
ETH Zurich – Distributed Computing – www.disco.ethz.ch

Klaus-Tycho Förster and Roger Wattenhofer

The Power of Two in Consistent Network Updates: 
Hard Loop Freedom, Easy Flow Migration  



By Xin Jin



By Xin Jin



By Xin Jin



By Xin Jin



<

By Xin Jin



By Xin Jin



By Xin Jin



By Xin Jin



By Xin Jin



By Xin Jin



By Xin Jin



By Xin Jin



By Xin Jin



By Xin Jin



Appears in Practice

“some switches can ‘straggle,’ taking substantially more time 
than average (e.g., 10-100x) to apply an update”

Jin et al., SIGCOMM 2014



By Xin Jin



By Xin Jin

“Tree Ordering”



By Xin Jin

“Tree Ordering”



By Xin Jin

“Tree Ordering”



By Xin Jin

“Tree Ordering”



Software-Defined Networking

Centralized controller updates networks rules for optimization

Controller (control plane) updates the switches/routers (data plane)



old network
rules

new network
rules

network updates 



old network
rules

new network
rules

network updates 



old network
rules

new network
rules

network updates 

possible solution: be fast!

e.g., B4 [Jain et al., 2013]



old network
rules

new network
rules

network updates 

possible solution: be consistent!

e.g.,
• per-router ordering [Vanbever et al., 2012]
• two phase commit [Reitblatt et al.,  2012]
• SWAN [Hong et al., 2013]
• Dionysus [Jin et al., 2014]
• ….



old network
rules

new network
rules

network updates 

possible solution: be consistent!





Dynamic Updates

Idea: Update as many edges as you can



…

a b d

…

a b d

network updates 

Dynamic Updates



…

a b d

…

a b d

network updates 

…

a b d

Dynamic Updates



…

a b d

…

a b d

network updates 

…

a b d

Dynamic Updates



…

a b d

…

a b d

network updates 

…

a b d

Dynamic Updates



…

a b d

…

a b d

network updates 

…

a b d

Dynamic Updates



…

a b d

…

a b d

network updates 

…

a b d

greedy maximum update
a & b update → all others wait 

2 nodes update

Dynamic Updates



…

a b d

…

a b d

network updates 

…

a b d

greedy maximum update
a & b update → all others wait 

2 nodes update

…

a b d

maximal update
a waits→ all others update

all but 1 update

Dynamic Updates



Find maximal update?

• Let’s go more general



Find maximal update?

• Let’s go more general

• Delete all cycles in a graph 



Find maximal update?

• Let’s go more general

• Delete all cycles in a graph 

V1 V2

V4 V3



Find maximal update?

• Let’s go more general

• Delete all cycles in a graph 

V1 V2

V4 V3



Find maximal update?

• Let’s go more general

• Delete all cycles in a graph 

• NP-hard to approximate

– Feedback Arc Set

V1 V2

V4 V3



Find maximal update?

• Let’s go more general

• Delete all cycles in a graph 

• NP-hard to approximate

– Feedback Arc Set

• And it’s equivalent 

V1 V2

V4 V3

≅

d

V1 V2 V3 V4



Find maximal update?

• Let’s go more general

• Delete all cycles in a graph 

• NP-hard to approximate

– Feedback Arc Set

• And it’s equivalent 

≅

V2

V3

V2 V3



Maximize #edges updated ≈ Feedback Arc Set

 Approximate within 𝑂(log 𝑛 log log 𝑛)

Better approximation bound for Feedback Arc?

 Implies better bound for #edges

Dynamic Updates



But how long until all edges updated?

Scheduling Updates



But how long until all edges updated?

Ludwig et al. (2015): NP-hard for 3-schedule

Scheduling Updates



But how long until all edges updated?

Ludwig et al. (2015): NP-hard for 3-schedule

Our result (with 2 destinations)

NP-hard for any sublinear schedule

Scheduling Updates



Idea: Delay updates

Scheduling Updates

v

w

w'

d

d



Idea: Delay updates

Scheduling Updates

v

w

w'

d

d
v

w

d

w'

d



Idea: Delay updates

Scheduling Updates

v

w

w'

d

d
v

w

d

d'

d'

w'

d

d'



Idea: Delay updates

Scheduling Updates

v

w

w'

d

d
v

w

d

d'

d'

w'

d,d’

d'



Iterate over and over and over….

Scheduling Updates

v

w

w'

d

d
v

w

d

d'

d'

w'

d,d’

d'



Loop Freedom Overview

• Maximize updated #edges per update

– NP-hard

• Sublinear schedule checking for 2 destinations

– NP-hard





How to Move Flows?

𝒘𝒗𝑺𝟐 𝑻𝟐

𝑺𝟏 𝑻𝟏



How to Move Flows?

𝒘𝒗𝑺𝟐 𝑻𝟐

𝑺𝟏 𝑻𝟏



How to Move Flows?

𝒘𝒗𝑺𝟐 𝑻𝟐

𝑺𝟏 𝑻𝟏



How to Move Flows?

𝒘𝒗𝑺𝟐 𝑻𝟐

𝑺𝟏 𝑻𝟏



How to Move Flows?

𝒘𝒗𝑺𝟐 𝑻𝟐

𝑺𝟏 𝑻𝟏



How Hard in General w/o Splitting?

• Previous work: Fastest Migration is NP-hard



How Hard in General w/o Splitting?

• Previous work: Fastest Migration is NP-hard

• Our work: Deciding is NP-hard



How Hard in General w/o Splitting?

• Previous work: Fastest Migration is NP-hard

• Our work: Deciding is NP-hard

– Reduction from Partition

𝒘12𝒗11𝑺𝟏 𝑻𝟏

𝑺𝒌 𝑻𝒌𝒗21
𝒘22

… …
𝑺𝒃 𝑻𝒃

𝒘12𝒗11𝑺𝟏 𝑻𝟏

𝑺𝒌 𝑻𝒌𝒗21
𝒘22

… …

𝑺𝒃 𝑻𝒃



Issues with Splitting

𝒘𝒗𝑺𝟏

𝑓𝑤𝑓𝑤

𝑻𝟏



Issues with Splitting

𝒘𝒗𝑺𝟏

𝑓𝑤𝑓𝑤

𝑻𝟏



Issues with Splitting

𝒘𝒗𝑺𝟏

𝑓𝑤𝑓𝑤

𝑻𝟏



Packets bypass Waypoints!

𝒘𝒗𝑺𝟏

𝑓𝑤𝑓𝑤

𝑻𝟏



2-Splittable Flows

𝒘𝒗𝑺𝟏

𝑓𝑤𝑓𝑤

𝑻𝟏

• Keep both flow paths at the same time

• Easy updates: Change allocations @sources



High-Level Algorithm Idea

• Establish new paths at size 0



High-Level Algorithm Idea

• Establish new paths at size 0

• Only if >0 for all paths can be obtained:

– Consistent migration possible



High-Level Algorithm Idea

• Establish new paths at size 0

• Only if >0 for all paths can be obtained:

– Consistent migration possible

• By changing allocations over multiple steps



High-Level Algorithm Idea

• Establish new paths at size 0

• Only if >0 for all paths can be obtained:

– Consistent migration possible

• By changing allocations over multiple steps

𝒘12𝒗11𝑺𝟏 𝑻𝟏

𝑺𝒌 𝑻𝒌𝒗21
𝒘22

… …
𝑺𝒃 𝑻𝒃

𝒘12𝒗11𝑺𝟏 𝑻𝟏

𝑺𝒌 𝑻𝒌𝒗21
𝒘22

… …

𝑺𝒃 𝑻𝒃



Summary



ETH Zurich – Distributed Computing – www.disco.ethz.ch

Klaus-Tycho Förster and Roger Wattenhofer

The Power of Two in Consistent Network Updates: 
Hard Loop Freedom, Easy Flow Migration  



Appears in Practice

“Data plane updates may fall behind the control 
plane acknowledgments and may be even reordered.”

Kuzniar et al., PAM 2015

“some switches can ‘straggle,’ taking substantially more time 
than average (e.g., 10-100x) to apply an update”

Jin et al., SIGCOMM 2014

“…the inbound latency is quite variable with a 
[…] standard deviation of 31.34ms…”

He et al., SOSR 2015


