network
decompositions.

When multiple unorganized units have to be coordinated,
communication costs usually outweigh the costs for (local)
computation. Thus, in the standard message passing model

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’10, July 25–28, 2010, Zurich, Switzerland.
Copyright 2010 ACM 978-1-60558-888-9/10/07 ...$10.00.

the complexity of an algorithm is measured in the number
of communication rounds needed. Per round a node can
exchange an arbitrary message with each of its neighbors.

So far, per message exchange all techniques for comput-
ing a maximal independent set (MIS) or a coloring have
performed one attempt to obtain either a color or to join
the MIS. Our technique transcends this approach and allows
to perform multiple trials per communication round, hence
Multi-Trials. Our constant time coloring algorithm shows
how to get a color by approximating the result of multiple
communication rounds through one communication round
and local computation. Our MIS algorithm increases the
number of possibilities a node can choose from to break sym-
metry from one (i.e. join the MIS or not) to many.

The application of our technique leads to a variety of in-
teresting findings. For an overview of the results related
to coloring see Figure 1. We also apply the Multi-Trials
method to compute ruling sets. A set is (α, β)-ruling if ev-
ery two nodes in the set have distance at least α and any
node not in the set has a node in the set within distance
β. Ruling sets are a natural way to obtain network decom-
positions, i.e. each node attaches itself to a closest node in
the ruling set. Network decompositions in turn are funda-
mental to exploit the locality of a problem. That is to say,
to efficiently distribute a task to several components of the
network, which typically solve a subproblem and later com-
bine the partial solutions. What kind of decomposition is
best, depends on the task at hand. However, the diameter
of a network component is usually an important parameter,
since it determines the time for the exchange of information
among all nodes in a component. In many cases it is natural
to ask for components of equal diameter. We are the first
to achieve network decompositions of similar diameter, i.e.
of constant ratio of α and β, in sub-logarithmic time. We
describe deterministic and randomized variants of an algo-
rithm trading time for distance to a node in the ruling set.
For example, we give a randomized algorithm computing a
(2k, 2k(c + 1))-ruling set in time O(k · 2c · log1/c n) for any
integers k, c > 0. Our novel approach is based on partition-
ing the ID of a node. Our algorithm uses each partition as
a separate trial.

By definition a MIS is the same as a (2,1)-ruling set. For
graphs of sub-logarithmic degree our method is an improve-
ment of prior randomized algorithms for the MIS problem.
For graphs, where the size of a maximum IS within distance
r of a node is bounded by f(r), we are the first to achieve
running time linear in f(r).

Previous work This paper
Colors Time Colors Time

∆ + 1
O(logn) [19, 1]

∆ + 1 O(log ∆ +
√

logn)
O(∆ + log∗ n) [14, 5]

O(∆) O(
√

logn) [13] O(∆ + logn) O(log logn)

O(∆ + nd/ log logn) O(log logn) [11] O(∆ + log1+1/ log∗ n n) O(log∗ n)

O(∆ log2 n) O(1) [17]
O(∆ log(c) n+ log1+1/c n) O(1)

O(∆2) O(log∗ n) [18, 22]

Table 1: Comparison of coloring algorithms, where c is an arbitrary constant and d is a fixed constant

2. RELATED WORK
For symmetry breaking a number of techniques exist. For

example, [21] extends a technique called the “deterministic
coin tossing” by [7], which uses ID ’s for symmetry breaking.
A node iteratively computes a new serial number based on
its own serial number (initially, its ID) and a serial number
of a neighbor. Roughly speaking, the new number is the
position where the two numbers differ. In [5, 4, 20] network
decompositions are used, i.e. a graph is partitioned into
subgraphs and then in each subgraph (one after the other
or in parallel) the problem (i.e. coloring [4] and MIS [20]
using ruling sets) is solved. For defective colorings [5, 14,
6] several nodes initially choose the same color. However,
through multiple iterations the number is reduced until a
proper coloring is achieved. Other algorithms [1, 12, 19]
are also of iterative nature and let each node attempt to
join the MIS with some probability in every round, or ran-
domly choose a color until it is distinct from all neighbors.
Sometimes several schemes are combined, e.g. [13, 6]. Our
approach can be seen as an improvement of the iterative
technique. All problems studied in this paper are simple in
a centralized setting and all allow for straight-forward se-
quential greedy algorithms running in linear time. However,
coming up with sub-linear algorithms is not easy, even for a
seemingly simple problem such as an O(∆) coloring in the
weak message passing model, where a node can concurrently
send and receive a (distinct) message to each of its neigh-
bors. Deterministically, a ∆+1 coloring is achievable in time
O(∆2 +log∗ n) [10] or in time O(∆+log∗ n) [5, 14] or in time

O(nO(1)/
√

logn) [20]. Using randomization, it is computable
in time O(logn) [19, 1].1 In [19] every node iteratively picks
a random color of all still available colors and keeps it, if no
neighbor has chosen the same color. For growth-bounded
graphs (GBG)[15], where the size of a maximum indepen-
dent set within distance r is bounded by f(r) (e.g. Unit
Disk Graphs), only time Θ(log∗ n) is needed to compute a
∆ + 1 coloring [21]. For arbitrary graphs, an O(∆) coloring
can be computed in a randomized way in O(

√
logn) [13].

Using O(∆1+o(1)) colors [6] gives an algorithm running in
time O(f(∆) log ∆ logn) where f(∆) = ω(1) is an arbitrary
slow growing function in ∆. Using O(∆2) colors [18] gives a
deterministic algorithm running in time O(log∗ n) and also
a lower bound of time Ω(log∗ n) for three coloring of an n-
cycle.

The upper bound iteratively computes an O(∆2 log2 k)
coloring [8], where k is the number of colors used in the

1In [22] it is claimed that an O(∆) coloring is computed in time

O(log∗(n/∆)). However, there is an error in the analysis pointed
out by [17], increasing the number of colors to O(∆2) and time

to O(log∗ n).

current coloring. In [18] it is also proven that even for d-
regular trees any algorithm running in time O(logd n) uses

at least Ω(
√
d) colors.

Edge and vertex coloring are closely related, i.e. a vertex
coloring algorithm on a line graph of G corresponds to an
edge coloring of G. In the line graph of G all edges in G
are nodes and two nodes are adjacent, if their correspond-
ing edges share a common vertex in G. The randomized
edge coloring in [11] is efficient for graphs of relatively large

degree, i.e. ∆ ∈ Ω(nc/ log logn), it runs in time O(log logn)
using O(∆) colors. For graphs of smaller degree but still

much larger than polylogarithmic, i.e. ∆ ∈ Ω(n1/
√

logn) it
requires time O(

√
logn).

A MIS, i.e. a (2,1)-ruling set, can be computed in time
O(logn) in general graphs using simple randomized algo-
rithms [1, 12, 19]. A node marks itself with probability in-
versely proportional to its degree in every round. A marked
node communicates with its neighbors to find out if all
other nodes are either unmarked or have lower degree. If
so, it joins the MIS. The fastest known deterministic dis-

tributed algorithm [20] is in O(n
√
c/ logn) with constant c.

In [14, 5] the running time for deterministic algorithms is im-

proved for graphs with ∆ ∈ o(2
√

logn) to O(∆). In general

graphs every algorithm requires at least Ω(
√

logn/ log logn)
or Ω(log ∆/ log log ∆) communication rounds for computing
a MIS [16]. For GBGs [9] gives an algorithm running in time
O(f(7)f(3) log logn log∗ n) and the algorithm in [21] runs in
O(f(f(2) + 3) log∗ n) time. Our algorithm runs in time only

linear in f , i.e. O(f(2(c+1)) ·2c log1/c n)) for arbitrary con-
stant c > 0. Thus, if f also depends on n, i.e. f(r, n), our
algorithm improves [21, 9] for a large class of functions f .

A (α, β)-ruling set [3] induces a network decomposition,
such that any component has diameter at least α and at
most β. In [3] it is shown how to compute a (k, k logn)-
ruling set in time O(k logn). In [9] a (1, log log ∆)-ruling
set is computed in time O(log log ∆) such that each node in
the ruling set has at most O(log5 n) neighbors also in the
ruling set. We target sparser sets, i.e. independent ruling
sets. However, different quality measures exist, e.g. in [2]
several types of network decompositions (and covers) are
considered. Our strength lies primarily in getting network
decompositions of balanced and small (sub-logarithmic) di-
ameter efficiently. Our notion is in particular of interest if
the main concern is communication time among all nodes
within a cluster.

3. MODEL AND DEFINITIONS
The communication network is modeled with a graph G =

(V,E). For a node v its neighborhood Nr(v) represents all
nodes within r hops of v (not including v itself). By N(v) we

Algorithm ColorTrials(Available colors C(v) for node v)

1: S(v) := {(c, r)|∀c ∈ C(v) choose a number r ∈
[0,∆N(v)] uniformly at random)}

2: Transmit S(v) to all uncolored neighbors u ∈ N(v)
3: for each (cv, rv) ∈ S(v) do
4: if rv > max{r|(cv, r) ∈ S(u), u ∈ N(v)} then
color(v) := cv end if

5: end for each

denote N1(v) and by N+(v) the neighborhood of v including
v, i.e. N(v) ∪ v. The degree d(v) of a node v is defined
as |N(v)|. d+(v) denotes |N+(v)|, ∆ := maxu∈V d(u) and
∆N+(v) := maxu∈N+(v) d(u). In a (vertex) coloring any two
neighboring nodes u, v have a different color. A set T ⊆ V
is said to be independent in G if no two nodes u, v ∈ T
are neighbors. A set S ⊆ V is a maximal independent set
(MIS), if it is independent and there exists no independent
superset T ⊃ S. A MIS S of maximum cardinality, i.e.
|S| ≥ maxMIS T |T |, is called a maximum independent set
(MaxIS).

Our algorithm is non-uniform, i.e. every node knows an
upper bound on the total number of nodes n. However, the
maximum degree ∆ in the graph is unknown. Communi-
cation among nodes is done in synchronous rounds without
collisions, i.e. each node can exchange one distinct message
of poly-logarithmic size with each neighbor. Nodes start
executing the algorithm concurrently.

The term logb n denotes (logn)b. The term log(b) n equals
log log . . . log︸ ︷︷ ︸

b times

n. The function log∗ n states how often one has

to take the (iterated) logarithm to get 1, i.e. log(log∗ n) n = 1.

The tetration ba expresses aa
..
a︸ ︷︷ ︸

b times

.

4. SYMMETRY BREAKING TECHNIQUE
We apply our Multi-Trials technique to solve coloring

and MIS problems as well as to compute ruling sets. We
show several ways how to allow for many trials per commu-
nication round, even when only few seem possible.

4.1 Coloring
Instead of randomly choosing a single color and exchang-

ing the color with its neighbors, a node gives a (random)
preference for each color and transmits all its preferences at
once, see Algorithm ColorTrials. A preference is a random
number in [0,∆N(v)] for a node v, where ∆N(v) is the size of
the largest neighborhood of a neighbor u ∈ N(v). This im-
plies that the number of selectable preferences for a color is
always at least as large as the number of preferences chosen
for a color by the neighbors of node v. This ensures that the
probability that node v has a neighbor with the same ran-
dom preference for a color is small (i.e. constant). If node
v’s preference is unique and largest for a color, it can take
the color. However, it only keeps one (arbitrary) color, it is
allowed to take. A colored node informs its neighbors about
its obtained color and stops Algorithm ColorTrials. Col-
ored nodes and their incident edges are removed from the
graph G = (V,E) and, therefore, N(v) denotes all uncolored
neighbors upon calling ColorTrials.

Algorithms ConstDeltaColoring and ConstTimeColoring

Algorithm ConstDeltaColoring, i.e. (1 + ε)∆ for ε >

1/2log∗ n

1: color(v) := none

2: C(v) := {0, 1, ..., (1 + ε)∆N(v) + log1+1/ log∗ n n}
3: repeat
4: ColorTrials(C(v))
5: N(v) := {u|u ∈ N(v) ∧ color(u) = none}
6: C(v) := C(v) \ {color(u)|u ∈ N(v)}
7: until color(v) 6= none

Algorithm CoordinateTrials (maxColor d, parameter c)

1: j := 0; coord(v)[i] := the number given by bits
[i(log d)/c, (i+ 1)(log d)/c] of color(v)

2: repeat
3: Rank(v) := [x0, x1, . . . , xc−1], s.t. (xi = 1⇔

coord(v)[i] = j) ∧ (xi = 0⇔ coord(v)[i] 6= 0)
4: for k = 1..2c do
5: if Rank(v) = k then Transmit Stop
6: elsif received Stop then Exit end if
7: end for
8: j := j + 1
9: until @u ∈ N+(v) executing algorithm
10: Join the ruling set

simply repeat ColorTrials. The only difference is that for
constant time the number of initially available colors is
larger, i.e. {0, 1, ...,∆N(v) log(c) n+log1+1/c n} for some con-
stant c and some node v. For both algorithms the num-
ber of unused colors, i.e. colors not taken by a neigh-
bor, is always larger than logarithmic. Thus any node
performs more than a logarithmic number of trials to get
a color in any communication round. For computing a
∆ + 1 coloring, Algorithm DeltaPlus1Coloring also itera-
tively calls Algorithm ColorTrials with an initial set of colors
C(v) := {0, 1, ...,∆} until only few unused colors left (more
precisely, |C(v)| <

√
logn). The remaining uncolored nodes

can be colored by our Multi-Trials technique as shown in
Algorithm RankingTrials in Section 4.2 (or defective color-
ings[14, 5]).

For the sake of simplicity, we have described the algo-
rithms using large messages. In the Analysis Section we
show that messages of polylogarithmic size suffice.

4.2 Algorithm RankingTrials
In Algorithm RankingTrials we assume that each node

has at most ∆ ≤
√

logn uncolored neighbors. The goal is to
color all nodes with ∆ + 1 colors. To make effective use of
the Multi-Trials technique, we must ensure that a node
can perform many trials in one communication round, i.e.
even if ∆ is much smaller than

√
logn a node should per-

form at least
√

logn trials per round. One idea is to create
a ranking of the nodes using 2

√
logn + 1 ranks, i.e. each

node can try to get any of the at least
√

logn + 1 ranks
that are not used by any of its neighbors. Then nodes pick
a color depending on this ordering, i.e. once every node v
has a rank Rank(v), the uncolored node with smallest rank
among its neighbors chooses a color until all nodes are col-
ored. However, it is possible to perform even more trials
per round, i.e. in order to obtain a rank, a node must ob-

Subroutine IncProb(threshold t)

1: Transmit pv to all nodes u ∈ N2(v)
2: while ∀u ∈ N+(v)|

∑
w∈N+(u) pw < 1/t do

3: pv := pv · t
4: Transmit pv to all nodes u ∈ N2(v)
5: end while

Algorithm RandRulingSet(parameter c)

1: pv := 1/n; color(v) := none

2: for i = 1..c do IncProb(2(logn)1−i/c

) end for

3: Participate in computing an O(log1+1/ log∗ n n) coloring
with probability min(1, 64pv logn)

4: if color(v) 6= none then

5: CoordinateTrials(O(log1+1/ log∗ n n),c+ 1) end if

tain a priority RP ∈ [0, 2
√

logn] for that rank. The rank
priorities RP determine which rank a node gets. Thus, a
node could perform about 4 logn trials per round. However,
to keep messages small we perform fewer trials (but each
having higher success probability). A node must get a rank
priority for at least

√
logn+ 1 ranks and all rank priorities

must be distinct. After obtaining the rank priorities, start-
ing from smallest priority 0 on to priority 2

√
logn a node

keeps the first rank, where its priority is smallest (among its
neighbors) and which is not taken by a neighbor.

4.3 Ruling Set And Maximal Independent Set
A simple but slow algorithm to compute a ruling set lets

a node v with color (or ID) i join the ruling set in the ith
round if none of its neighbors u ∈ N(v) is already in the
set. To speed up the process, we split up the the digits of
a node’s color into c equal parts (with the same number of
digits), i.e. coord(v)[0], ..., coord(v)[c−1], to perform multi-
ple trials. A node v computes a summary of all trials of an
attempt to join the ruling set, i.e. a rank Rank(v) consisting
of c bits, where bit i is 1 if and only if the ith coordinate
equals the current attempt j, i.e. coord(v)[i] = j, and 0
otherwise. Based on the rank a node either continues the
algorithm (and eventually joins the ruling set) or stops. Af-
ter a computation of a rank all nodes with rank larger 0
compete to continue and force other nodes to stop the al-
gorithm. More precisely, a node v continues and forces its
neighbors with distinct rank to exit the algorithm, if in the
kth round of the competition its Rank(v) equals k.

Algorithm CoordinateTrials with arguments d and c re-
quires a coloring for a subset U ⊆ V of nodes using col-
ors {0, 1, . . . , d − 1}. It determines a ruling set with at
least one node within distance c for each colored node. A
color color(v) ∈ [0, d − 1] of a node v is seen as a point

in the c dimensional space [0, d1/c − 1]c, i.e. color(v) =
(coord(v)[0], ..., coord(v)[c− 1]). In the Analysis Section we
describe modifications of the algorithm trading communica-
tion time for distance to a node in the ruling set.

To compute a (2, c)-ruling set deterministically, we start

from an initial O(∆2)[18] or O(∆1+o(1)) [6] coloring before
calling Algorithm CoordinateTrials. Our randomized Algo-
rithm RandRulingSet(c) computes a subset of nodes U ⊆ V
which gets colored as follows: Each node v starts with a

Algorithm RankingTrials

1: Rank(v) := none, RP (v)[i] := none, 0 ≤ i ≤ 2
√

logn
{RP [i] equals priority for Rank i}

2: RPfree(v)[i] := {0, 1, ..., 2
√

logn}, 0 ≤ i ≤ 2
√

logn
{Available rank priorities for rank i}

3: repeat
4: S(v) := {(i, r)|RP (v)[i] = none and r is chosen ran-

domly s.t.: {Pick a random priority for each available
rank}

5: a) r ∈ RPfree(v)[i] {Choose rank priority for rank
i not taken by a neighbor}

6: b) r /∈ {RP (v)[j]| for i 6= j} {Do not take a rank
priority already taken by oneself}

7: c) (i, r) 6= (j, r) ∈ S(v) for i 6= j {Do not try to get
the same rank priorities for different ranks}

8: Transmit S(v) to all uncolored nodes N(v)
9: for each (cv, rv) ∈ S(v) do
10: if rv /∈ {r|(cv, r) ∈ S(u), u ∈ N(v)} then
11: RP (v)[cv] := rv {Keep priority if noone else wants

it}
12: end if
13: endfor
14: Transmit RP (v) to all nodes N(v)
15: RPfree(v)[i] := RPfree(v)[i] \ {RP (u)[i]|u ∈ N(v)},

for 0 ≤ i ≤ 2
√

logn
16: until |{i|RP (v)[i] 6= none}| >

√
logn

17: Transmit Ready {Inform neighbors and wait for them}
18: Wait until recv Ready from all uncolored u ∈ N(v)
19: for i = 0...2

√
logn do

20: if Rank(v) = none ∧ ∃l, RP (v)[l] = i then
21: Rank(v) := l; Transmit Rank(v)
22: else
23: ∀received Rank(u) do RP (v)[Rank(u)] := none
24: end if
25: end for
26: for i = 0..2

√
logn do

27: if Rank(v) = i then
28: color(v) := arbitrary c ∈ C(v)
29: Transmit color(v) to all nodes u ∈ N(v)
30: end if
31: C(v) := C(v) \ {color(u)| received color(u)}
32: end for

small value pv = 1/n. This value is raised repeatedly by
calling Subroutine IncProb(t) until the node v or a neigh-
bor satisfies the condition that the sum of the values pw of
nodes w ∈ N+(v) exceeds one half. Then with probabil-
ity min(1, 64pv logn) a node joins set U , i.e. participates

in computing an O(log1+1/ log∗ n n) coloring. Afterwards Al-

gorithm CoordinateTrials(O(log1+1/ log∗ n n),c) is called by
every colored node.

To compute a MIS for graphs where the maximum size
of an independent set within distance r for every node v
is bounded by f(r) one simply iterates algorithm RandRul-
ingSet(c) to compute a ruling set Ri in iteration i. After
the ith iteration all nodes from the ruling set Ri join the
MIS and all neighbors u ∈ N+(v), v ∈ Ri are removed from

the graph. Due to Theorem 18, in O(2c log1/c n) time, for

every node v at least one node u ∈ N
2(c+1)
+ (v) joins the

MIS. Since, the size of any MIS within distance 2(c + 1) is

at most f(2(c+ 1)), the time complexity to compute a MIS

is O(f(2(c+ 1)) · 2c log1/c n).

5. ANALYSIS

5.1 Coloring

5.1.1 Notation and Prerequisites
Recall that G = (V,E) is the graph given by all uncolored

nodes before calling ColorTrials. Ñ(v) ⊆ N(v) denotes the
still uncolored neighbors of node v during the foreach loop
of ColorTrials and d̃(v) := |Ñ(v)|. Let E(v, c) = x denote

the event for node v that x uncolored nodes u ∈ Ñ+(v) take
color c ∈ C(v) during the execution of ColorTrials. The
probability of event E(v, c) = x is Pr(E(v, c) = x). We also
use the following Chernoff bound:

Theorem 1. The probability that the number X of oc-
curred independent events Xi ∈ {0, 1}, i.e. X :=

∑
Xi, is

less than (1− δ) times the expectation E[X] can be bounded

by Pr(X < (1− δ)E[X]) < e−E[X]δ2/2.

Observe that the two events E(u, c) and E(v, c) are de-
pendent. For instance, consider four nodes u, v, w, x in a
line, i.e. with edges (u, v), (v, w), (w, x), and assume that
nodes u and x already obtained a color before calling Col-
orTrials. In this case, for event E(u, c) > 0 to occur node
v’s random number must be larger than w’s and the other
way round for event E(x, c) > 0 to happen. Thus, it is not
possible that both events E(u, c) > 0 and E(x, c) > 0 oc-
cur, i.e. Pr(E(u, c) > 0|E(x, c) > 0) = 0, since either v’s
random number is larger than w’s or the other way round
or both are equal. In general, the correlation might also be
positive, e.g. if nodes form a clique.

To deal with the dependencies among nodes, we derive
a bound for n (slightly) dependent events. Let Ω de-
note the union of all possible (elementary) events F , i.e.∑
F∈Ω Pr(F) = 1. For an event Ei to occur with 0 ≤ i ≤

n−1, let certain elementary events SEi ⊆ Ω be infeasible for
event Ei, i.e. Pr(Ei|F ∈ SEi) = 0, and let all others Ω\SEi

cause Ei to happen, i.e. the probability Pr(Ei) of event
Ei is

∑
F∈Ω\SEi

Pr(F) =
∑
F∈Ω Pr(F)−

∑
F∈SEi

Pr(F) =

1−
∑
F∈SEi

Pr(F).

Theorem 2. For n (dependent) events Ei with i ∈
{0, ..., n−1}, such that each event Ei occurs with probability
Pr(Ei) = 1 −

∑
F∈SEi

Pr(F) ≥ 1 − 1/nk, the probability

that all events occur is at least 1− 1/nk−3.

Proof. We want to show that Pr(∧i∈{0,...,n−1}Ei) ≥ 1−
1/nk−3. Since Pr(∧i∈{0,...,n−1}Ei) = Pr(E0) · Pr(E1|E0) ·
Pr(E2|E0 ∧ E1) · ... · Pr(En−1| ∧i∈{0,...,n−2} Ei) we can
also derive lower bounds for the conditional probabilities
Pr(Ei| ∧i∈T,T⊂∈{0,...,n−2} Ei). We assume a worst case cor-
relation among events Ei, i.e. the occurrence of an event
Ei has the worst impact on the probability that another
event Ej occurs. Given that the event Ei occurs, all ele-
mentary events SEi for which Ei cannot happen, are known
not to occur. They can be excluded from Ω, when com-
puting the probability of another event Ej , i.e. Pr(Ej |Ei).
Thus, the elementary events that can occur given Ei are
Ω|i := Ω \ SEi . Since Pr(Ej |Ei) is a probability distribu-
tion, the sum of the probabilities Pr(F |Ei) of all elementary

events F ∈ Ω|i must be one, i.e.
∑
F∈Ω|i

Pr(F |Ei) = 1.

We have that Pr(F |Ei) = Pr(F) ·1/(1−
∑
F∈SEi

Pr(F)) ≤
Pr(F)·1/(1−1/nk), since the occurrence of event Ei only re-
moves the set SEi with

∑
F∈SEi

Pr(F) ≤ 1/nk from Ω, but

does not make one elementary event F1 ∈ Ω|i (relatively)
more favorable to another F2 ∈ Ω|i, i.e. the probabilities
Pr(F |Ei) of all remaining events F ∈ Ω|i are increased by

the same factor 1/(1 −
∑
F∈SEi

Pr(F)) ≤ 1/(1 − 1/nk).

To compute Pr(Ej |Ei) assuming a worst case correlation,
all excluded elementary events SEi cause Ej to occur and
SEi∩SEj = {}, i.e. all elementary elements SEj are excluded
for Pr(Ej |Ei) to occur. Thus, all elementary events Ω|i\SEj

cause Ej to occur and Pr(Ej |Ei) = 1−
∑
F∈SEj

Pr(F |Ei) ≥

1−
∑
F∈SEj

Pr(F) ·1/(1−1/nk) ≥ 1−1/nk ·1/(1−1/nk) =

1− 1/(nk − 1). The argument can be generalized to bound
any conditional probability Pr(Ej | ∧i∈T,T⊆{1,...,n−1}Ei) for
any 0 ≤ j ≤ n − 1. The remaining possible events for
Ej to occur given all events Ei with i ∈ T happen is
Ω|T := Ω \ ∪i∈TSEi . For the probability of an elemen-
tary event F ∈ SEj holds Pr(F | ∧i∈T Ei) = Pr(F) · 1/(1−∑
F∈∪i∈T SEi

Pr(F)) ≤ Pr(F) · 1/(1− |T |/nk). The last in-

equality follows since all sets SEi are assumed to be disjunct,
i.e. SEi ∩ SEl = {}, to maximize the probability that an el-
ementary event F ∈ SEj occurs . Therefore, Pr(Ej | ∧i∈T
Ei) = 1 −

∑
F∈SEj

Pr(F | ∧i∈T Ei) ≥ 1 −
∑
F∈SEj

Pr(F) ·

1/(1 − |T |/nk) = 1 − 1/(1 − |T |/nk)
∑
F∈SEj

Pr(F) ≥

1− 1/(1− n/nk) · 1/nk = 1− 1/(nk − n).
Using the bound of the conditional probabilities and

Pr(Ei) ≥ 1 − 1/nk ≥ 1 − 1/(nk − n) (the first inequality
is by assumption), we obtain: Pr

(
∧i∈{0,...,n−1}Ei

)
=

Pr (E0) · Pr (E1|E0) · Pr
(
E2| ∧i∈{0,1} Ei

)
·

Pr
(
E3| ∧i∈{0,1,2} Ei

)
· ... · Pr

(
En−1| ∧i∈{0,...,n−2} Ei

)
≥∏

i∈{0,...,n−1}
(
1− 1/(nk − n)

)
=

(
1− 1/(nk − n)

)n ≥
1− 1/nk−3

Moreover, the probability Pr(E(v, c) > 0) that a node v

or some of its uncolored neighbors Ñ(v) get a certain color
c ∈ C(v) depends on the topology of the graph, i.e. on

each neighborhood N(u) of every uncolored node u ∈ Ñ(v).
In contrast to the probability Pr(E(v, c) > 0), the proba-
bility that an uncolored node u gets color c ∈ C(u) does
not depend on the current number of uncolored neighbors
d̃(u), but only depends on d(u), i.e. the number of uncolored
neighbors before executing ColorTrials. This is because u is
unaware whether a neighbor w ∈ N(u) got a color c1 < c
while executing ColorTrials. Thus, node u must consider
all random numbers from all nodes w ∈ N(u) and must be
larger than all of them, even those that already got a smaller
color.

Since d̃(v) might change after every considered color c ∈
C(v), two events E(v, c1) and E(v, c2) are not independent
for arbitrary colors c1, c2. For example, consider a star graph
with v in the center, i.e. a tree with v as root and n − 1
leaves. Say c1 is the first considered color and c2 is the
second. Assume that all initially uncolored neighbors N(v)
of v get the first color c1. Then the probability of event
E(v, c2) > 0 is roughly 1/|N+(v)| = 1/n,2 since node v’s
2Pr(E(v, c2) > 0) = 1/n would hold if all nodes were known to

draw distinct random numbers.

random number for color c2 must be larger than the choice
of all its neighbors N(v) executing ColorTrials. If none of
v’s neighbors got the first color, the only situation where
E(v, c2) equals 0, is when v drew a random number that is
maximum among all nodes u ∈ N(v) and at least one neigh-
bor chose the same number. This happens with probability
less than 1/|N+(v)| = 1/n. Thus, in this case, a lower bound
of Pr(E(v, c2) > 0) is 1 − 1/|N+(v)| = 1 − 1/n. Therefore,
the probability of Pr(E(v, c2) > 0) depends on the outcome
of the first color E(v, c1).

To deal with the interdependence for different colors we
follow the idea of stochastic domination. A probability dis-
tribution A, where PrA(X = x) denotes the probability
of outcome x, dominates a probability distribution B, if
for any outcome x, A gives a higher probability of receiv-
ing an outcome equal to or better than x under B, i.e.
PrA(X ≥ x) ≥ PrB(X ≥ x). More precisely, we use the
following basic theorem.

Theorem 3. For t dependent events Ei ∈ {0, 1} with i ∈
[0, t − 1], such that each event Ei occurs with probability

Pr(Ei = 1|
∑i
j=0 Ej ≤ y) ≥ p, the probability that at least

min(y, tp/2) events occur is at least 1− e−tp/8.

Proof. Consider the random variable XE =
∑t
j=0 Ej .

We want to compute Pr(XE ≤ y). Consider any event F ,
i.e. a sequence of events (E0 = x0, E1 = x1, ..., Et = xt) =:
F , with XE ≤ y. For any such event F holds that each
event Ei = 1 occurs with probability at least p indepen-
dently of all others, since by assumption Pr(Ei = 1|XE ≤
y) ≥ p for all i ∈ [0, t − 1]. Consider the random vari-
able XI =

∑t
j=0 Xj which is the sum of t independent

events Xi such that each event occurs with probability p.
We have Pr(XE ≥ x) ≥ Pr(XI ≥ x) for all x ≤ y, since
Pr(Ei = 1|XE ≤ y) ≥ p = Pr(Xi = 1) for all i ∈ [0, t − 1].
Thus, to upper bound Pr(XE ≤ min(y, tp/2)) we can use
Pr(XI ≤ min(y, tp/2)). Using Theorem 1 with δ = 1/2 and

E[XI] = tp yields a bound Pr(XI ≤ tp/2) < e−tp/8. There-
fore, Pr(XE ≤ min(y, tp/2)) ≤ Pr(XI ≤ min(y, tp/2)) ≤
Pr(XI ≤ tp/2) < e−tp/8.

In our case the probability of a certain outcome is defined
by Algorithm ColorTrials and the given graph G. To derive
bounds for the probabilities of events Pr(E(v, c) = x) of a
node v we consider a special topology G′v = (V ′, E′) which
is dominated by G, meaning that it is more likely for node
v to get a certain number of colored neighbors in G than in
G′v. For such a graph G′v = (V ′, E′) all terms E′(v, c), d̃′(v),
N ′(v) etc. are defined in the same manner as for G.

5.1.2 Algorithm ColorTrials
Given a node v ∈ V , let G′v = (V ′, E′) be the graph

obtained by enhancing G, i.e. we begin with V ′ = V and
E′ = E and add edges and nodes toG′v. If |V ′| < ∆+d(v)+1
then add an arbitrary set S of nodes to V ′, i.e. V ′ = V ∪ S
such that |V ′| = ∆ + d(v) + 1. Each node u ∈ N(v) is
connected to all other nodes w ∈ N(v)\u, i.e. the neighbors
N(v) form a clique. Furthermore, each node u ∈ N(v) is
connected to ∆ arbitrary nodes V ′ \N+(v), i.e. node u has
degree ∆ + d(v).

Thus node v has the same neighbors in G and G′v, i.e.
N(v) = N ′(v). But the degree of a node u ∈ N ′(v) in G′v is
larger than that of any node w ∈ N(v) inG and all neighbors
u ∈ N ′(v) are connected among themselves. Note, that G′v

is defined for a single node v ∈ V and can be seen as a worse
topology than G for node v.

Lemma 4. For a node v in a graph G′v = (V ′, E′) we have
that Pr(

∑
c∈C(v) E(v, c) > y) ≥ Pr(

∑
c∈C(v) E

′(v, c) > y)
for any integer y ≥ 0.

Proof. Since node v’s neighbors form a clique in G′v
only one node u ∈ N+(v) can get a color c ∈ C(v). Thus
E′(v, c) ∈ {0, 1}, i.e. Pr(E′(v, c) = i) = 0 for i > 1.3 Thus,
Pr(E(v, c) > i) ≥ Pr(E′(v, c) > i) = 0 holds ∀1 ≤ i ≤ n.
We show that it also holds for i = 0, i.e. Pr(E(v, c) > 0) ≥
Pr(E′(v, c) > 0) given d̃(v) = d̃′(v). Since Pr(E′(v, c) >
0) = 1 − Pr(E′(v, c) = 0) we have Pr(E(v, c) > 0) ≥
Pr(E′(v, c) > 0)⇔ 1−Pr(E(v, c) = 0) ≥ 1−Pr(E′(v, c) =
0) ⇔ Pr(E(v, c) = 0) ≤ Pr(E′(v, c) = 0). To upper bound
Pr(E(v, c) = 0) in G, we use the observation that the larger
the neighborhood N(u) of a neighbor u ∈ N(v) (with nodes
w ∈ N(u) being at distance 2 from v), the lower are the
chances for u to get colored and, therefore, the higher are
the chances for Pr(E(v, c) = 0). This is because u’s ran-
dom number must be larger than that of all its neighbors
w ∈ N(u) for u to get colored and event E(v, c) > 0 to
occur. Thus, we assume that each neighbor u ∈ N(v) has
∆ neighbors w ∈ N(u) at distance 2 from v. The proba-
bility of Pr(E(v, c) = 0) does not decrease, if, additionally,
nodes u ∈ N(v) are interconnected. Thus we assume that
all nodes u ∈ N(v) form a clique. The described topology
giving an upper bound for Pr(E(v, c) = 0) is the topol-
ogy of v for G′v used to compute Pr(E′(v, c) = 0) and thus
Pr(E(v, c) = 0) ≤ Pr(E′(v, c) = 0) and we have shown
Pr(E(v, c) > i) ≥ Pr(E′(v, c) > i) holds ∀0 ≤ i ≤ n given

d̃(v) = d̃′(v).

Therefore, the number of uncolored nodes d̃(v) in G de-

creases at least as fast as d̃′(v) in G′v with every considered

color c for d̃(v) = d̃′(v). When looking at the first color we

have d(v) = d̃(v) = d̃′(v). Thus d̃(v) is expected to be less or

equal d̃′(v) after examining all colors c ∈ C(v), i.e. for the
number of newly colored nodes (after the last color c ∈ C(v))

holds Pr
(
d(v)− d̃(v) > y

)
≥ Pr

(
d(v)− d̃′(v) > y

)
. The

argument is analogous to the following: Given two functions
f(x) and g(x) with f(0) = g(0) and f ′(x) ≤ g′(x) ≤ 0 for
x ≥ 0. Then f(y) ≤ g(y) for any y ≥ 0.

Since for the number of newly colored nodes holds: d(v)−
d̃(v) =

∑
c∈C(v) E(v, c), we have: Pr

(
d(v)− d̃(v) > y

)
≥

Pr
(
d(v)− d̃′(v) > y

)
⇒ Pr

(∑
c∈C(v) E(v, c) > y

)
≥

Pr
(∑

c∈C(v) E
′(v, c) > y

)
Now, that we have shown that the probability distribution

for the number of obtained colored neighbors given by the
topology G′v for node v (and Algorithm ColorTrials) is in-
deed dominated by the one for G (and Algorithm ColorTri-
als), we derive a bound on the probability Pr(E′(v, c) > 0)
for the topology G′v for an arbitrary color c ∈ C(v). Note,
that Pr(E′(v, c) > 0) = Pr(E′(v, c) = 1), since nodes
u ∈ N ′(v) form a clique and thus only one node u ∈ N ′(v)
can get a color c.

3In contrast, for an event E(v, c) we have that it might also have
a non-zero probability that more than one node gets colored, e.g.

for a tree Pr(E(v, c) = x) > 0 for x ∈ {0, 1, ..., d̃(v)}.

Lemma 5. The probability of event E′(v, c) = 1 is at least

d̃′+(v)/(24∆).

Proof. If we choose d′(u) = ∆ + d(v) ≤ 2∆ random
numbers in [0,∆N(u)] = [0, d′(u)] ⊆ [0, 2∆] then the proba-

bility that no random number is 0 is (1−1/d′+(u))d
′(u) ≥ 1/e.

The probability that node v or a neighbor chose one random

number equal to 0 is d̃′+(v) ·1/d′+(u) ·(1−1/d′+(u))d̃
′
+(v)−1 ≥

d̃′+(v)/d′+(u)·(1−1/d′+(u))∆ ≥ d̃′+(v)/(2∆+1)·(1−1/(2∆+

1))∆ ≥ d̃′+(v)/(3e∆).
The probability of event E1 that for color c exactly one

node u ∈ Ñ+(v) chooses a random number in [0, d′(u)] is

at least d̃+(v)/(3e∆). The probability of the event E2 that
none of u’s neighbors w ∈ N(u) chooses a random number
in this interval is 1/e. Events E1 and E2 are not indepen-
dent since nodes u and v have (some) common neighbors,
i.e. N(v) ∩ N(u) = N(v). The probability Pr(E2|E1) of
event E2 given event E1 is at least the probability Pr(E2)
of event E2, since due to event E1 node u is the only node
in N+(v) with a random number equal 0 and all other nodes
N+(v) \u are known not to have a random number equal to
0. Therefore, for event E2 to occur only the random num-
bers of nodes N(u)\N(v) instead of those of all nodes N(u)
must be shown to be distinct from 0. Thus the chance that
both events happen is Pr(E1∧E2) = Pr(E2|E1) ·Pr(E1) ≥
Pr(E2)Pr(E1) ≥ 1/e · d̃+(v) · 1/(3e∆) ≥ d̃+(v)/(24∆).

As quantified in Lemma 5, the more uncolored neigh-
bors Ñ(v) node v has, the larger is the probability of event
E′(v, c) = 1. As long as a node has a certain number of un-
colored neighbors we can guarantee a reasonable minimum
probability for an event E′(v, c) = 1. This observation is
used in the proof of the following theorem showing that the
number of uncolored nodes reduces drastically when execut-
ing ColorTrials using more colors than the maximum size ∆
of any uncolored neighborhood.

Theorem 6. The probability Pr(Ev) of event Ev for

node v that d̃(v) ≤ max(d(v)/2s, logn) after executing Col-
orTrials is at least 1 − 1/nk for arbitrary constant k using
color set C(v) with |C(v)| ≥ k0s∆ and k0 ≥ 384(k + 1).

Proof. Consider a node v in a graph G′v and a se-
quence of k0∆ colors that nodes u ∈ Ñ+(v) attempt to
get during ColorTrials. Assume that before processing
a sequence of k0∆ the number of uncolored neighbors is

d̃0
′
(v). In Lemma 5 the probability of Pr(E′(v, c) = 1)

was shown to be at least d̃′(v)/(24∆). In particular as long

as there are at most d̃0
′
(v)/2 colors assigned the proba-

bility is at least d̃0
′
(v)/(48∆) for event E′(v, c) = 1, i.e.

Pr(E′(v, c) = 1|
∑c−1
i=0 E

′(v, c) ≤ d̃0
′
(v)/2) ≥ d̃0

′
(v)/(48∆).

Thus we can use Theorem 3 with t = k0∆, p = d̃0
′
(v)/(48∆)

and y = d̃0
′
(v)/2 ≤ tp/2 (for k0 sufficiently large), yielding

a bound of ek0/48·d̃′0(v)/8 = ek0/384·d̃0
′
(v) ≥ ek0/384·logn =

1 − 1/nk0/384. Therefore, the probability that for any se-

quence of k0∆ colors and any initial degree d̃0(v) ≥ logn at

least half of the neighbors get colored is 1− 1/nk0/384. For
s distinct sequences the probability Pr(E′v) in G′v that the

degree of node v for d̃′(v) > logn (for each sequence) got

halved s < logn times in G′v becomes
(

1− 1/nk0/384
)s

>

1− 1/nk0/384−1. Due to Lemma 4 the lower bound of prob-

ability Pr(E′v) is also a lower bound for the event Pr(Ev)
in G.

To derive a bound for all nodes, we must take dependen-
cies among nodes into account. The goal is to show that
Theorem 6 holds for all nodes concurrently, i.e. to show
that Pr(∧v∈V Ev) ≥ 1− 1/nk for an arbitrary constant k.

Theorem 7. All nodes v ∈ V have d̃(v) ≤
max(d(v)/2s, logn) uncolored neighbors with probability 1−
1/nk for arbitrary constant k after executing ColorTrials us-
ing color set C(v) with |C(v)| ≥ k0s∆ and sufficiently large
constant k0.

Proof. Let an elementary event F be all random choices
made by all nodes v during ColorTrials for a graph G,
i.e. the random preferences for each node v ∈ V for
each color c ∈ C(v). Let only the set SEv of elementary
events cause the event Ev not to occur, i.e. Pr(Ev) =
1 −

∑
F∈SEv

Pr(F) ≥ 1 − 1/nk, where the last inequal-

ity is due to Theorem 6. Thus we can use Theorem 2 to
bound the probability that all events Ev with v ∈ V occur
by Pr(∧v∈V Ev) ≥ 1− 1/nk−4.

Let us discuss the message size. A node transmits a num-
ber of at most O(log ∆) bits for every unused color C(v) with
|C(v)| = k0s∆ to its neighbors, yielding messages of size
O(|C(v)|s log ∆) = O(s∆ log ∆). In a modification of Algo-
rithm ColorTrials a node picks one color uniformly at ran-
dom for each sequence [2i∆N+(v), 2(i+ 1)∆N+(v)] of ∆N+(v)

colors for 0 ≤ i < k0s and transmits these k0s colors of
size log ∆ resulting in a message of size O(s log ∆). The
probability that a node v gets a color out of a sequence of
2∆N+(v) colors is at least 1/2 independently of the choices of
its neighbors, since any node has at most ∆N+(v) uncolored
neighbors, but chooses one color among 2∆N+(v) many. In
case |C(v)| ≤ 2∆ + 1 with ∆ ≥ logn a node executes the
modified version (described above) of ColorTrials c times
for some constant c. It picks c/4 executions out of the c
executions, where it picks one color uniformly at random,
i.e. it stays inactive for the other 3c/4 executions. An ex-
ecution is a success, if at most ∆/2 neighbors participated
with node v. Using Theorem 1 it can be shown that we
have a success with probability 1 − 1/nk for arbitrary k
(and sufficiently large c). For a successful execution a node
gets colored with probability at least 1/2 since it picks one
color out of ∆ + 1 and there are at most ∆/2 colors picked
by neighbors. Therefore, the required message size is only
O(s log ∆).

Theorem 6 only applies for nodes of degree d(v) ∈
Ω(logn). The next theorem gives a bound on the reduc-
tion of an arbitrary degree d(v) for more than one execution
of ColorTrials. The proof uses similar ideas to the proof of
Theorem 6.

Theorem 8. After O(r) ColorTrials all nodes v ∈ V have
d(v) ≤ ∆0/2, where ∆0 is the maximum size of any uncol-
ored neighborhood before the first execution, with probability
1 − 1/nk for arbitrary constant k and k0 ≥ 384(k + 3), if
r ·∆0 ≥ logn.

Proof. Consider a node v for a graph G′v. Let ∆0/2 ≤
d′0(v) ≤ ∆0 be the initial degree of v before the first
execution of ColorTrials. Due to Lemma 5 the prob-
ability Pr(E′(v, c) = 1) to get a certain color c is at

least d̃′(v)/(24∆) ≥ 1/48 as long as d̃′(v) > d′0(v)/2,
i.e. Pr(E′(v, c) = 1|

∑c
i=0 E

′(v, i)) ≤ d′0(v)/2). We have
|Ci(v)| > ∆ for all i ∈ [0, k0r − 1] (otherwise node v might
not be able to compute a coloring, e.g. if it is in a clique).
Thus, we can use Theorem 3 with t = k0r∆ executions
of ColorTrials, p = 1/48 and y = d′0(v)/2 ≤ tp/2 (for

k0 sufficiently large), yielding a bound of ek0/48·d̃′0(v)/8 =

ek0/384·d̃0
′
(v) ≥ ek0/384·logn = 1 − 1/nk0/384. Due to The-

orem 4 this probability bounds also the probability of the
event Ev for a node v ∈ G that the number of uncolored
neighbors is halved. Using Theorem 2 the number of all un-
colored neighbors is at most ∆0/2 for all nodes v ∈ V with

probability 1− 1/nk0/384−3.

5.1.3 Algorithm DeltaPlus1Coloring
First we consider Algorithm RankingTrials before dis-

cussing the run time and message size required to compute
a ∆ + 1 coloring.

Theorem 9. Within time O(
√

logn) Algorithm Rank-
ingTrials computes a ∆ + 1 coloring with ∆ ≤

√
logn with

probability 1− 1
nc for some constant c.

Proof. Consider a node v ∈ V having less than
√

logn
uncolored neighbors, i.e. d(v) ≤

√
logn. Initially, it does

not have any rank priority, i.e. RP (v)[i] = none for all
ranks i. For each rank i there are initially 2

√
logn + 1

available priorities. All rank priorities must be distinct,
i.e. RP (v)[i] 6= RP (v)[j] for i 6= j and a node picks at
most

√
logn rank priorities and at most one per rank i.

Since d(v) ≤
√

logn at most
√

logn priorities get picked by
neighbors per rank i. Thus we have for any rank i at least√

logn+1 unused priorities throughout the execution of the
algorithm. Therefore, the probability that for some rank i
within one message exchange a node v chooses a priority
out of

√
logn + 1 such that no other uncolored neighbor of

at most
√

logn many chooses the same random priority is
at least (1 − 1/(

√
logn + 1))d(v) ≥ 1/e independent of the

choices of the rank priorities for ranks j < i of all adja-
cent nodes. Once a node got a priority for some rank i, it
does not apply to get another priority for the same rank.
Still, at any time during the algorithm a node v has at least√

logn+ 1 different ranks to try to get a rank priority, since
the total number of ranks is 2

√
logn + 1 and whenever v

tries to get a rank priority it has acquired at most
√

logn
yet. Thus when performing one message exchange a node
performs

√
logn + 1 trials. After O(

√
logn) exchanges we

have performed O(logn) trials. Each has a success proba-
bility of at least 1/e independent of prior trials. Thus the
probability for a single node v to get

√
logn rank priori-

ties is 1 − 2−O(logn) using Theorem 1. Using Theorem 2
all nodes obtained

√
logn rank priorities with probability

1− 2−O(logn).
All priorities are distinct and are intended for distinct

ranks. When using the rank priorities to get a rank then
for each chosen rank priority RP (v)[i] 6= none either a node
v gets the rank i or a neighbor has already got it, since a
node gets only one rank and a node v has picked

√
logn+ 1

rank priorities but has at most
√

logn uncolored neighbors,
node v gets a rank distinct from its neighbors. Afterwards,
when nodes attempt to join according to their ranks, every
node get a color.

Theorem 10. Within time O(log ∆ +
√

logn) a ∆ + 1
coloring is computed with probability 1 − 1/nk for arbitrary
constant k.

Proof. Due to Theorem 8 after O(1) executions of Al-
gorithm ColorTrials any node v halfs its uncolored neigh-
bors as long as ∆ ≥ logn. Thus after O(log ∆) executions
we have ∆ ≤ logn. Assume

√
logn ≤ d(v) < logn. As-

sume a node v with d(v) ≥ ∆0/2 performed a sequence
of k0 logn/d(v) executions of ColorTrials for constant k0,
where ∆0 equals the maximum degree ∆ before the first
execution of the sequence. Using Theorem 8 with r =
k0 logn/∆ the degree d(v) for each node v ∈ V must be
less than ∆/2 with probability at least 1 − 1/nk1+1 for an
arbitrary constant k1 (and sufficiently large constant k0).

The total time until d̃(v) <
√

logn is bounded by∑log logn
i=log logn/2 O(1) · logn · (1/2)i =

∑log logn/2
i=0 O(

√
logn) ·

(1/2)i = O(
√

logn). The chance that all O(log ∆ +
log logn) divisions succeed for all nodes is (1 −
1/nk1+1)O(log ∆+log logn) = 1− 1/nk1 . Using Theorem 9 the
remaining nodes can be colored in time O(

√
logn).

Messages of size O(
√

logn · log logn) are sufficient dur-
ing Algorithm RankingTrials, since O(

√
logn) numbers have

to be transmitted using one message. Each number is in
[0, 2
√

logn] and can be encoded with O(log logn) bits.
For Algorithm DeltaPlus1coloring messages of size

O(log ∆ +
√

logn · log log n) are sufficient. As long as a

node has more than
√

logn uncolored neighbors, i.e. d̃(v) >√
logn it suffices to choose randomly one color of O(log ∆)

bits for each round and transmit it as shown in the remark
after Theorem 7.

5.1.4 Algorithms ConstDeltaCo. And ConstTimeCo.
After establishing a bound on the running time we inves-

tigate the amount of transmitted information.

Lemma 11. Using at least (1 + 1/2c)∆ colors, within
time O(c) the number of uncolored neighbors is at most
max(∆/(c2), logn) for every node with probability 1− 1/nk

for arbitrary constant k.

Proof. Let ∆0 be the maximum degree ∆ before the
first execution. Due to Theorem 8 after O(1) executions of
Algorithm ColorTrials any node v halfs its uncolored neigh-
bors as long as ∆ ≥ logn. After O(c) rounds the fraction
of uncolored neighbors is less than 1/2k1c (for an arbitrary
constant k1), i.e. the maximum number of uncolored neigh-
bors is ∆ ≤ ∆0/2

k1c. Since we use (1 + 1/2c)∆0 colors and
the neighbors N(v) of a node v use up at most ∆0 colors,
at least 1/2c∆0 colors are available for a node v in every
execution of ColorTrials.

Using Theorem 7 with s = 1/2c∆0/(∆0/2
k1c) = 2(k1−1)c

after one execution of ColorTrials the maximum number
of uncolored neighbors for node v becomes ∆/22(k1−1)c

. In
an analogous derivation for an initial maximum degree of

∆/x ≤ ∆/22(k1−1)c

, we can reduce the maximum degree

to ∆/2x/k0 with one message exchange with probability at
least 1−1/nk+1 for any constant k and any sufficiently large
constant k0 ≥ 384(k + 2) due to Theorem 7. Thus after
two message exchanges the maximum number of uncolored

neighbors is reduced from ∆ to ∆/22(x/k0)/k0 < ∆/2x for
x ≥ (k0)2. Thus after O(c) rounds all nodes have less than

∆/(c2) ≤ logn uncolored neighbors with probability (1 −
1/nk+1)O(c) > 1− 1/nk.

Theorem 12. If the number of uncolored neighbors is
at most logn for all nodes, i.e. ∆ ≤ logn, then using
O(log1+1/c n) colors within time O(c) every node gets col-
ored with probability 1− 1/nk for arbitrary constant k.

Proof. Consider a node v ∈ G′v with (∆)1−1/c < d̃′(v) ≤
∆. Due to Lemma 5 the probability Pr(E′(v, c) = 1)
to get a certain color c is at least Pr(E′(v, c) = 1) ≥
∆1−1/c/(24∆) = 1/(24∆1/c) ≥ 1/(24 log1/c n) as long as

d̃′(v) ≥ (∆)1−1/c, i.e. Pr(E′(v, c) = 1|
∑c
i=0 E

′(v, c) ≤
d′0(v) − (∆)1−1/c). Thus we can use Theorem 3 with

t = k0 log1+1/c n, p = 1/(24 log1/c n) and y = d′(v) −
(∆)1−1/c ≤ tp/2 (for k0 sufficiently large), yielding a bound

of ek0/48·logn/8 = ek0/384·logn = 1 − 1/nk0/384. Thus af-
ter one round the number of remaining uncolored nodes
d′(v) − y = d′(v) − (d′(v) − (∆)1−1/c) = (∆)1−1/c). Using
Theorem 2 the probability that event Ev occurs for all nodes
is at least 1− 1/nk0/384−4. After c iterations of the loop ev-

ery node is colored with probability (1 − 1/nk0/384−4)c ≥
(1− 1/nk0/384−5).

Lemma 13. Using (1 + 1/2c)∆ + O(log1+1/c n) colors
within time O(c+ log∗ n) every node gets colored with prob-
ability 1− 1/nk for arbitrary constant k.

Proof. Since ∆ ≤ n and log∗ n2 = n using Theorem
11 yields that after O(log∗ n) time the maximum number
of uncolored neighbors ∆ is at most logn with probability
1−1/nk. Using Theorem 12 yields that all nodes are colored
with probability 1− 1/nk. The probability that both even-
tuate is (1− 1/nk)2 ≥ 1− 1/nk−1 for an arbitrary constant
k.

Corollary 14. Using (1 + 1/2log∗ n)∆ +

O(log1+1/ log∗ n n) colors within time O(log∗ n) every
node gets colored with probability 1 − 1/nk for arbitrary
constant k.

Theorem 15. Within time O(c) every node gets a color

out of O(∆ log(c) n + log1+1/c n) colors with probability 1 −
1/nk for arbitrary constant k.

Proof. Using Theorem 8 with s = k0 log(c) n and con-
stant k0 the maximum number of uncolored neighbors ∆

is reduced by a factor 2log(c) n = log(c−1) n with probability
1−1/nk for all nodes v ∈ V after one execution of ColorTri-

als. Using Theorem 6 again with s = k0 log(c) n log(c−1) n
the maximum number of still uncolored neighbors ∆ is re-

duced by a factor 2log(c) n log(c−1) n > log(c−2) n. Thus after
c rounds the reduction is by a factor logn and in the round
c + 1 it is by a factor up to n, such that ∆ is at most
logn (Theorem 8 holds only for ∆ ≥ logn). Using Theo-
rem 12 all nodes with ∆ ≤ logn are colored in time O(c)
with probability 1 − 1/nk yielding an overall probability of
(1− 1/nk)2 ≥ 1− 1/nk−1 for arbitrary constant k.

Let us discuss the amount of transmitted information for
algorithm ConstDeltaColoring. A node transmits a number
for every unused color in every round to its neighbors. How-
ever, as shown in the remark after Theorem 7 it is sufficient

to choose one color for every sequence of 2∆N+(v) colors.
Thus, choosing O(logn) colors each with O(log ∆) bits yields
a probability of 1−1/nk for an arbitrary constant k, yielding
messages of size O(log ∆ logn) during the execution of Col-

orTrials. Still, Theorem 7 is only valid for d̃(v) ≥ logn. But

once d̃(v) < logn the size of a color is only Ω(log logn) bits

(e.g. we might add O(log1+1/c n) to all assigned colors and,

thereby, we can assign colors {0, 1, ...,Ω(log1+1/c n)} to the
remaining nodes). Thus the maximum message size in one

round is O(logn(log ∆ + log logn log1/c n) = O(log ∆ logn).
The reason for Algorithm ConstTimeColoring is the same
except that the number of colors is |C(v)| ∈ O(∆ log(c) n +

log1+1/c n) and thus a color requires O(log ∆ + log(c+1) n)
bits instead of O(log ∆).

5.2 Ruling Set

Theorem 16. Within time 2cd1/c Algorithm
CoordinateTrials(d, c) computes a (2, c)-ruling set.

Proof. If node v stops attempting to join the ruling set,
it was forced to stop by some neighbor u ∈ N(v) with
Rank(u) larger 0 that continues itself, since u forced all its
neighbors N(u) (except those with the same rank) to stop
and therefore is not stopped itself by any neighbor. Thus,
all nodes U ⊆ V that continue and are reachable from u by
nodes in U only, must have the same rank, i.e. all nodes
u ∪ U must have some coordinate i that is equal for all of
them. If this was not the case, then there must have been
two nodes u,w ∈ U with distinct ranks that both contin-
ued. However, due to the algorithm either u forced w to
stop or the other way around. Since some coordinate i has
the same value for all nodes in U , we know that bit i of
Rank(u) must remain 0 from now on for all nodes u∪U , i.e.
we say that coordinate i is done and has no influence on the
further computation.

Any two neighbors u, v attempting to join the ruling
set must have one coordinate that is distinct for both of
them throughout the algorithm, i.e. ∃i ∈ [0, c − 1] s.t.
coord(v)[i] 6= coord(u)[i]. Initially, this holds since other-
wise they have the same color. If two adjacent nodes u, v
consider a coordinate i as done and still execute the algo-
rithm then both must have the same value for coordinate i.
Thus, at least one distinct coordinate that is not done re-
mains. Thus, if a node v considers c−1 coordinates as done
and is still executing the algorithm then for the last coordi-
nate it is either forced to stop by a neighbor u that joins the
ruling set or it joins the ruling set itself. This also implies
that nodes joining the ruling sets are independent, since oth-
erwise the last coordinate(s) that has not been considered
as done would have to be equal.

Consider a node v ∈ U ⊆ V . When node v stops some
neighbor w proceeds and and one coordinate for all contin-
uing nodes w ∈ W ⊆ U is done. Since there are only c
coordinates within distance c of v a node joins the ruling
set. One iteration out of d1/c many of the repeat loop (i.e.
an increment of j) takes time 2c. Thus the time complexity

is 2c · d1/c.

We describe three ways to improve the time complexity
of Algorithm CoordinateTrials – two of them at the price of
having larger distance to a node in the ruling set. First, it is
not necessary to check a rank for all values in [0, 2c] if some

coordinates, e.g. i, j, are done (see Proof of Theorem 16),
i.e. the bits i, j of a rank are fixed to 0. If k coordinates
are done, then a rank of a node v (and its neighbors) has
k bits fixed to 0 and the rank must be one of 2c−k distinct
values. Second, if a node and all its neighbors have rank 0,
there is no need to go through all possible 2c−k values for
a rank. If a node v only iterates through all possible rank
values, if itself or a neighbor has rank larger 0 then at least
one neighbor within distance 2 will consider a coordinate
as done. Thus, within distance 2c a node joins the ruling
set within time d1/c +

∑
k=0..c 2c−k = d1/c + 2c+1, i.e. we

can compute a (2, 2c) ruling set in time d1/c + 2c+1. Third,
a node can join the ruling set whenever its rank is strictly
larger than that of all its neighbors and stop the algorithm
whenever some neighbor has a rank larger than itself. In
this case it does not have to iterate through the rank values
at all. This results in a running time of d1/c to compute a
(2, 2c+1) ruling set.

Let ftrials(d) be the time complexity depending on the
number of colors of Algorithm CoordinateTrials. Let
ctrials(c) be the distance from any node to a node in the
ruling set depending on the parameter c.

Theorem 17. Within time O(c log1/c n +

ftrials(log1+1/ log∗ n n)) Algorithm RandRulingSet(c)
computes a (2, (c + 1) + ctrials(c + 1))-ruling set for c > 0
with probability 1− 1/n3.

Proof. We show that within time O(c log1/c n) every
node gets a colored node within distance c + 1, such
that all colored nodes form a proper coloring. Once this
coloring is computed we call Algorithm CoordinateTri-
als((log1+1/ log∗ n n, c+ 1).

Initially, a node v starts with pv := 1/n = 2− logn. Af-
ter the first iteration of the for loop for node v or one of
its neighbors holds that the sum of all values pu of nodes

u ∈ N+(v) is at least 2(− logn1−1/c) and at most 1. Since
the maximum degree of a node is n − 1 and a node begins
with joining probability 1/n, the sum of the values pu of
node u ∈ N+(v) is at most 1/n · n = 1. Due to Subrou-
tine IncProb(t) a value p is not multiplied by t if the sum
is larger than 1/t. Thus the sum never exceeds 1. Consider

a node v with a sum of at least 2(− logn1−1/c). After the
second iteration node v itself or a neighbor has sum at least

2(− logn1−2/c). Thus after c iterations a node v must have a
node u ∈ Nc(v), i.e. within distance c, having the sum pw
with w ∈ N+(u) being at most 1 and at least 1/2. The du-

ration of the first iteration is given by logn/(logn1−1/c) =

logn1/c and in general, the duration of the ith iteration is
logn1−(i−1)/c/(logn1−i/c) = logn1/c. Since one iteration

takes log1/c n time and we need c iterations, the time com-
plexity is c log1/c n. When node v participates in computing
a coloring with probability min(1, 64pv logn) (independently
of all other nodes), the probability that more than 1024 logn
neighbors or none participate is 1/n8 using a Chernoff bound
(Theorem 1). Using Theorem 2 with probability 1−1/n4 all
nodes u ∈ V have at least 1 and at most 1024 logn neighbors
that participate in computing the coloring.

An O(log1+1/ log∗ n) coloring can be computed with proba-
bility at least 1−1/n4 as shown in Corollary 14. The overall
success probability is (1− 1/n4) · (1− 1/n4) > 1− 1/n3.

Theorem 18. Within time O(2c log1/c n) Algorithm
RandRulingSet(c) computes a (2, 2(c + 1))-ruling set for
c > 0 with probability 1− 1/n3.

Proof. Due to Theorem 16, Algorithm
CoordinateTrials(log1+1/ log∗ n n,c + 1) computes a

(2, c + 1)-ruling set in time O(2c+1(log1+1/ log∗ n n)1/c+1) <

O(2c log1/c n). Using Theorem 17 completes the proof.

In Subroutine IncProb(t) a node v transmits its value
pv to all two hop neighbors, resulting in messages of size
O(∆ logn). Alternatively, a node might transmit pv to its
neighbors and any node u ∈ V having

∑
w∈N+(u) pw ≥ 1/t

informs its neighbors. Thus messages of size O(log n) are
sufficient.

6. REFERENCES
[1] N. Alon, L. Babai, and A. Itai. A fast and simple randomized

parallel algorithm for the maximal independent set problem. J.
Algorithms, 7(4):567–583, 1986.

[2] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Fast
distributed network decompositions and covers. J. Parallel
Distrib. Comput., 39(2):105–114, 1996.

[3] B. Awerbuch, A. V. Goldberg, M. Luby, and S. A. Plotkin.
Network decomposition and locality in distributed computation.
In Symp. on Foundations of Computer Science (FOCS), 1989.

[4] L. Barenboim and M. Elkin. Sublogarithmic distributed mis
algorithm for sparse graphs using nash-williams decomposition.
In Symp. on Principles of distributed computing, 2008.

[5] L. Barenboim and M. Elkin. Distributed (δ + 1)-coloring in
linear (in δ) time. In Symp. on Theory of computing, 2009.

[6] L. Barenboim and M. Elkin. Deterministic distributed vertex
coloring in polylogarithmic time. In PODC, 2010.

[7] R. Cole and U. Vishkin. Deterministic Coin Tossing with
Applications to Optimal Parallel List Ranking. Inf. Control,
70(1):32–54, 1986.

[8] P. L. Erdös, P. Frankl, and Z. Füredi. Families of finite sets in
which no set is covered by the union of two others. J. Comb.
Theory, Ser. A, 33(2):158–166, 1982.

[9] B. Gfeller and E. Vicari. A Randomized Distributed Algorithm
for the Maximal Independent Set Problem in Growth-Bounded
Graphs. In Sy. on Principles of Distributed Computing, 2007.

[10] A. Goldberg, S. Plotkin, and G. Shannon. Parallel
Symmetry-Breaking in Sparse Graphs. SIAM Journal on
Discrete Mathematics (SIDMA), 1(4):434–446, 1988.

[11] D. A. Grable and A. Panconesi. Nearly optimal distributed
edge colouring in o(log log n) rounds. In SODA, 1997.

[12] A. Israeli and A. Itai. A Fast and Simple Randomized Parallel
Algorithm for Maximal Matching. Information Processing
Letters, 22:77–80, 1986.

[13] K. Kothapalli, C. Scheideler, M. Onus, and C. Schindelhauer.

Distributed coloring in O(log1/2 n) bit rounds. In International
Parallel & Distributed Processing Symp. (IPDPS), 2006.

[14] F. Kuhn. Weak Graph Coloring: Distributed Algorithms and
Applications. In SPAA, 2009.

[15] F. Kuhn, T. Moscibroda, T. Nieberg, and R. Wattenhofer.
Local Approximation Schemes for Ad Hoc and Sensor
Networks. In DIALM-POMC, 2005.

[16] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What Cannot Be
Computed Locally! In PODC, 2005.

[17] F. Kuhn and R. Wattenhofer. On the Complexity of
Distributed Graph Coloring. In PODC, 2006.

[18] N. Linial. Locality in Distributed Graph Algorithms. SIAM
Journal on Computing, 21(1):193–201, 1992.

[19] M. Luby. A Simple Parallel Algorithm for the Maximal
Independent Set Problem. SIAM Journal on Computing, 1986.

[20] A. Panconesi and A. Srinivasan. Improved distributed
algorithms for coloring and network decomposition problems.
In Symp. on Theory of computing (STOC), 1992.

[21] J. Schneider and R. Wattenhofer. A Log-Star Distributed
Maximal Independent Set Algorithm for Growth-Bounded
Graphs. In Symp. on Principles of Distributed
Computing(PODC), 2008.

[22] G. De Marco and A. Pelc. Fast distributed graph coloring with
O(∆) colors. In SODA, 2001.

