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Appears in Practice

“some switches can ‘straggle,’ taking substantially more time 
than average (e.g., 10-100x) to apply an update”

Jin et al., SIGCOMM 2014
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Software-Defined Networking

Centralized controller updates networks rules for optimization

Controller (control plane) updates the switches/routers (data plane)
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e.g., B4 [Jain et al., 2013]



old network
rules

new network
rules

network updates 

possible solution: be consistent!

e.g.,
• per-router ordering [Vanbever et al., 2012]
• two phase commit [Reitblatt et al.,  2012]
• SWAN [Hong et al., 2013]
• Dionysus [Jin et al., 2014]
• ….
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Dynamic Updates

Idea: Update as many edges as you can
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all but 1 update

Dynamic Updates
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Find maximal update?

• Let’s go more general

• Delete all cycles in a graph 

• NP-hard to approximate

– Feedback Arc Set

• And it’s equivalent 

≅

V2

V3

V2 V3



Maximize #edges updated ≈ Feedback Arc Set

 Approximate within 𝑂(log 𝑛 log log 𝑛)

Better approximation bound for Feedback Arc?

 Implies better bound for #edges

Dynamic Updates



But how long until all edges updated?
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But how long until all edges updated?

Ludwig et al. (2015): NP-hard for 3-schedule

Our result (with 2 destinations)

NP-hard for any sublinear schedule

Scheduling Updates



Idea: Delay updates

Scheduling Updates
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Iterate over and over and over….

Scheduling Updates
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Loop Freedom Overview

• Maximize updated #edges per update

– NP-hard

• Sublinear schedule checking for 2 destinations

– NP-hard
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How Hard in General w/o Splitting?

• Previous work: Fastest Migration is NP-hard

• Our work: Deciding is NP-hard

– Reduction from Partition
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Packets bypass Waypoints!
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2-Splittable Flows

𝒘𝒗𝑺𝟏

𝑓𝑤𝑓𝑤

𝑻𝟏

• Keep both flow paths at the same time

• Easy updates: Change allocations @sources
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Appears in Practice

“Data plane updates may fall behind the control 
plane acknowledgments and may be even reordered.”

Kuzniar et al., PAM 2015

“some switches can ‘straggle,’ taking substantially more time 
than average (e.g., 10-100x) to apply an update”

Jin et al., SIGCOMM 2014

“…the inbound latency is quite variable with a 
[…] standard deviation of 31.34ms…”

He et al., SOSR 2015


