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1.
Why Convex Consensus?
(Almost) everything is convex if you believe!
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Asynchronous model: messages get delivered eventually.

Problem: requires lower 𝑡.

A tradeoff? Can we somehow get the best of both worlds?

Network-agnostic model: Given 𝑡𝑎 ≤ 𝑡𝑠:
• Tolerate 𝑡𝑠 corruptions if the network is synchronous.

• Tolerate 𝑡𝑎 corruptions if the network is asynchronous.

• The protocol does not know which one is the case!

• (Question here: what pairs (𝑡𝑠, 𝑡𝑎) are possible?)



4.
Results
Tight results for all 3 models!



CC Solvable Iff



CC Solvable Iff

Synchronous model: 𝑡 <
𝑛

𝜔

Asynchronous model: 𝑡 <
𝑛

𝜔+1



CC Solvable Iff

Synchronous model: 𝑡 <
𝑛

𝜔

Asynchronous model: 𝑡 <
𝑛

𝜔+1



CC Solvable Iff

Synchronous model: 𝑡 <
𝑛

𝜔

Asynchronous model: 𝑡 <
𝑛

𝜔+1



CC Solvable Iff

Synchronous model: 𝑡 <
𝑛

𝜔

Asynchronous model: 𝑡 <
𝑛

𝜔+1



CC Solvable Iff

Synchronous model: 𝑡 <
𝑛

𝜔

Asynchronous model: 𝑡 <
𝑛

𝜔+1

Network-agnostic model:



CC Solvable Iff

Synchronous model: 𝑡 <
𝑛

𝜔

Asynchronous model: 𝑡 <
𝑛

𝜔+1

Network-agnostic model: 𝜔𝑡𝑠 < 𝑛



CC Solvable Iff

Synchronous model: 𝑡 <
𝑛

𝜔

Asynchronous model: 𝑡 <
𝑛

𝜔+1

Network-agnostic model: max 𝜔𝑡𝑠, 𝜔𝑡𝑎 + 𝑡𝑠 < 𝑛



CC Solvable Iff

Synchronous model: 𝑡 <
𝑛

𝜔

Asynchronous model: 𝑡 <
𝑛

𝜔+1

Network-agnostic model: max 𝜔𝑡𝑠, 𝜔𝑡𝑎 + 𝑡𝑠, 2𝑡𝑠 + 𝑡𝑎 < 𝑛



CC Solvable Iff

Synchronous model: 𝑡 <
𝑛

𝜔

Asynchronous model: 𝑡 <
𝑛

𝜔+1

Network-agnostic model: max 𝜔𝑡𝑠, 𝜔𝑡𝑎 + 𝑡𝑠, 2𝑡𝑠 + 𝑡𝑎 < 𝑛



CC Solvable Iff

Synchronous model: 𝑡 <
𝑛

𝜔

Asynchronous model: 𝑡 <
𝑛

𝜔+1

Network-agnostic model: max 𝜔𝑡𝑠, 𝜔𝑡𝑎 + 𝑡𝑠, 2𝑡𝑠 + 𝑡𝑎 < 𝑛

Imp

Imp1 Imp2 Imp3

Pos

Pos

Imp Pos



CC Solvable Iff

Synchronous model: 𝑡 <
𝑛

𝜔

Asynchronous model: 𝑡 <
𝑛

𝜔+1

Network-agnostic model: max 𝜔𝑡𝑠, 𝜔𝑡𝑎 + 𝑡𝑠, 2𝑡𝑠 + 𝑡𝑎 < 𝑛

Imp

Imp1 Imp2 Imp3

Pos

Pos

Imp Pos



𝑡 =
𝑛

𝜔
is impossible



𝑡 =
𝑛

𝜔
is impossible

Example for ℝ2: 𝑡 =
𝑛

3
is impossible.



𝑡 =
𝑛

𝜔
is impossible

Example for ℝ2: 𝑡 =
𝑛

3
is impossible.



𝑡 =
𝑛

𝜔
is impossible

Example for ℝ2: 𝑡 =
𝑛

3
is impossible.



𝑡 =
𝑛

𝜔
is impossible

Example for ℝ2: 𝑡 =
𝑛

3
is impossible.



𝑡 =
𝑛

𝜔
is impossible

Example for ℝ2: 𝑡 =
𝑛

3
is impossible.



𝑡 =
𝑛

𝜔
is impossible

Example for ℝ2: 𝑡 =
𝑛

3
is impossible.



𝑡 =
𝑛

𝜔
is impossible

Example for ℝ2: 𝑡 =
𝑛

3
is impossible.



𝑡 =
𝑛

𝜔
is impossible

Example for ℝ2: 𝑡 =
𝑛

3
is impossible.



𝑡 =
𝑛

𝜔
is impossible

Example for ℝ2: 𝑡 =
𝑛

3
is impossible.



𝑡 =
𝑛

𝜔
is impossible

Example for ℝ2: 𝑡 =
𝑛

3
is impossible.

General convexity spaces 𝐶:



𝑡 =
𝑛

𝜔
is impossible

Example for ℝ2: 𝑡 =
𝑛

3
is impossible.

General convexity spaces 𝐶:

• 𝜔 parties, 1 corrupted.



𝑡 =
𝑛

𝜔
is impossible

Example for ℝ2: 𝑡 =
𝑛

3
is impossible.

General convexity spaces 𝐶:

• 𝜔 parties, 1 corrupted.

• Bad instance guaranteed by def. of 𝜔.



𝑡 =
𝑛

𝜔
is impossible

Example for ℝ2: 𝑡 =
𝑛

3
is impossible.

General convexity spaces 𝐶:

• 𝜔 parties, 1 corrupted.

• Bad instance guaranteed by def. of 𝜔.

• Previously known: ℝ𝐷 and convex geometries.
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Protocol (Possibility)

A) Parties distribute inputs to get a common view on 𝑥1, … , 𝑥𝑛 :

(some values unknown: 𝑥𝑖 = ⊥)

1. Known honest values are correct;

2. ≥ 𝑛 − 𝑡𝑠 values known;

3. Synchronous network ⇒ all honest values known.

“Core-Set Agreement” for 𝟐 𝒕𝒔 + 𝒕𝒂 < 𝒏 (main tech. novelty)

B) Parties locally and deterministically compute a valid output by 

taking the “safe area” (Agreement is for free).
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Safe Area

e.g., 4 values in the common view, ≤ 1 corrupted, what to do?

Generally: 𝑎 values in the common view, ≤ b corrupted

Safe area: intersection of convex hulls of subsets of size 𝑎 – 𝑏

Any point in safe area is valid, select one deterministically.
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Safe Area (cont’d)
Who are 𝑎 and b?

The common view has ≥ 𝑛 − 𝑡𝑠 values, say 𝑎 = 𝑛 − 𝑡𝑠 + 𝑘.

The network is synchronous?

⇒ at most 𝑘 of these values are corrupted.

The network is asynchronous?

⇒ at most 𝑡𝑎 of these values are corrupted.

We don’t know which?

⇒ b = max(𝑘, 𝑡𝑎)

Q: Why is the safe area non-empty?

A: We intersect many convex sets, but it suffices to show any 𝜔

intersect; Pigeonhole Principle; max 𝜔𝑡𝑠, 𝜔𝑡𝑎 + 𝑡𝑠 < 𝑛
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