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Why Convex Consensus?

(Almost) everything is convex if you believe!
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Consensus (Byzantine Agreement)

n parties with inputs x4, ..., x,, giving outputs y;, ..., ¥,,

Unknown < t parties are byzantine
(other = n — t are honest)

Agreement: Honests output same y
Validity: y is meaningful

Q: What does meaningful mean?

(authenticated bidirectional channels)
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x; € X (general purpose)

« Strong Validity: If all honests have the same input X,
then the output is y = x (otherwise no constraints).

* Honest-Input Validity: y iIs the input of an honest party.

x; € R (temperature, altitude, price)
 Honest-Range Validity: y is between the smallest and
largest honest inputs.

x; € RP (meeting point on a map)
« Convex Validity: y is in the convex hull of honest inputs.
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Convexity (abstractly)

A convexity space C on a ground set X specifies which subsets
of X are convex s.t.:

« (@ and X are convex.

* Intersections of convex sets are convex.

The convex hull of S € X Is the intersection of all convex sets
containing S.

Convex Validity: output y Is in the convex hull of honest inputs.

Examples:

« RP with straight-line convexity & Honest-Range Validity (D = 1)
« Vertices of a graph G with monophonic/geodesic convexity

* Elements of a lattice L with algebraic convexity

« Any set X and all sets are convex - Honest-Input Validity

* Any set X and @, X and singletons are convex - Strong Validity
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Helly’s Theorem:
Given family of convex sets in R? (with straight-line convexity):
Every D + 1 intersect = all of them intersect.

Example:
100 disks in R?: every 3 intersect = all 100 intersect.

fevery- -tersect=- -100-nrterseet)

Helly’s Theorem (abstract):
Given family of convex sets in a convexity space C:
Every w intersect = all of them intersect.

[— Helly number of C
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A: depends on network model.

Pb.: How can we even specify 1? w
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Network Models

Synchronous model: messages get delivered within a known
amount of time A.
Problem: small deviations from A break the protocol.

Asynchronous model: messages get delivered eventually.
Problem: requires lower t.

A tradeoff? Can we somehow get the best of both worlds?

Network-agnostic model: Given t, < t.:

« Tolerate t, corruptions if the network is synchronous.

« Tolerate t, corruptions if the network is asynchronous.
 The protocol does not know which one is the case!
* (Question here: what pairs (t,,t,) are possible?)



Results

Tight results for all 3 models!
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Example for R?: t = g IS impossible.

Platzspitz

General convexity spaces C:

* w parties, 1 corrupted.

« Bad instance guaranteed by def. of w.

* Previously known: R” and convex geometries.
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Protocol (Possibility)

A) Parties distribute inputs to get a common view on (x4, ..., x,,):
(some values unknown: x; = 1)

1. Known honest values are correct;

2. =n —t, values known;

3. Synchronous network = all honest values known.

“Core-Set Agreement” for 2t, + t, < n (main tech. novelty)

B) Parties locally and deterministically compute a valid output by

taking the “safe area” (Agreement is for free).
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Safe Area

e.g., 4 values in the common view, < 1 corrupted, what to do?

Generally: a values in the common view, < b corrupted
Safe area: intersection of convex hulls of subsets of sizea - b

Any point in safe area is valid, select one deterministically.
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Safe Area (cont'd)

Who are a and b?
The common view has > n —t; values,saya = n —t; + k.
The network is synchronous?
= at most k of these values are corrupted.
The network is asynchronous?
= at most t, of these values are corrupted.
We don’t know which?
= b = max(k, t,)
Q: Why is the safe area non-empty?
A: We intersect many convex sets, but it suffices to show any w

intersect; Pigeonhole Principle; max(wt,, wt, +t,) <n
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