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Abstract. In this paper we examine the diffusion of competing rumors

in social networks. Two players select a disjoint subset of nodes as ini-

tiators of the rumor propagation, seeking to maximize the number of

persuaded nodes. We use concepts of game theory and location theory

and model the selection of starting nodes for the rumors as a strategic

game. We show that computing the optimal strategy for both the first

and the second player is NP-complete, even in a most restricted model.

Moreover we prove that determining an approximate solution for the

first player is NP-complete as well. We analyze several heuristics and

show that—counter-intuitively—being the first to decide is not always

an advantage, namely there exist networks where the second player can

convince more nodes than the first, regardless of the first player’s deci-

sion.

1 Introduction

Rumors can spread astoundingly fast through social networks. Traditionally this

happens by word of mouth, but with the emergence of the Internet and its

possibilities new ways of rumor propagation are available. People write email, use

instant messengers or publish their thoughts in a blog. Many factors influence

the dissemination of rumors. It is especially important where in a network a

rumor is initiated and how convincing it is. Furthermore the underlying network

structure decides how fast the information can spread and how many people are

reached. More generally, we can speak of diffusion of information in networks.

The analysis of these diffusion processes can be useful for viral marketing, e.g.

to target a few influential people to initiate marketing campaigns. A company

may wish to distribute the rumor of a new product via the most influential

individuals in popular social networks such as MySpace. A second company

might want to introduce a competing product and has hence to select where to

seed the information to be disseminated. In these scenarios it is of great interest

what the expected number of persuaded nodes is, under the assumption that

each competitor has a fixed budget available for its campaign.

The aim of this paper is to gain insights into the complexity of a model

that captures the dissemination of competing rumors as a game where a number



of players can choose different starting nodes in a graph to spread messages.

The payoff of each player is the number of nodes that are convinced by the

corresponding rumor. We focus on one crucial aspect of such a rumor game:

the choice of a set of nodes that is particularly suitable for initiating the piece

of information. We show that even for the most basic model, selecting these

starting nodes is NP-hard for both the first and the second player. We analyze

tree and d-dimensional grid topologies as well as general graphs with adapted

concepts from facility location theory. Moreover, we examine heuristics for the

selection of the seed nodes and demonstrate their weaknesses. We prove that

contrary to our intuition there exist graphs where the first player cannot win

the rumor game, i.e., the second player is always able to convince more nodes

than the first player.

2 Related Work

Recently, viral marketing experienced much encouragement by studies [12] sta-

ting that traditional marketing techniques do no longer yield the desired effect.

Furthermore [12, 15, 16] provide evidence that people do influence each other’s

decision to a considerable extent. The low cost of disseminating information via

new communication channels on the Internet further increases the appeal of vi-

ral marketing campaigns. Thereupon algorithmic questions related to the spread

of information have come under scrutiny. Richardson and Domingos [5] as well

as Kleinberg et al. [13] were among the first to study the optimization problem

of selecting the most influential nodes in a social network. They assume that

an initial set of people can be convinced of some piece of information, e.g., the

quality of a new product or a rumor. If these people later influence their friends’

decisions recursively, a cascading effect takes place and the information is dis-

tributed widely in a network. They define the Influence Maximization Problem,

which asks to find a k-node set for which the expected number of convinced

nodes at the end of the diffusion process is maximized. The authors introduced

various propagation models such as the linear threshold model and the indepen-

dent cascade model. Moreover, they show that determining an optimal seeding

set is NP-hard, and that a natural greedy hill-climbing strategy yields provable

approximation guarantees. This line of research was extended by introducing a

second competitor for the most far-ranging influence. Carnes et al. [3] study the

strategies of a company that wishes to invade an existing market and persuade

people to buy their product. This turns the problem into a Stackelberg game [23]

where in the first player (leader) chooses a strategy in the first stage, which takes

into account the likely reaction of the second players (followers). In the second

stage, the followers choose their own strategies having observed the Stackelberg

leader decision i.e., they react to the leader’s strategy. Carnes et al. use models

similar to the ones proposed in [13] and show that the second player faces an

NP-hard problem if aiming at selecting an optimal strategy. Furthermore, the



authors prove that a greedy hill-climbing algorithms leads to a (1 − 1/e − ǫ)-

approximation. Around the same time, Bharathi et al. [1] introduce roughly the

same model for competing rumors and they also show that there exists an effi-

cient approximation algorithm for the second player. Moreover they present an

FPTAS for the single player problem on trees.

Whereas the application of information dissemination to viral marketing cam-

paigns is relatively new, the classic subjects of Competitive Location Theory and

Voting Theory provide concepts that are related and prove very useful in this

paper. Location theory studies the question where to place facilities in order

to minimize the distance to their future users. One of the earliest results stems

from Hotelling [11], where he examines a competitive location problem in one di-

mension. He analyzes the establishment of ice-cream shops along a beach where

customers buy their ice-cream at the nearest shop. Voronoi Games [4] study the

same problem in two dimensions. In these games the location set is continuous,

and the consumers are assumed to be uniformly distributed. Contrary to these

assumptions the dissemination of information depends on the underlying net-

work structure, i.e., there is a discrete set of possible “locations”. Closest related

to the spread of rumors is the competitive location model introduced by Hakimi

[9]. Here, two competitors alternately choose locations for their facilities on a

network. The author assumes that the first player knows of the existence of the

second player and its budget, i.e., the leader can take the possible reactions of

the follower into consideration. In turn, the follower has full knowledge of the

leader’s chosen positions and adapts its decision accordingly. Hakimi shows that

finding the leader’s and the follower’s position on general graphs is NP-hard.

Our model differs from Hakimi’s two main aspects, namely he permits locating

facilities on edges, and the placing of multiple users at nodes. Voting theory [10]

introduces notions such as plurality solution, Condorcet solution or Simpsons

solution describing the acceptance among a set of people, some of which we will

use in our analysis.

A large body of research covers the dynamics of epidemics on networks, e.g.,

[2, 17–20] to name but a few. Many of these models are applicable to the diffusion

of information for a single player, however, to the best of our knowledge no work

exists on epidemics that fight each other.

3 Model and Notation

3.1 Propagation Models

The Propagation Model describes the dissemination of k competing rumors on

an undirected graph G(V,E). Initially, each node is in one of k+1 states. A node

is in state i ≤ k if it believes rumor i, in state 0 if it has not heard any rumors

yet. In the first step all nodes apart from the nodes in state 0, send a message

containing rumor i to their neighbors, informing them about their rumor. Now,

all nodes in state 0 that received one or more messages decide which rumor they



believe (if any), i.e. they change their state to i if they decided to accept rumor

i, or remain in state 0, or adopt state ∞ if they reject all rumors. Nodes in

state i ∈ {1 . . . k} spread the rumor by forwarding a message to their neighbors.

These steps are repeated recursively until no messages are transmitted any more.

Observe that in this model each node transmits at most once and no node ever

changes its first decision.

Depending on the process of reaching a decision after receiving one or several

messages the diffusion of the rumors differs. In this paper we mostly consider

the basic model where each node trusts the first rumor it encounters unless two

or more different rumors arrive at the same time in which case the node chooses

state ∞, i.e., it refuses to decide and ignores all further messages.

This model can easily be extended by varying the decision process. E.g.,

rumor i could be accepted and forwarded to the neighbors with probability

Prumori
= #messages rumori

#messages
. Thereby the decision depends on the number of

messages containing rumor i versus the total number of messages received in

this time slot. Moreover, edges could be oriented and a persuasiveness value

could be assigned to each rumor influencing the decision. A more complex model

such as the linear threshold model or the independent cascade model could be

implemented. Note that our basic model is a special case of the independent

cascade model. The threshold model has been introduced by Granovetter [8]

and Schelling [21], who were among the first to define a model that handles the

propagation of information in networks. In this model, a node u forwards a rumor

i to all neighbors if the accumulated persuasiveness of the received messages i

exceeds a threshold,
∑

mi
psvu(mi) ≥ t. The independent cascade model has

been proposed in the context of marketing by Goldenberg, Libai and Muller [6].

Here, a node u is given one opportunity to propagate rumor i to neighbor v with

probability pu,v. Thereafter no further attempts of node u to convince node v

take place. Kempe et al. [14] show that these two models can be generalized

further and ultimately are equivalent.

3.2 Strategic Rumor Game

Consider two players p1, p2 and a graph G(V,E). Player p1 selects a subset V1 ⊂
V of nodes corresponding to the set of nodes initiating rumor 1. Subsequently, p2

selects the seeds for rumor 2, a set V2 ⊂ V , where V1 ∩V2 = ∅. The rumors then

propagate through the graph as specified by the propagation model. The payoff

for player pi is calculated when the propagation has terminated and equals the

number of nodes that believe rumori. This model can be extended to multiple

players, where each players’ strategy consists of a disjoint set of nodes to initiate

their rumors.

Observe that this game is related to the classic subject of competitive location

theory and the equilibrium analysis of voting processes. In order to analyze our

rumor game in different topologies we therefore introduce the notions Distance

Score and Condorcet Node.



Definition 1 For any two nodes vi, vj ∈ V the number of nodes that are closer

to vi than to vj is designated as the distance score, DSi(j) = |{v ∈ V : d(v, vi) <

d(v, vj)}|. A node vj ∈ V is called a Condorcet node if DSi(j) ≤ |V |/2 for every

vi ∈ V \ {vj}.

Thus a node vj ∈ V is called a Condorcet node if no more than one half

of the nodes accept a rumor from any other node in the graph. Note that this

definition differs from the original definition of a Condorcet Point that can be

anywhere on the graph, including edges.

4 Analysis

Location theory studies the optimal distribution of facilities such that the dis-

tance to the users is minimized. In our basic model, we consider a very similar

problem. Instead of two facility providers two rumors compete for users. Hakimi

et al. [9] examine the facility location problem in a weighted graph, i.e., each

edge is assigned a length value. The facilities are located at nodes or edges, the

users are located at nodes only and multiple users are allowed per node. We

adjust these concepts to our model where only one user is located at each node

and the edge lengths are restricted to 1. Furthermore, the rumors cannot start

on edges, i.e., the available locations are confined to the nodes.

The (r|p)-medianoid problem in location theory asks to locate r new facilities

in the graph which compete with p existing facilities for reaching more users.

Whereas the (r|p)-centroid problem examines how to place the p facilities when

knowing that r facilities are located afterwards by a second player. We adapt

these two terms for the problems faced by player 1 and player 2 in the rumor

game.

Definition 2 Player 1 solves the (r|p)-centroid problem of a graph by selecting p

nodes to initiate rumor 1 ensuring that the number of nodes convinced by rumor

1 is maximized when player 1 knows that player 2 will choose r nodes.

Definition 3 Player 2 solves the (r|p)-medianoid problem of a graph by select-

ing r nodes to initiate rumor 2 ensuring that the number of nodes convinced by

rumor 2 is maximized when player 1 has chosen p nodes already.

The locational centroid and medianoid problems have been shown to be NP-

complete in [9]. Our rumor game using the basic model is a restricted special

case of the general facility location problem. In the following paragraphs we will

prove that the computation of optimal solutions in the rumor game is of the

same difficulty. To this end we need some additional notation. Let DG(v, Z) =

min{d(v, z)|z ∈ Z} for a subset Z ⊂ V , where d(v, z) describes the length of

a shortest path from v to z in G. Thus DG(v, Z) designates the lengh of the

shortest path from node v to a node z ∈ Z. Let Xp be the set of the p nodes
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Fig. 1. Diamond structure used for the reduction of the centroid problem.

chosen by player 1 and Yr the set of the r nodes selected by player 2. The set of

nodes that are closer to a rumor published by Yr than to the ones published by

Xp is V (Yr|Xp) = {v ∈ V |D(v, Yr) < DG(v,Xp)}. This allows us to define the

part of the graph controlled by rumors placed at Yr as W (Yr|Xp) = |V (Yr|Xp)|.

4.1 Complexity of the Centroid Problem

We demonstrate how the (1|p)-centroid problem can be reduced to from Vertex

Cover.

Theorem 4 The problem of finding an (1|p)-centroid of a graph is NP-hard.

Proof. We prove this theorem by reducing the Vertex Cover (VC) problem to

the (1|p)-centroid problem. An instance of the VC problem is a graph G(V,E)

and an integer p < |V |. We have to determine whether there is a subset V ′ ⊂ V

with |V ′| ≤ p such that each edge e ∈ E has at least one end node in V ′.

Given an instance of the VC problem, we construct a graph Ḡ(V̄ , Ē) from

G by replacing each edge ei = (u, v) in G by the diamond structure shown in

Figure 1. Let Y1(Xp) be the node chosen by player 2 when player 1 has selected

the nodes Xp. We prove our theorem by showing that there exists a set Xp of

p nodes on Ḡ such that W (Y1(Xp)|Xp) ≤ 2 for every node Y1(Xp) on Ḡ, if and

only if the VC problem has a solution.

Assume V ′ is a solution to the VC problem in G and |V ′| = p. Let Xp = V ′

on Ḡ. Then for any diamond joining u and v in Ḡ, either u or v belongs to

V ′ = Xp. It is easy to see that in this case W (Y1(Xp)|Xp) ≤ 2 for every node

Yr(Xp) in Ḡ. On the other hand suppose the set of p nodes Xp on Ḡ satisfies

the requirement W (Y1(Xp)|Xp) ≤ 2 for every choice of node Y1(Xp) on Ḡ. If on

each diamond of Ḡ there exists at least one node of Xp, then we can move this

node to u or v ∈ V ′ ⊂ V . It follows that each diamond has either u or v in V ′

and therefore V ′ would provide a solution to the VC problem in G. What can we

say about diamonds in Ḡ joining u and v on which no node of Xp lies? Without

loss of generality we may state that there has to be an adjacent diamond with

at least one node of Xp, otherwise W (Y1(Xp)|Xp) ≤ 2 is violated. No matter

whether w, f1 or f2 is in Xp, player 2 can select v yielding W (Y1(Xp)|Xp) ≥ 3.

Consequently, player 1 has to choose at least one node on each diamond and the

claim follows. 2
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Fig. 2. Graph Ḡ used for the reduction of the approximation of the centroid problem.

Note that for trees the(1|1)-centroid is always on a node in the facility loca-

tion context [22]. Hence the algorithm proposed by Goldman [7] can be used to

find an(1|1)-centroid on trees in time O(n).

Intriguingly, even finding an approximate solution to the (1|p)-centroid prob-

lem is NP-hard. We define Xα
p to be an α-approximate (1|p)-centroid if for any

1 < α ∈ o(n) it holds that W (Y OPT
1 (Xα

p )|Xα
p ) ≤ αW (Y OPT

1 (XOPT
p )|XOPT

p .

Theorem 5 Computing an α-approximation of the (1|p)-centroid problem is

NP-hard.

Proof. This proof uses a reduction from Vertex Cover again and follows the

previous proof closely. Given an instance of the VC problem, we construct a

graph Ḡ(V̄ , Ē) from G by replacing each edge ei = (u, v) in G by another

diamond structure shown in Figure 2. Instead of adding two nodes and five

edges for every edge (u, v), we introduce a clique of 4α − 2 nodes and connect

u and v to each node of the clique. Moreover we insert one node on each of the

edges from u, v to one designated node of the clique. In a first step we show that

W (Y1(Xp)|Xp) ≤ 4α for every node player 2 might pick as Y1 if and only if VC

has a solution.

Assume V ′ is a solution to the VC problem in G and |V ′| = p. Let Xp = V ′

on Ḡ. Then for any diamond joining u and v in Ḡ, either u or v belongs to

V ′ = Xp. It is easy to see that in this case W (Y1(Xp)|Xp) ≤ 4 ≤ 4α for every

node Yr(Xp) in Ḡ. On the other hand suppose Xp satisfies W (Y1(Xp)|Xp) ≤ 4α

for every choice of node Y1(Xp) on Ḡ. If on each diamond of Ḡ there exists at

least one node of Xp, then we can move this node to u or v ∈ V ′ ⊂ V . It follows

that each diamond has either u or v in V ′ and therefore V ′ would provide a

solution to the VC problem in G.

Suppose there is a diamond without a node in Xp. In this case, it is easy

to see that if min{D(u,Xp),D(v,Xp)} exceeds one, W (Y1(Xp)|Xp) ≥ 4α + 2.

Hence we may assume that 0 < min{D(u,Xp),D(v,Xp)} ≤ 1 and we can

state without loss of generality that there has to be an adjacent diamond with

at least one node of Xp in distance 1 to u. No matter which of the suitable
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Fig. 3. Graph Ḡ used in the reduction of the medianoid problem.

nodes is in Xp, player 2 can select u yielding W (Y1(Xp)|Xp) ≥ 4α + 1. Con-

sequently, player 1 has to add another node on this diamond to Xp to avoid a

violation of our presumption. Thus we can easily construct a VC out of Xp.

Moreover, we can prove using similar arguments that Xp exists on Ḡ such

that the condition that W (Y1(Xp)|Xp) ≤ 4 holds for every node Y1(Xp) on

Ḡ if and only if VC on G has a solution. Consequently it must hold that

W (Y1(Xp)|Xp) ≤ αW (Y OPT
1 (XOPT

p )|XOPT
p ) ≤ 4α and the statement of the

theorem follows. 2

4.2 Complexity of the Medianoid Problem

The second player has more information than the first player, however, deter-

mining the optimal set of seeding nodes for player 2 is in the same complexity

class. We prove this by a reduction of the dominating set problem to the (r|X1)-

medianoid problem.

Theorem 6 The problem of finding an (r|X1)-medianoid of a graph is NP-hard.

Proof. Consider an instance of the NP-complete Dominating Set (DS) problem,

defined by a graph G(V,E) and an integer r < n, where n = |V |. The answer

to this problem states whether there exists a set V ′ ⊂ V such that |V ′| ≤ r

and DG(v, V ′) ≤ 1 for all v ∈ V . We construct a graph Ḡ(V̄ , Ē) with node set

V̄ = V ∪S, where S consists of n+1 nodes. Let the nodes in V be numbered from

v1, . . . , vn and the nodes in S from s1, . . . , sn+1. For each node si, i ∈ {1, . . . , n},
we add an edge to sn+1, an edge to vi as well as an edge to every neighbor of

vi, compare Figure 3. Thus the edge set is Ē = E ∪Es, where Es = {(si, vi)|s ∈
S, v ∈ V } ∪ {(vn+1, v)|v ∈ S \ {vn+1}} ∪ {(si, vj)|(vi, vj) ∈ E}. Let player 1

choose sn+1. We show now that there exist r nodes in Ḡ composing Yr such that

W (Yr|sn+1) = |V | + r, if and only if the DS problem has a solution in G.
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Fig. 4. Example of a graph where the first player never wins.

Assume the DS problems has a solution in G. In this case there exists V ′ ⊂ V

with |V ′| = r such that DG(v, V ′) ≤ 1 for all v ∈ V . Let Yr contain the nodes

in S corresponding to V ′, i.e., Yr = {si|vi ∈ V ′}. It follows that W (Yr|sn+1) =

|V | + r, because ∀v ∈ V D(v, Yr) = 1 < d(v, sn+1) = 2. Suppose Yr is such

that W (Yr|sn+1) = |V | + r. For all nodes si ∈ Yr it holds that W (si|sn+1) ≤
W (vj |sn+1), if si and vj are neighbors. This follows from the fact that on every

path from a node v ∈ V to sn+1 in Ḡ there is a node si, i < n + 1. By removing

si from Yr and adding its neighbor vi ∈ V to Yr we maintain ∀v ∈ V D(v, Yr) =

1 < d(v, sn+1) = 2. We repeat these steps for all nodes si ∈ S ∩ Yr yielding

Yr ⊂ V . Clearly, W (Yr|sn+1) = |V |, letting us state for all v ∈ V,D(v, Yr) <

d(v, sn+1) = 2. Thus this adapted set Yr is a solution to DS. 2

Observe that the hill-climbing algorithms proposed in [3] can be adapted to

provide (1 − 1/e − ǫ)-approximations of the medianoid problem in polynomial

time.

4.3 Advantage of the First Player

Intuitively, one would assume that the first player has an advantage over the

second player because it has more choice. Hence one might think that the first

player is always able to convince more nodes than the second player if it selects

its seed nodes carefully. Theorem 7 proves the contrary.

Theorem 7 In a two player rumor game where both player select one node to

initiate their rumor in the graph, the first player does not always win.

Proof. We consider an instance of the rumor game where both the first and the

second player can select one node each as a seed. See Figure 4 for an example

where the second player can always persuade more players than the first player

regardless of the decision the first player makes. If player 1 chooses the node

x0 in the middle, the second player can select x1 thus ensuring that 7 nodes



believe rumor 2 and only 5 nodes adopt rumor 1. If player 1 decides for node x1,

player 2 can outwit the first player by choosing x2. If player 1 designates x2 as

its seed, the second player select z1. All other strategies are symmetric to one

of the options mentioned or even less promising for player 1. Hence the second

player can always convince 7 nodes whereas the first player has to content itself

with 5 persuaded nodes. 2

Since there exists no Condorcet Node in the graph in Figure 4, the curi-

ous reader might wonder whether a Condorcet Node guarantees at least n/2

convinced nodes for the first player. This conjecture is also wrong as Figure 5

demonstrates.

Fig. 5. Example where a Condorcet Node vi yields a low payoff for player 1. The

subgraph in the circle is a complete graph.

4.4 Heuristics for Centroid

Having discovered that there are graphs were the second player always is more

successful in distributing its rumor, we now concentrate on games where the first

player could convince more nodes than the second player. Since determining

a centroid is NP-complete we consider the following (efficiently computable)

strategies the first player can pursue: choose the node with smallest radius, with

largest degree or the midpoint of the minimal spanning tree. The node with

minimal maximal distance to any other node is the midpoint of the spanning

tree. However, for these strategies Figure 3 shows examples where they do not

win. In the example shown in Figure 6(a) player 1 selects the node vj with

the smallest radius radmin, i.e., the minimum over all nodes v of the greatest

distance between v and any other node. In this case the second player wins more

than player 1 by choosing the highest degree node vi, if it holds degree(vi) >

3 · radmin/2. In Figure 6(b) player 1 selects the node vi with highest degree. If

it holds n > 2 · degree(vi) then player 2 wins more than half of the nodes by

selecting the neighbor of vi. When the midpoint of a spanning tree is chosen by

player 1 then it is easy to see that player 2 can choose a neighbor and win more
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Fig. 6. Counterexamples for heuristics where player 1 wins fewer nodes than player 2

(a) Player 1 selects the node with smallest radius. (b) Player 1 selects the node with

highest degree. (c) Player 1 selects the midpoint of the minimum spanning tree.

than half of the nodes, compare Figure 6(c). For all these heuristics there even

exist graphs where the first player wins three nodes and the remaining nodes

adopt the second rumor.

5 Conclusion

In this paper we have presented the rumor game which models the dissemination

of competing information in networks. We defined a model for the game and

specified how the propagation of the rumors in the network takes place. We

proved that even for a restricted model computing the (r|p)-medianoid and (r|p)-

centroid and its approximation is NP-complete. Moreover, we demonstrated the

weaknesses of some heuristics for finding the centroid. Finally we proved the

surprising fact that the first player does not always win our two-player rumor

game, even when applying optimal strategies.
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