TxChain: Efficient Cryptocurrency Light Clients via
Contingent Transaction Aggregation

Alexei Zamyatin'3, Zeta Avarikioti?, Daniel Perez!-3, and William J. Knottenbelt!

! Imperial College London
* ETH Zurich
3 Interlay.io

Abstract. Cryptocurrency light- or simplified payment verification (SPV) clients
allow nodes with limited resources to efficiently verify execution of payments.
Instead of downloading the entire blockchain, only block headers and selected
transactions are stored. Still, the storage and bandwidth cost, linear in blockchain
size, remain non-negligible, especially for smart contracts and mobile devices: as
of April 2020, these amount to 50 MB in Bitcoin and 5 GB in Ethereum.
Recently, two improved sublinear light clients were proposed: to validate the
blockchain, NIPoPoWs and FlyClient only download a polylogarithmic number
of block headers, sampled at random. The actual verification of payments, how-
ever, remains costly: for each verified transaction, the corresponding block must
too be downloaded. This yields NIPoPoWs and FlyClient only effective under
low transaction volumes.

We present TXCHAIN, a novel mechanism to maintain efficiency of light clients
even under high transaction volumes. Specifically, we introduce the concept of
contingent transaction aggregation, where proving inclusion of a single contin-
gent transaction implicitly proves that n other transactions exist in the blockchain.
To verify n payments, TXCHAIN requires a only single transaction in the best
(n < ¢), and [Z + logc(n)] transactions in the worst case (n > ¢). We deploy
TxCHAIN on Bitcoin without consensus changes and implement a soft fork for
Ethereum. To demonstrate effectiveness in the cross-chain setting, we implement
TXCHAIN as a smart contract on Ethereum to efficiently verify Bitcoin payments.

1 Introduction

With decentralized cryptocurrencies finding more and more applications in industry,
the need to deliver digital payments on resource-constrained devices, such as mobile
phones, wearable- and Internet-of-things (IoT) devices, is steadily increasing. Even
within the cryptocurrency ecosystem, the need for efficient payment verification is be-
coming imminent. One example are multi-currency wallets, which track the state of
multiple cryptocurrencies and hence face high storage and bandwidth requirements. An-
other are the growing number of cross-cryptocurrency applications [32,6,24,31]. Here,
verification of correct payments happens cross-chain and is often executed by smart
contracts, where storage and bandwidth is priced by the byte [1,14].

In this paper, we present TXCHAIN, a novel scheme to improve the efficiency of
transaction verification, which improves upon recent work on optimized light clients [22,12].

2 Alexei Zamyatin , Zeta Avarikioti , Daniel Perez, and William J. Knottenbelt

Thereby, we do not rely on complex cryptographic schemes, but rather leverage the se-
curity properties offered by the consensus of decentralized cryptocurrencies — making
TXCHAIN compatible with the majority of existing systems.

Blockchain and Light Clients (SPV). Most widely-used cryptocurrencies, such as
Bitcoin and Ethereum, maintain an append-only transaction ledger, the blockchain. The
blockchain consists of a sequence of blocks chained together via cryptographic hashes.
Each block thereby consists of a block header and a batch of valid transactions. The
block header contains a pointer to the previous block, (ii) a vector commitment [13]
over all included transactions, and (iii) additional metadata (e.g. timestamp, version,
etc.). Each block is uniquely identifier by a hash over its block header.

Vector commitments are employed by users to verify transactions without down-
loading the entire blockchain. For example, Simplified Payment Verification (SPV)
clients in Bitcoin [27] only maintain a copy of the block headers of the longest (valid)
proof-of-work chain, where each header includes the root of a Merkle tree [26] con-
tains transaction identifiers as leaves. To verify a transaction is included in a block, an
SPV client requires (i) the block header of the block that contains the transaction (to
extract the Merkle root), and (ii) the Merkle tree path to the leaf containing the transac-
tion identifier (given the Merkle root). The size of the Merkle path, i.e., the number of
hashes, is thereby logarithmic to the number of transactions in the block.

Sublinear Light Clients. Recently, two proposals for so-called sublinear light clients
were made: non-interactive proofs of proof-of-work (NIPoPoW) [22] and FlyClient [12].
In contrast to naive SPV clients, NIPoPoWs and FlyClient only require to download a
fraction of the block headers to verify that a given chain is the valid chain ! . Both mech-
anisms sample a subset of block headers at random, such that a fake chain produced by
an adversary corrupting at most 33% of consensus participants or total computational
power will be detected with overwhelming probability — and hence rejected.

NIPoPoWs [22] sample block headers which exceed the minimum Proof-of-Work
target — so-called superblocks. Due to the design of PoW, statistically, 1/2 of the gen-
erated blocks will exceed the minimum target (level-1 superblocks), a 1/4 will exceed
the target by a higher number (level-2 superblocks), etc. By only sampling superblocks,
the number of block headers NIPoPoW clients need to download is polylogarithmic
in the blockchain size. Unless deployed as a non-backward compatible hard fork [33],
NIPoPoWs require block headers to contain an additional inferlink data structure (point-
ers to previous superblocks) for secure verification of the valid chain

FlyClient [12] samples block headers based on an optimized heuristic, which takes
as input a random number, e.g. generated using the latest POW block hash. Similar to
NIPoPoWs, a backward compatible deployment of FlyClient requires additional data to
be stored in block headers: the root of a Merkle Mountain Range commitment [29] —
an efficiently-updatable Merkle tree variant which supports logarithmic subtree proofs.
The leaves of the MMR contain block hashes of all blocks generated so far.

Both protocols also provide mechanisms to verify that a block header, not sampled
as part of the (poly)logarithmic valid chain proof, is indeed part of the valid chain. In
NIPoPoWs, this is achieved via so-called infix proofs, which link the blocks in question

! The chain with the most accumulated Proof-of-Work in PoW blockchains.

TxChain 3

to the sampled superblocks via the interlink structure. In FlyClient, this is achieved by
a Merkle tree path from the MMR root to the leaf containing the hash of the block in
question. Note that additional block inclusion checks are not necessary in naive SPV
clients, since all block headers are already downloaded.

Probabilistic Sampling Dilemma. To the best of our knowledge, all sublinear light
client verification protocols only reduce the block-header data submitted to the client,
i.e., the protocols provide efficient valid chain proofs. The ultimate goal of light clients,
however, is not only to efficiently determine the valid (or “main’) chain, but to verify the
inclusion of transactions in the latter. As such, to prove the inclusion of n transactions
in the blockchain, both super-block NIPoPoWs and FlyClient require n block headers
and n Merkle tree membership proofs to be submitted to the client — on top of the
valid chain proof. Therefore, for large n, transaction inclusion verification becomes the
performance bottleneck of sublinear light clients. Considering the additional data stored
in block headers, performance may even be worse than that of naive SPV clients for high
transaction volumes. We term this problem the Probabilistic Sampling Dilemma.

Our Contribution In summary, this paper makes the following contributions:

— Probabilistic Sampling Dilemma. We introduce the Probabilistic Sampling Dilemma

and provide a formal analysis, deriving the expected overhead of payment verifica-
tion in sublinear light clients (Section 3).

— Aggregated Transaction Verification. We introduce TXCHAIN as a new tech-
nique for compressing transaction inclusion proofs, leveraging the security assump-
tions of the underlying blockchain (Section 4). In particular, to prove the inclusion
of n transactions, TXCHAIN creates [2] contingent (on-chain) transactions, where
c is a constant dependent on the block/transaction size of the blockchain®. Con-
tingent transactions are only valid if each of the referenced n transactions exist in
the blockchain. Proving the inclusion of a contingent transaction hence proves in-
clusion of the n referenced transactions. To circumvent block size limitations, we
further show how to construct hierarchies of contingent transactions. As a result, to
prove existence of n transactions, TXCHAIN requires a single contingent transac-
tion in the best case (n < c) and [+ log.(n)] in the worst case (n > c).

— Formal analysis. We prove TXCHAIN’s security and formally analyze it’s effi-
ciency (Section 5). Under high transaction volumes, TXCHAIN reduces the num-
ber of downloaded block headers by up to a factor of 977x for FlyClient, and 973x
for NIPoPoWs. In terms of transaction inclusion proofs, TXCHAIN achieves an
improvement of up to 1190x across all types of light clients.

— Light Client Implementations. We deploy TXCHAIN (i) in Bitcoin without requir-
ing changes to the underlying protocol (ii) and implement a soft fork for Ethereum.
We show TXCHAIN’s performance improvement when added as an extension to
NIPoPoWs, FlyClient and even naive (linear) SPV clients (Section 6).

— Cross-Chain Deployment. To demonstrate effectiveness in resource constrained
environments, we implement TXCHAIN as a smart contract on Ethereum which
efficiently verifies Bitcoin payments (Section 6.3)3.

2 For example, in Bitcoin, ¢ = 1000 (cf. Section 6)
3 All code available as open source: github.com/interlay/compressed-inclusion-proofs

github.com/interlay/compressed-inclusion-proofs

4 Alexei Zamyatin , Zeta Avarikioti , Daniel Perez, and William J. Knottenbelt

2 Model and Definitions

2.1 System Model

Our setting consists of three types of users: miners, full nodes, and light clients.
Miners participate in the consensus protocol that orders the blocks, e.g., in Proof-of-
Work blockchains the miners are the users that create the blocks by solving the compu-
tationally difficult puzzles. The miners essentially determine which is the valid chain.
Full nodes verify and store a copy of the entire valid (honest) chain®. Since a blockchain
is a distributed system, the valid chain is the one agreed by the honest miners. To verify
that a blockchain is the valid chain, a user can download a copy of the entire chain from
a full node (or a miner), and verify all blocks®>. However, this is quite costly, both in
terms of space and computation.

Light clients allow for fast synchronization and transaction verification, under the as-
sumption that the valid chain follows the rules of the network. Specifically, light clients
only maintain the following: (i) the necessary data to verify chain validity, i.e., for SPV
clients all block headers, while for sublinear light clients a (random) sample of block
headers with cardinality polylogarithmic to the length of the valid chain, (ii) for each
transaction to-be-verified, the corresponding block header to extract the vector commit-
ment (and optionally a proof that this block header is indeed part of the valid chain),
and an inclusion proof, e.g., for Bitcoin this is the Merkle root and the Merkle tree path.

Assumptions. We make the usual cryptographic assumptions: all users are compu-
tationally bounded; cryptographically-secure communication channels, hash functions,
signatures, and encryption schemes exist. Further, we assume the underlying blockchain
maintains a distributed transaction ledger that has the properties of persistence and live-
ness as defined in [17]. Persistence states that once a transaction is included “deep”
enough in an honest miner’s valid chain it will be included in every honest miners’
valid chain in the same block, i.e., the transaction will be “stable”. We assume persis-
tence is parametrized by a “depth” parameter k, meaning that we assume finality of
transaction after k£ blocks. Liveness states that a transaction given as input to all honest
miners for a “long” enough period will eventually become stable.

Lastly, we note that TXCHAIN does not require any synchrony assumptions since
it is a non-interactive proof scheme. Hence, we assume the same network model of
the underlying blockchain system. We note, however, that each client is assumed to be
connected to at least one honest full node or miner and is hence not prone to eclipse
attacks [21].

Threat Model. We assume a rushing and fully adaptive adversary, meaning that the ad-
versary can reorder the delivery of messages, but cannot modify or drop them, and cor-
rupt users on-the-fly. However, the proportion of corrupted miners® (consensus partici-

* Miners are also full nodes, while full nodes are miners with zero “voting power”.

5 In PoW blockchains, the user must also query multiple nodes to determine which chain is the
one with the “most work”.

® The adversary can corrupt all kinds of users, but only miners affect the security of the system.

TxChain 5

pants) is bounded by the threshold necessary to ensure safety and liveness for the under-
lying system [16]. For Nakamoto consensus, this implies the fraction of computational
power 1 controlled by the adversary at any moment is bounded by 177 <1 /31171,
where « is a security parameter. For Byzantine fault tolerant settings, e.g. Proof-of-
Stake such as [23,11], the fraction of corrupted consensus participants f is bounded by

F<1/3.

2.2 Blockchain Notation

We denote a block header, i.e., a block without the included transactions, at position ¢ in
chain C' as C;. The genesis block header is, therefore, Cy, while C, denotes the block
header at the tip of the chain, where h is the current “length” (or height) of chain C.
Each block header includes (at least) a vector commitment over the set of transactions
included in block, and the hash of the previous block header in chain C. This hash
acts as a reference to the previous block and thus the hash-chain is formed. The vector
commitment, on the other hand, is a cryptographic accumulator [8] over an ordered list
of transactions or a position binding commitment, which can be opened at any position
with a proof sublinear in the length of the vector.

We use T;q to refer to a transaction with identifier id. Furthermore, we denote by
Y(.,-) the inclusion proof of a transaction in a block. Specifically, 7(; ;q) denotes an
inclusion proof of transaction T;4 in the block at position ¢ of the chain. If there exists a
proof (i iq), we write T;q € C; Typically, the transaction inclusion proof employs the
vector commitment on the block header.

We define as (¢, ¢ the inclusion proof of the block header C; in chain C'. A naive
block inclusion proof is the entire hash chain C" the hash-chain that includes the block
C; points back correctly to the genesis block G (ground truth).

Lastly, we denote as 7(¢,¢,,) a chain validity proof. That is a proof that a chain C' at
some round ending in a specific block C}, at position £ (the tip of the chain) is the valid
chain, i.e, the chain agreed by the honest miners.

Throughout the paper, we denote by | S| the cardinality of a set S. Further, we abuse
the notation for block header C; to also refer to the block.

2.3 Protocol Goals

We use the prover—verifier model, as originally introduced in [22]. In TXCHAIN, the
prover (full node) wants to convince the verifier (client) that a set of transactions 7" are
included in the valid chain C'. To do so, the prover(s) must provide three types of proofs
to the verifier:

1. Chain validity proof 7(...y: A proof that chain C'is the valid chain. Both NIPoPoW
and FlyClient provide succinct proofs that the given chain is valid.

2. Transaction inclusion proofs I': For each transaction in 7', a proof of inclusion in a
specific block 7. ..

3. Block inclusion proofs B: For each block that contains a transaction of T, a proof
of inclusion (3. .y that the block is in the valid chain C. The structure of this proof
is specific to the protocol used to verify that chain C'is the valid chain.

6 Alexei Zamyatin , Zeta Avarikioti , Daniel Perez, and William J. Knottenbelt

These proofs are not necessarily distinct, meaning that the data the prover sends to
the verifier for all three proofs may overlap. For instance, in an SPV client, the proof
of block inclusion (3) requires no additional data since all block headers are stored and
verified as part of the verification process of the chain validity. Therefore, if the block
inclusion proof is already part of the chain validity proof, we do not send the data twice.

Desired Properties Our goal is to design a protocol that is secure and efficient.

— Security in TXCHAIN encapsulates the correctness of the protocol, meaning that
a verifier only accept the proofs, i.e., terminates correctly, if the prover is honest
and knows the valid chain. In other words, the verifier will terminate correctly if all
transactions in 7" are included in the valid chain C.

— Efficiency captures the storage cost of the protocol, i.e., how much data must be
sent to the verifier as part of the verification steps (1-3). To evaluate the efficiency
of TXxCHAIN, we calculate these storage costs and compare them against existing
solutions for different sets of transactions (increasing cardinality), in the following
sections.

3 Probabilistic Sampling: Cure or Curse?

In this section, we highlight practical challenges of light clients based on probabilistic
sampling. We demonstrate that these light clients offer only optimistic performance
improvements when the transactions to-be-verified are many, and in the worst case, can
perform worse than naive SPV clients. We term this problem the Probabilistic Sampling
Dilemma. We first provide an intuition, and then a formal analysis to measure efficiency.

3.1 Probabilistic Sampling Dilemma

Chain Validity Proof. Existing sublinear light clients, such as superblock NIPoPoWs [22]
and FlyClient [12] use probabilistic sampling to reduce the number of block headers
necessary to prove knowledge of the valid chain (chain validity proof). FlyClient relies
on a pre-defined heuristic, while superblock NIPoPoWs sample headers of blocks which
exceed the minimum PoW difficulty — due to the nature of PoW, and specifically hash
functions modeled as random oracles, such blocks are considered to appear at random.
In both cases, the prover cannot predict upfront which blocks to provide to the verifier
as part of the requested chain validity proof. This property yields the probability of the
prover defrauding the verifier with respect to the chain validity proof negligible, within
our model as described in Section 2.

Block Inclusion Proof. In naive SPV clients, the block inclusion proof is trivial, as
the verifier already has the hash-chain for the chain validity proof. However, this is
not the case in sublinear light clients that use probabilistic sampling: For a given set
of transactions, the prover must provide to the verifier (a) the block headers and block
inclusion proofs for the chain validity proof ((poly)logarithmic in cardinality), and (b)

TxChain 7

for any block including a transaction of the input set that is not sampled for the chain
validity proof, the corresponding block header and block inclusion proof.

The reason for the additional block headers is that the probabilistic sample of block
headers is independent of the transactions the client wants to verify. Therefore, in ad-
dition to the chain validity proof (e.g., NIPoPoW) and the transaction inclusion proof
for every transaction, the prover must also persuade the verifier that the block header
that corresponds to the transaction inclusion proof of each transaction is part of the valid
chain. This implies that the cost of the probabilistic NIPoPoWs is also dependent on the
number of transactions to-be-verified and how they are distributed in the blockchain.

Probabilistic Sampling Dilemma. An additional overhead of probabilistic NIPoPoW
is the increase of the block header size — especially if deployed in blockchain without
major modification to the underlying consensus rules. This results in the following phe-
nomenon: the storage and bandwidth cost of both superblock NIPoPoWs and FlyClient
can exceed that of naive SPV clients for high transaction volumes (as shown in the ex-
perimental evaluations in Section 6.1). In particular, in probabilistic sampling clients
the cost is proportional to the number of different block headers (and block inclusion
proofs) that are given to the verifier, multiplied by the block header size. If transac-
tions are distributed across many different blocks of the chain, which are not sampled
in the chain validity proof, the cost increases: the additive data for the three proofs (c.f.
Section 2.3) sent to the verifier / light client.

As a result, a dilemma arises for clients with constrained resources: Clients can
either (a) anticipate a high transaction volume and use a naive SPV client, accepting a
higher cost for chain validity proofs, or (b) rely on a probabilistic sampling (NIPoPoWs,
FlyClient), saving costs on downloaded block headers under low transaction volumes,
but under high transaction volumes end up with overall higher storage and bandwidth
costs. We call this the Probabilistic Sampling Dilemma.

3.2 Analysis

In this section, we show that given a set of transactions to-be-verified 7', the cost of
probabilistic sampling light clients grows proportionally to the number of transactions
n = |T| and sublinear to the length of the chain. As such, when the number of transac-
tions is large, the costs of the protocol is dominated by the cost of the block inclusion
proofs, instead of the chain validity proof.

To that end, suppose C1, ..., C, is the set of blocks sampled for the chain validity
proof. The selected set is expressed via a random variable X which follows the probabil-
ity distribution defined in the light client protocol — e.g. uniformly-random distribution
with respect to the length of the chain in FlyClient. This means, that X; = 1 if the block
header C; is chosen to be part of the chain validity proof. Now, suppose o is the size
of the probabilistic sample and h the length of the valid chain, then if X follows a dis-
crete uniform distribution, it holds that Pr[X; = 1] = ¢, foralli € {0,1,...,h —1}.
As mentioned in Section 3, we assume the prover cannot influence or bias this random
variable for security reasons.

On the other hand, we define the discrete random variable Y; ; = 1 if transaction
T; € T'is included in block C;. For the purpose of our analysis, we assume Y;_; follows

8 Alexei Zamyatin , Zeta Avarikioti , Daniel Perez, and William J. Knottenbelt

a discrete uniform distribution on the length of the chain h as well. Thus, Pr[Y; ; =
1]= 4. foralli€{0,1,...,h—1}andj € {1,2,...,n}.

We further define the discrete random variable Y; to express if a block contains
at least one of the transactions in 7; ¥; = 1if forany j € {1,2,...,n},Y;; = L.
Each trial is independent as a transaction’s inclusion in a block has no influence on
which block will contain another transaction (for block size large enough) Therefore,
PriY;=1]=1-Pr[Yi1 =0]- Pr[Yia =0]... Pr[Y;, =0 = 1— (1 —4)".
For every block that includes at least one transaction from 7, the prover must provide
to the verifier the block header and a block inclusion proof, even if this block is not
sampled for the chain validity proof. To determine the overhead on the cost, we have to
count the number of blocks that include at least one transaction and are not sampled for
the chain validity proof. To that end, we define Z; = 1ifY; = 1 A X; = 0. Since Y;
and X; are independent random variables, Pr[Z; = 1] = Pr[Y; = 1] - Pr[X,; = 0] =
(1 -(1- %)”) : (1 — %) Thus, the expected number of additional block headers are

]E(Z)lE(iLz_:lZi) :h~Pr[Zi:1]:(hfcr)-(1—(17%)") > (17%) ‘n
1=0

We observe that the smaller the sample for the chain validity proof, the larger the
expected number of additional transactions. Furthermore, we notice that for a given
chain length and sample size, the expected number of additional blocks grows with the
number of transactions to-be-verified.

4 TXCHAIN Design

In this section we present the design of TXCHAIN. We first define the concept of con-
tingent transactions and then present how this mechanism can be used to circumvent
the Probabilistic Sampling Dilemma.

el o [a e o =] o |« G
/
[11 Je- reference -, T,
e [ValidTX,) -
“" L IF(TXy,....TX, €0):
- ,/' return True
. o ELSE
- - return False
P i

Fig. 1: Visualization of TXCHAIN: a contingent transaction T, is only valid and can
hence be included in the valid chain C' at index 7 if all referenced transactions Ty, ..., Ty,
are included in C, and hence are valid. The inclusion proof v(; 4y for T, is hence also
proves inclusion of Ty, ..., Ty.

TxChain 9

4.1 Contingent Transactions

Smart contracts in blockchains allow to define under which conditions a transaction can
be included in the underlying ledger, i.e., specify when the transaction becomes valid
under the blockchain’s consensus rules. In TXCHAIN, we leverage a fairly simple type
of smart contracts: contingent payments (or transactions). Thereby, a transaction T, is
constructed such that it becomes valid — and hence can be included in the underlying
ledger — if and only if a set of transactions 7' = Ty, ..., T,, was already included in the
underlying ledger. Formally,

Definition 1 (Contingent Transaction). A transaction T, is contingent on a set of
transactions T = Ty,...,T, if T4 can only be included in C; if C already contains
T1,..., Tp. Formally: T, € C; = Vj € {1,2,....,n} Ime{0,...,i} st T,;¢€
Cm

When executing the smart contract of a contingent transaction T,, to determine its
validity full nodes look up the referenced transactions Ty, ..., T, in their local copy
of the full valid chain, and only accept T, if all transactions were indeed found, as
illustrated in Figure 1.

4.2 TxCHAIN: Contingent Transaction Aggregation

We proceed to leverage the concept of contingent transactions defined above to reduce
the storage and bandwidth requirements of light clients when verifying n transaction
inclusion proofs.

Consider the following setting: A prover wants to convince a verifier that a set of
transactions 1" = Tq,..., T, was included in the valid chain C'. The transactions are
thereby distributed across & different blocks, h <= n. In TXCHAIN, the prover creates
a contingent transaction T,, referencing transactions Ty, ..., T, and includes it in the
blockchain at position i, i.e., T, € C;. Following Definition 1, by convincing the verifier
that T, € C; the prover also proves that for every Ty,..., T, there is a block C,,
(m € {0, ..., h}) that includes the transaction, and all these blocks are part of the valid
chain C (ie., Vm € {0,...,h} 3Bc,,.c))- We outline the TXCHAIN protocol in the
prover/verifier setting, for verifying inclusion of a set of transactions Ty, ... T,, in chain
C' via a contingent transaction T, in Algorithm 1.

4.3 Hierarchical TXCHAIN

Currently, TXCHAIN as described in Algorithm 1 assumes that a single transaction T,
can be contingent on an arbitrary number n of pre-existing transactions. Including ref-
erences to T = {Ty,..., T, } in T,, however, comes at a cost: each additional reference
means additional data must be attached to T,. However, blockchains typically exhibit
block or transaction size limits due to network latency concerns: the larger a transac-
tion, the longer it takes to be propagated to most of the nodes in the network, and the
more susceptible it is to double-spending attacks [15,20,19].

Depending on the size of these identifiers, which in turn depends on the design
of the underlying blockchain as well as the means of deployment of TXCHAIN (c.f.

10 Alexei Zamyatin , Zeta Avarikioti , Daniel Perez, and William J. Knottenbelt

Algorithm 1: TXCHAIN Prover / Verifier n Transaction Inclusion Verification Protocol

Prover

Has valid chain of A + 1 blocks Co,...,Ch

Receives query for transactions 7" = Ty, .. ., Ty, from verifier
Creates transaction T, contingent on the set of transactions 7'
Includes it in the valid chain at position C;, i > h

Waits k blocks until T, is stable

Computes:

(a) the valid chain proof m(c,c;, , 1)

(b) the block inclusion proof 8(¢;,c)

(c) the transaction inclusion proof 7(;,c)

7. Sends m(c,c;)5 B(C;,C)s Vii,e) and Tq to the verifier

A

Verifier

Has transactions 7' = T1,..., Tp

Queries prover for a proof that transactions 7" are included in the valid chain
Receives proof T(C,Citn)> B(c;,c)» Vi) and T, from the prover

Verifies

(a) the valid chain proof m(c,c;, , 1)

(b) the block inclusion proof for 8¢, ¢y

(c) the transaction inclusion proof 7(;,c)

(d) that transaction T, is contingent on transactions 7'

5. If everything checks out, accepts the transaction inclusion proof for T’

S

Section 6), the number of transactions referenced by a single contingent transaction T,
can be limited. We capture this by a constant ¢ > 1. As long as ¢ < n, verifying n
transactions requires only a single contingent transaction.

Consider, however, a scenario where n > c, i.e., a prover wants to convince the veri-
fier that a large number of transactions are included, but cannot reference them all within
a single contingent transaction. To circumvent this problem, the prover splits transac-
tions Ty, ..., T, across multiple contingent transactions Tg(1); - - -, Ta(n/c)- Next, the
prover constructs an hierarchical dependency across the “first-layer” contingent trans-
actions by creating transactions To(p/c), - - - Ta(n/c2)- In simple terms, the prover creates
a N-arry tree of contingent transactions, where each node is a contingent transaction
acting as inclusion proof for ¢ nodes (transactions) in that branch.

As a result, the prover can apply TXCHAIN to an arbitrary number of transactions,
at the cost of including in the blockchain and sending to the verifier % 4 [log.(n)] con-
tingent transactions. For example, for n = 1000 and ¢ = 100, the number of contingent
transactions would be 11. This yields a 91x reduction in the required transaction and
block inclusion proofs. If ¢ > n (e.g. ¢ = 1000), the reduction in the example is 1000x.
That is, the number of transactions c that can be referenced by a contingent transactions
directly impacts the improvement offered by TXCHAIN.

TxChain 11

5 Security and Efficiency Analysis

In this section we show how TXCHAIN achieves the two protocol goals: security and
efficiency (see Section 2.3).

5.1 Security Analysis

TXCHAIN achieves security when the verifier terminates correctly if and only if the
prover is honest.

[=1] If the prover is honest then, all transactions are included in the valid chain C, and
the proofs are generated according to the protocol specifications. Therefore, the verifi-
cation of all proofs will be successful by the verifier and thus will terminate correctly.
[«] For the opposite direction, we will prove the statement by contradiction. Let us as-
sume the verifier terminates correctly but the prover is malicious. This implies that the
prover deviated from the protocol specification. Given that the verifier terminated, the
verifier received the corresponding proofs from the prover. Since the security of the gen-
eration of the proofs is guaranteed by the underlying light client verification protocol,
the prover must have deviated from the protocol during steps 3 — 5, i.e., in the creation
of the contingent transaction. However, the verifier has the block inclusion proof for
the contingent transaction and also the last k£ blocks headers of the chain; therefore,
the prover can only deviate in step 3. However, during the verification of the transac-
tion inclusion proof the verifier ensures that all requested transaction identifiers are tied
to this transaction. Thus, the prover cannot create an incorrect contingent transaction.
Contradiction. We conclude that TXCHAIN achieves security.

Hierarchical TXCHAIN. The security of the hierarchical TXCHAIN construction fol-
lows from recursively applying the security analysis of TXCHAIN. Intuitively, assume
T’ encapsulates all to-be-proven transactions 7', as well as the set of contingent trans-
actions Tq(1), ..., Ta(z), Where x is upper-bounded by 2 + log.(n), ie., T" = T U
{Ta(1), -+ Ta(a) }- If the contingent transaction T, ., which is the root of the created
N-arry tree of contingent transactions, is included the in valid chain C, this means that
the subset of contingent transactions {Tg(y—1—c); - - - » Tq(z—1) Was also included in C.
The same holds for the predecessors of each transaction T, Vj € {x—1—c¢,...,z—1}.
We continue this process recursively until we reach the original set 7" which must also
be included in C for T, ;) to be valid and hence included in C.

5.2 Efficiency Analysis

We now discuss how TXCHAIN achieves efficiency by comparing the storage costs of
naive (SPV) and sublinear (NIPoPoWs and FlyClient) light clients with and without
applying TXCHAIN. We assume a secure hash function H and denote its size |H|. We
analyze the cost of each proof (see Section 2) below.

Valid Chain Proofs: The size of the valid chain proof in naive SPV is linear in k. The
size of the valid chain proof in sublinear light clients depends on two parameters: (i) A
which defines the probability 27> of a verifier terminating correctly on an invalid proof,

12 Alexei Zamyatin , Zeta Avarikioti , Daniel Perez, and William J. Knottenbelt

(ii) o which defines the strength of the adversary /(1 + «), e.g. the hash rate in PoW
blockchains , and (iii) the “depth” parameter k. The NIPoPoW T(c,cyp) Size [22,12] is
given by

10g1/a(2)A - ((log2(h) + 1) - C + loga(h) - [logz(logz(h))] - | H]).
The FlyClient (¢ ¢, size [12] is given by
Aogi/q(2)in(h) - (C + |HJ).

Note the increased block header size due to additionally required number of hashes | H |
in NIPoPoWs (interlink structure) and FlyClient (MMR root).

Block Inclusion Proofs (B): Since naive SPV clients store all block headers, no extra
block inclusion proofs 3. .y are required. Both NIPoPoW and FlyClient require block
inclusion proofs for blocks not sampled as part of 7(¢, ¢,) — for both mechanisms, the
size of f3..) is log(h) - |H| per block header.

Transaction Inclusion Proofs (I'): A transaction inclusion proof (i, id) is a list
of hashes (Merkle tree path), logarithmic in the number of transactions contained in
block C;. Hence, the size of each proof is log(t) - |H|, where t is the total number of
transactions included in the block containing a transaction of 7T'.

TXCHAIN Efficiency. In Section 3, we determined the expected number of additional
block headers and block inclusion proofs E(|B|) required in NIPoPoW and FlyClient
to verify the inclusion of n transactions for any given blockchain size h:

B(Bl) = (h—0) - (1~ (1 - 2)"),

where o is the number of blocks sampled for the chain validity proof. When applying
TxXCHAIN to such probabilistic sampling clients, this number decreases to:

E(B') =

BB 4 1oge(8).
We observe that the improvement achieved by TXCHAIN is most significant for large c,
since lim.—, . E(|B'|) = 1.

To evaluate the theoretical improvement we can achieve in TXCHAIN, we apply
TXCHAIN as an extension to both NIPoPoW and FlyClient. Figure 2 overviews the
expected number of (a) additional block inclusion proofs (and hence block headers)
and (b) required transaction inclusion proofs, before and after applying TXCHAIN, for
blockchain size h = 100000 and ¢ = 1000. A more detailed breakdown is provided in
Table 3 in Appendix A. We observe that as expected, TXCHAIN becomes more effective
as n increases, up until n = |T'| = h. Statistically, given a blockchain size of 100000
and 50000 to-be-verified transactions, FlyClient on average requires the submission
of 39120 block inclusion proofs and block headers, on top of the blocks sampled as
part of the chain validity proof. NIPoPoWs, which sample 40% more blocks as part
of the chain validity proof [12], require 39000 additional block headers. If we apply
TxXCHAIN’s contingent transaction aggregation to FlyClient and NIPoPoWs, assuming

TxChain 13

a realistic ¢ = 1000 (e.g. corresponds to a transaction with 1000 inputs in Bitcoin), we
only need to download 42 additional block headers, achieving an improvement factor
of 931x for FlyClient and 928x for NIPoPoWs.

TXCHAIN achieves even higher improvement factors for higher values of I' = n
in FlyClient and NIPoPoW, since IE(|B|) < n. For 50000 to-be-verified transactions
and a blockchain size of 100 000, the use of TXCHAIN improves over both “Vanilla”
FlyClient and NIPoPoW by a factor of 1190x: instead of 50000, we require only 42
transaction inclusion proofs. It is worth mentioning that the same improvement identi-
cally applies to naive SPV clients, as visualized in Figure 2(b).

We note the actual improvement in terms of storage and bandwidth costs depends
on how TXCHAIN, and specifically contingent transactions, are implemented in the
underlying blockchain, as we discuss in Section 6.

10°
10°

104

NIPoPoWs

10 FlyClient 10°
NIPoPoWs + TxChain

FlyClient + TxChain

Total block headers (log)
Inclusion proofs | (log)

-+ Naive SPV 102 | S—
//—1/
10! /
s
10 L TxChain
RS et - 100 SPV / NIPoPoW / FlyClient
0 50,000 100,000 150,000 200,000 0 50,000 100,000 150,000 200,000
To—berproven transactions n To—berproven transactions n
(a) (b)

Fig. 2: Effects of applying TXCHAIN to FlyClient and NIPoPoWs. (a) Total number of
block headers required for verification of n transactions (7(¢, ¢,y +IE(| B])). (b) Number
of transaction inclusion proofs I" in light clients before and after applying TXCHAIN
(logarithmic y-axis). Numbers h = 100000 and ¢ = 1000.

Limitations. While the design of TXCHAIN is simple and avoids complex crypto-
graphic schemes, making it compatible with the majority of existing blockchain sys-
tems, it also exhibits limitations. The requirement of including additional transactions
in the blockchain results in additional transaction fees for the prover (c.f. Section 6.1).
Further, TXCHAIN may not be applicable in times of high network congestion, i.e., if
a prover is unable to reliably include a contingent transaction in the blockchain. This
in turn, in the worst case, may yield TXCHAIN not applicable to instant or day-to-day
payments. Summarizing, TXCHAIN is most effective in settings where the storage and
especially bandwidth requirements of the verifier are the main bottleneck of a protocol,
or even priced by byte — as is the case when verification is performed in on-chain smart
contracts, as we show in Section 6.3.

14 Alexei Zamyatin , Zeta Avarikioti , Daniel Perez, and William J. Knottenbelt

6 Implementation

6.1 Deploying TXCHAIN in Bitcoin

In this section we discuss how TXCHAIN can be deployed in Bitcoin, with and without
changes to the underlying consensus rules, and evaluate its performance.

Bitcoin operates a so-called Unspent Transaction Output model (UTXO). Each new
transaction consists of inputs and outputs, where inputs spend outputs of existing trans-
actions. Outputs specify rules for how the coins locked in the unspent output (UTXO)
can be spent, i.e. via smart contracts. In Bitcoin, these contracts are written in Script, a
stack-based scripting language [3]. UTXOs can only be spent as a whole. Note: we eval-
uate both NIPoPoW and FlyClient under constant difficulty, since NIPoPoW currently
does not support with variable difficulty [22,12].

Fork-Free: Dust Output Spending. As of this writing, Bitcoin Script does not allow to
create conditional relations across transactions without actually spending from the cor-
responding outputs. As a result, the only way to deploy TXCHAIN in Bitcoin without
consensus changes is via dust output spending. When creating transactions Ty, ..., T,
the prover includes an additional output in each transaction, containing at least the min-
imum possible value transferable in Bitcoin’. The spending condition in this output can
be arbitrary, as long as the prover can spend the output in a “contingent” transaction.
Contingent transactions in case are standard Bitcoin transactions, which take as input
the dust UTXOs Ty, ..., T,, upper-bound by c. Due to Bitcoin’s consensus design, a
transaction can only spend a UTXO which is generated by a transaction already in-
cluded in the blockchain. As such, a transaction T, which spends outputs of Ty, ..., T,
is contingent on these transactions.

Evaluation. In our evaluation, we use standard Bitcoin P2WPKH [25] transactions. In
Bitcoin, C' = 80 bytes and |H| = 32 bytes. The average transaction size in 2019 was
534 bytes, while the average size of the coinbase transaction was 259 bytes. The latter
is the first transaction of every block and is used by NIPoPoWs and FlyClient to include
the interlink data / MMR root required for block inclusion proofs, when deployed as a
backward-compatible soft or velvet instead of a hard fork [33]. The average depth of
the transaction Merkle tree was 12. As such, each block inclusion proof in NIPoPoW
and FlyClient requires additionally 259 + 12 - |H| = 643 bytes, and each transaction
inclusion proof 384 bytes. But multi-input Bitcoin transactions come at a cost: 93 bytes
per input and 45 bytes flat per contingent transaction (assuming one P2WPKH output).
Thereby, Bitcoin full nodes will relay transactions of up to 100kb®, thus ¢ ~ 1000.

We overview the storage and bandwidth costs of naive SPV, FlyClient and NIPoPoW's
with and without TXCHAIN in Table 1, for a Bitcoin block height &~ = 630000 (as of
5 May 2020) and ¢ = 1000. We observe that TXCHAIN significantly reduces the to-
tal transaction and block inclusion proof data in all light client implementations. Most
notable, the storage and verification costs under TXCHAIN remain nearly constant.

7 54.60 - 10~® BTC which is approx. USD 0.4 as of 5 May 2020
8 github.com/bitcoin/bitcoin/blob/eb7daf4/sre/policy/policy.h#1.24

github.com/bitcoin/bitcoin/blob/eb7daf4/src/policy/policy.h#L24

TxChain 15

Therefore, TXCHAIN allows NIPoPoW and FlyClient to maintain their improvements
over naive SPV clients even under high transaction volumes.

We further observe that maintaining full compatibility with Bitcoin comes at a cost.
The use of dust outputs results in increased sizes of contingent transactions due to in-
efficient encoding of the references to the n aggregated transactions: each reference
requires to 93 bytes (Bitcoin input size), as opposed to the 32 byte transaction identifier
that would suffice in a soft fork deployment (see below).

The costs for including a transaction with ¢ = 1000 inputs in Bitcoin, at a fee price
of 3 - 1075 BTC per byte, amount to USD 21.2. We conclude that while TXCHAIN
offers a significant improvement on storage and bandwidth cost on the verifier’ s side,
the main application of TXCHAIN is expected to be in settings where each byte parsed
by the verifier is priced — e.g., as in Ethereum smart contracts (see Section 6.3).

Table 1: Comparison of storage and bandwidth costs of naive SPV, Flyclient and
NIPoPoWs, without (“Vanilla”) and with a fork-free deployment of TxChain, for dif-
ferent numbers of to-be-verified transactions n. FlyClient and NIPoPoW numbers pro-
vided for soft fork and hard fork deployment. Numbers provided for a blockchain size
h = 630000 (as of 5 May 2020) and ¢ = 1000.

FlyClient ‘ Superblock NIPoPoWs ‘
Soft Fork ‘ Hard Fork ‘ Soft Fork ‘ Hard Fork ‘

‘ naive SPV ‘

"

Vanilla TXCHAIN Impr. | Vanilla TXCHAIN Impr. |Vanilla TXCHAIN Impr. |Vanilla TXCHAIN Impr. |Vanilla TXCHAIN Impr.
inmB inmB factorjinmB inmB factor|inmB inmB factor|inmB inmB factor|inmB inmB factor

1 50.4 50.4 1.0 | 051 0.51 1.0 | 0.1 0.1 1.0 | 0.77 0.77 1.0 | 0.15 0.15 1.0
10 | 50.41 50.4 1.0 | 0.52 0.51 1.02| 0.1 0.1 1.04 | 0.78 0.77 1.0L | 0.15 0.15 1.03

100 | 50.49 50.4 1.0 | 0.62 0.51 1.21] 0.15 0.1 1.5 | 0.88 0.77 1.14| 0.2 0.15 1.33
1000 | 51.32 50.4 1.02 | 1.61 0.51 3.16 | 0.59 0.1 6.03 | 1.88 0.77 243 | 0.64 0.15 433
10000 | 59.58 5042 1.18 | 11.51 0.53 21.58| 5.05 0.11 44.04| 11.77 0.8 14.81| 5.1 0.16 30.97

50000 | 96.3 50.66 1.9 | 54.42 0.8 68.11| 24.67 036 69.17| 54.67 1.06 51.56|24.72 0.41 60.8
100000| 1422 51.39 2.77 |105.69 L5 70.68| 48.84 1.03 47.61|10592 1.76 60.31| 48.89 1.08 4546

Soft Fork. Considering both FlyClient and NIPoPoWs require a soft or hard fork to
be deployed in Bitcoin, the minor modifications to Bitcoin’s transaction validity rules
necessary to optimize TXCHAIN could arguably added in parallel — if FlyClient or
NIPoPoW are indeed deployed in practice. The goal of deploying TXCHAIN in Bit-
coin with a soft fork would be to avoid the requirement of spending UTXO’s when
referencing them in contingent transactions. In theory, this can be achieved via a new
OUTPUTEXISTS instruction (“OpCode”) in Bitcoin’s Script, which pops an item — the
identifier of a transaction concatenated with the index of the UTXO in that transaction
— from the stack, performs a lookup of the transaction, and pushes 1 to the stack if the
UTXO was found (0 otherwise). This would allow to reduce the costs per referenced
transaction / UTXO from 93 bytes (per input) to 32 bytes per transaction identifier
(SHA256 hash) plus 1 byte for the OpCode flag. This results in an expected 2.8x im-
provement over the fork-free deployment of TXCHAIN, as overviewed in Table 4 in
Appendix B.

16 Alexei Zamyatin , Zeta Avarikioti , Daniel Perez, and William J. Knottenbelt

In light of the simple deployment of TXCHAIN in Bitcoin without consensus changes,
and the observation that such soft fork proposals are seldom deployed in practice, we
defer the implementation of OUTPUTEXISTS to future work.

6.2 Deploying TXCHAIN in Ethereum

Unlike Bitcoin which uses the UTXO model, Ethereum does not provide a native way of
implementing transaction dependencies. To deploy TXCHAIN on Ethereum, we hence
propose a soft fork introducing a new instruction: TXEXISTS. This instruction checks
if a transaction hash exists in the current Ethereum valid (main) chain. The semantics
of the instruction are as follows:

1. Pop one argument, representing the hash of a transaction, from the stack,
2. Push 1 to the stack if the transaction was found or 0 otherwise.

Similar to instructions such as EXCODESIZE or BALANCE, this requires access
to the blockchain state, which can be expensive in terms of IO [28]. Therefore, we
assign a conservative price of 2000 gas to the instruction, i.e., twice as expensive as
the 900 gas of EXCODESIZE and BALANCE in the Ethereum implementation. We
note that finding an optimal gas price for this instruction would require more thorough
benchmarking and is left for future work.

We fork the Ethereum geth client [4] and the Solidity compiler [5], and implement
the instruction with the gas price and semantics defined above. We then implement a
smart contract leveraging the TXEXISTS instruction which exhibits the following func-
tionality: The contract receives a list of transaction n ids and returns true if and only
if all the transactions are included in the Ethereum main chain. Using this contract, the
proving and verification process is performed as follows: A prover sends a transaction
to the contract (the contingent transaction), and passes as argument the n to-be-proven
transactions. Subsequently, the prover sends this (contingent) transaction to the veri-
fier alongside the necessary block and transaction inclusion proofs. This proves to the
verifier that all n transactions were indeed included.

Evaluation. Using our forked node, we measure the cost of using our smart contract to
create a transaction proving the inclusion of n transactions on-chain. The initial transac-
tion costs 26,633 gas, including the fixed 21,000 gas transaction cost. Every additional
transaction to-be-proven costs extra 4,333 gas. Using a 5 Gwei gas price and the ex-
change rate of 168.01 USD/ETH as per 24 April 2020, this results in an initial cost of
0.022 USD and only an increase of 0.0036 USD per verified transaction.

To measure the storage and bandwidth improvements, we use the 2019 average
Ethereum transaction size of 499 bytes. Storing a single hash in a smart contract on
Ethereum, necessary to include the interlink data (NIPoPoW) or MMR root (FlyClient)
in a block, requires a 167 byte transaction. We set an upper limit on referenced transac-
tions of ¢ = 1147, assuming a block gas limit of 5 million [28], i.e., 50% of the block
gas limit, and hence bounding costs at ~ USD 12.6 per (full) contingent transaction.
Give Ethereum’s block height A~ = 10000000 (as of 4 May 2020) and n = 100000
transactions, TXCHAIN achieves a 24x improvement over a soft fork deployment of

TxChain 17

—— Naive BTCRelay Cost

4000000 BTCRelay + TxChain Action Gas USD
E 3000000 Base 21,000 0.018
é Merkle proof 38,038 0.032
S 2000000 Block inclusion 1,109 0.001
é BTC Relay total 90,075 0.076

TXCHAIN mean

1000000

overhead, first 20 txs 27,025 0227
0 TXCHAIN mean 42,560 0.036

1 10 20 30 40 50 overhead
Number of transactions

Table 2: Breakdown of gas costs for
Fig. 3: Comparison of gas costs for transaction in- BTC Relay verification, for a total of 51
clusion verification and the necessary block header verified Bitcoin transactions. USD costs
verification for BTC Relay without (naive) and with computed with 5 Gwei gas price and
TxCHAIN. The block used has a total of 51 transac- 168.01 USD/ETH
tions.

FlyClient (28x for a hard fork) and a 17x improvement over a soft fork deployment of
NIPoPoWs (20x for a hard fork). We provide a detailed breakdown of the storage and
bandwidth costs in Table 5 in Appendix C.

6.3 Using TXCHAIN for Cross-Chain State Verification

We use TXCHAIN in combination with BTC Relay [2] to measure the improvement
in cost when verifying the inclusion of Bitcoin transactions within an Ethereum smart
contract. The prover uses the approach described in 6.1 to create Bitcoin a transaction
depending on n previous transactions. We extend the functionality of BTC Relay to
integrate it with TXCHAIN and prove multiple transactions at once. In particular, we
add a new function verifyTxMulti which takes as input the raw Bitcoin transaction
and the necessary transaction inclusion proof.

We measure the gas cost when verifying transactions using the naive version of the
BTC Relay, as well as using BTC Relay in combination with TXCHAIN. We present
our results in Figure 3 and Table 2. As expected, for a single transaction, the overhead
of sending the raw transaction makes the cost of TXCHAIN higher than the cost of
the naive BTC Relay. However, for 2 or more transactions, the cost of the transaction
parsing is amortized, yielding a more cost-efficient verification. In particular, the base
transaction, the Merkle proof, and the block inclusion proof costs do not increase with
the number of transactions when using TXCHAIN.

We obtain the best improvement, 66.94% of the gas saved, when verifying 16 trans-
actions. The improvement does not increase linearly in the number of transactions due
to the gas pricing model of Ethereum [18]: the memory cost per byte is linear only up
to 724 bytes, after which it becomes polynomial. Therefore, our results tell us that after
16 transactions the polynomial pricing of memory becomes expensive enough to pre-
vent TXCHAIN from improving the costs further. Indeed, we can see in Table 2 that the
average overhead of TXCHAIN on the 50 transactions is more than 60% higher than the
average overhead on the first 20 transactions.

18 Alexei Zamyatin , Zeta Avarikioti , Daniel Perez, and William J. Knottenbelt

It is worth mentioning that this experiment uses TXCHAIN in combination with a
naive SPV BTC Relay, which stores all block headers. When using TXCHAIN in com-
bination with a sublinear client, the number of new block headers needed for the proof is
reduced, thus increasing the cost savings further, as shown in Section 5. Unfortunately,
neither FlyClient [12] nor NIPoPoWs [22] have a publicly available implementation
able to verify Bitcoin transactions on Ethereum. Therefore, we leave the implementa-
tion of sublinear clients with TXCHAIN in a cross-chain context to future work.

7 Conclusion and Future Work

In this paper, we introduced the Probabilistic Sampling Dilemma, stating that light
clients relying on probabilistic sampling suffer from inefficiency under high transac-
tion volumes. We then presented TXCHAIN, a novel mechanism to reduce the number
of transaction- and block inclusion proofs in blockchain light clients, leveraging con-
tingent transaction aggregation. We showed TXCHAIN is secure and offers significant
efficiency improvements when applied as an extension to NIPoPoWs, FlyClient, and
even naive SPV clients. We implement TXCHAIN (i) on Bitcoin without requiring any
consensus modifications, (ii) in Ethereum as a backward-compatible soft fork, and (iii)
in a cross-chain Bitcoin light client in an Ethereum smart contract, showing the practi-
cability of TXCHAIN even in resource-constrained environments.

Interesting avenues for future work include combining the compression properties
of succinct non-interactive zero-knowledge proofs of knowledge (NiZKP) [9,10,7] with
TXCHAIN. For example, concurrent work on encoding Bitcoin chain validity proofs in
SNARKS (zkRelay) [30], reducing the number of downloaded block headers by a con-
stant factor, can benefit from applying TXCHAIN similar to NIPoPoWs and FlyClient.
Finally, encoding the contingent transactions in NiZKP, allowing to parse and vali-
date the dependency on to-be-verified transactions in constant-sized proofs (e.g. using
SNARKS [7]), may further improve the effectiveness of TXCHAIN.

References

1. BTC Relay Serpent Implementation. https://github.com/ethereum/btcrelay. Accessed 2018-
04-17.

2. BTC Relay Solidity Implementation. https://github.com/crossclaim/btcrelay-sol. Accessed
2020-04-24.

3. Script. https://en.bitcoin.it/wiki/Script. Accessed: 2018-11-28.

4. Official Go implementation of the Ethereum protocol. https://github.com/ethereum/go-
ethereum, 2020. [Online; accessed 20-April-2020].

5. Solidity, the Contract-Oriented Programming Language. https://github.com/ethereum/
solidity, 2020. [Online; accessed 20-April-2020].

6. A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller, A. Poelstra,
J. Timén, and P. Wuille. Enabling blockchain innovations with pegged sidechains. https:
//blockstream.com/sidechains.pdf, 2014. Accessed: 2016-07-05.

7. E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. Snarks for c: Verifying
program executions succinctly and in zero knowledge. In Advances in Cryptology—CRYPTO
2013, pages 90-108. Springer, 2013.

https://github.com/ethereum/btcrelay
https://github.com/crossclaim/btcrelay-sol
https://en.bitcoin.it/wiki/Script
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/solidity
https://github.com/ethereum/solidity
https://blockstream.com/sidechains.pdf
https://blockstream.com/sidechains.pdf

10.

12.

13.

14.
15.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

TxChain 19

. J. Benaloh and M. De Mare. One-way accumulators: A decentralized alternative to digital

signatures. In Workshop on the Theory and Application of of Cryptographic Techniques,
pages 274-285. Springer, 1993.

. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision resistance to

succinct non-interactive arguments of knowledge, and back again. In Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference, pages 326-349. ACM, 2012.

M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its applications.
In Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and
Silvio Micali, pages 329-349. 2019.

. E. Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains. http:/atrium.

lib.uoguelph.ca/xmlui/bitstream/handle/10214/9769/Buchman_Ethan_201606_MAsc.pdf,
Jun 2016. Accessed: 2017-02-06.

B. Biinz, L. Kiffer, L. Luu, and M. Zamani. Flyclient: Super-light clients for cryptocurren-
cies. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020.

D. Catalano and D. Fiore. Vector commitments and their applications. In International
Workshop on Public Key Cryptography, pages 55-72. Springer, 2013.

Cosmos Developer Team. Peggy. https://github.com/cosmos/peggy. Accessed: 2018-05-23.
C. Decker and R. Wattenhofer. Information propagation in the bitcoin network. In Peer-
to-Peer Computing (P2P), 2013 IEEE Thirteenth International Conference on, pages 1-10.
IEEE, 2013.

. R. Fuzzati. A formal approach to fault tolerant distributed consensus. PhD thesis, Citeseer,

2008.

J. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis and ap-
plications. In Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 281-310. Springer, 2015.

Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger eip-150 re-
vision (759dccd - 2017-08-07). https://ethereum. github.io/yellowpaper/paper.pdf, 2017.
Accessed: 2018-01-03.

A. Gervais, G. O. Karame, K. Wiist, V. Glykantzis, H. Ritzdorf, and S. Capkun. On the
security and performance of proof of work blockchains. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 3—16. ACM, 2016.

A. Gervais, H. Ritzdorf, G. O. Karame, and S. Capkun. Tampering with the delivery of
blocks and transactions in bitcoin. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 692-705. ACM, 2015.

E. Heilman, A. Kendler, A. Zohar, and S. Goldberg. Eclipse attacks on bitcoin’s peer-to-peer
network. In 24th USENIX Security Symposium (USENIX Security 15), pages 129-144,2015.
A. Kiayias, A. Miller, and D. Zindros. Non-interactive proofs of proof-of-work. In Interna-
tional Conference on Financial Cryptography and Data Security. Springer, 2019.

A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably secure proof-of-
stake blockchain protocol. In Annual International Cryptology Conference, pages 357-388.
Springer, 2017.

A. Kiayias and D. Zindros. Proof-of-work sidechains. In International Conference on Fi-
nancial Cryptography and Data Security, pages 21-34. Springer, 2019.

Libbitcoin developers. P2WSH Transactions. https://github.com/libbitcoin/libbitcoin-
system/wiki/P2ZWPKH-Transactions. Accessed: 2020-04-24.

R. C. Merkle. A digital signature based on a conventional encryption function. In Conference
on the Theory and Application of Cryptographic Techniques, pages 369—-378. Springer, 1987.
S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf,
Dec 2008. Accessed: 2015-07-01.

D. Perez and B. Livshits. Broken metre: Attacking resource metering in evm. In Network
and Distributed System Security Symposium (NDSS), 2020.

http://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/9769/Buchman_Ethan_201606_MAsc.pdf
http://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/9769/Buchman_Ethan_201606_MAsc.pdf
https://github.com/cosmos/peggy
https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/libbitcoin/libbitcoin-system/wiki/P2WPKH-Transactions
https://github.com/libbitcoin/libbitcoin-system/wiki/P2WPKH-Transactions
https://bitcoin.org/bitcoin.pdf

20

29

30.

31.

32.

33.

Alexei Zamyatin , Zeta Avarikioti , Daniel Perez, and William J. Knottenbelt

. P. Todd. Merkle mountain range, 2016. https : // github. com / opentimestamps /
opentimestamps-server/blob/master/doc/merkle-mountain-range.md.

M. Westerkamp and J. Eberhardt. zkrelay: Facilitating sidechains using zksnark-based chain-
relays. In Workshop on the Security & Privacy on the Blockchain. IEEE, 2020.

A. Zamyatin, M. Al-Bassam, D. Zindros, E. Kokoris-Kogias, P. Moreno-Sanchez, A. Ki-
ayias, and W. J. Knottenbelt. Sok: Communication across distributed ledgers. Technical
report, IACR Cryptology ePrint Archive, 2019: 1128, 2019.

A. Zamyatin, D. Harz, J. Lind, P. Panayiotou, A. Gervais, and W. Knottenbelt. Xclaim:
Trustless, interoperable, cryptocurrency-backed assets. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 193-210. IEEE, 2019.

A. Zamyatin, N. Stifter, A. Judmayer, P. Schindler, E. Weippl, and W. J. Knottebelt. (Short
Paper) A Wild Velvet Fork Appears! Inclusive Blockchain Protocol Changes in Practice.
In 5th Workshop on Bitcoin and Blockchain Research, Financial Cryptography and Data
Security 18 (FC). Springer, 2018.

A Detailed TXCHAIN Efficiency Analysis

We provide a more detailed breakdown of the improvements offered by applying TX-
CHAIN to NIPoPoWs and FlyClient in Table 3.

Table 3: Expected number of additionally required block inclusion proofs (and hence
block headers) for different » in FlyClient and NIPoPoWs, before (IE(|5])))) and after
(E(|B])") applying TXCHAIN. Results provided for a blockchain size h = 100000 and

c

= 1000.
| n | FlyClient | NIPoPoWs |

|;| Vanilla | TXCHAIN |Impr.| Vanilla | TXCHAIN |Impr.
‘ ‘]E(\B\) % ‘]E(lBD’ % ‘factor‘E(‘Bl) % ‘E(|B|), % ‘factor‘

1 1 1000/ 1 100.0, 1.0 1 100.0f 1 100.0, 1.0
10 10 100.0| 1 10.0| 10.0 10 100.0| 1 10.0| 10.0
100 99 99.0 2 20 1495 | 99 99.0 2 2.0 | 495
1000 | 989 98.9 2 0.2 [494.5| 986 98.6 2 0.2 [493.0
10000 | 9461 94.61] 11 0.11(860.09| 9432 94.32| 11 0.11 |857.45

50000 | 39120 78.24] 42 0.08 |931.43|/39000 78.0| 42 0.08 [928.57
100000| 62848 62.85| 65 0.07 |966.89| 62655 62.66| 65 0.07 [963.92
200000| 85968 42.98| 88 0.04 |976.91| 85704 42.85| 88 0.04 |973.91

https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md

TxChain 21

B Estimates for a TXCHAIN Soft-Fork Deployment in Bitcoin

Table 4: Estimates of storage and bandwidth costs of naive SPV, Flyclient and
NIPoPoWs, without (‘“Vanilla”) and with a soft fork deployment of TxChain, for dif-
ferent numbers of to-be-verified transactions n. FlyClient and NIPoPoW numbers pro-
vided for soft fork and hard fork deployment. Numbers provided for a blockchain size
h = 630000 (as of 5 May 2020) and ¢ = 1000.

‘ ‘ naive SPV ‘ FlyClient ‘ Superblock NIPoPoWs ‘
[" | Soft Fork | Hard Fork | Soft Fork | Hard Fork |
Vanilla TXCHAIN Impr. |Vanilla TXCHAIN Impr. |Vanilla TXCHAIN Impr. |Vanilla TXCHAIN Impr. |Vanilla TXCHAIN Impr.
inmB inmB factor|inmB inmB factor [inmB inmB factor [inmB inmB factor|[inmB inmB factor
1 50.4 50.4 1.0 | 051 0.51 1.0 0.1 0.1 1.0 | 0.77 0.77 1.0 | 0.15 0.15 1.0
10 | 5041 50.4 1.0 | 0.52 0.51 1.02 | 0.1 0.1 1.04 | 0.78 0.77 1.01 | 0.15 0.15 1.03
100 | 5049 504 1.0 | 0.62 0.51 1.21 | 0.15 0.1 1.5 | 0.88 0.77 1.14| 02 0.15 1.33

1000 |51.32 50.4 1.02] 1.61 0.51 3.16 | 0.59 0.1 6.04 | 1.88 0.77 243 | 0.64 0.15 4.34
10000 | 59.58 5041 1.18 | 11.51 0.53 21.87 | 5.05 0.11 47.03 | 11.77 0.79 1494| 5.1 0.16 324
50000 | 96.3 50.51 1.91 | 5442 0.65 84.18 | 24.67 0.2 120.84| 54.67 091 60.21| 24.72 025 97.28
100000| 1422 50.77 2.8 [105.69 0.92 114.92| 48.84 045 108.49/105.92 1.18 89.7 | 48.89 0.5 97.78

C TxCHAIN Ethereum Deployment Evaluation

Table 5: Estimates of storage and bandwidth costs of naive SPV, Flyclient and
NIPoPoWs, without (“Vanilla”) and with a soft fork deployment of TxChain, for dif-
ferent numbers of to-be-verified transactions n. FlyClient and NIPoPoW numbers pro-
vided for soft fork and hard fork deployment. Numbers provided for a blockchain size
h = 10000000 (as of 4 May 2020) and ¢ = 1047.

FlyClient ‘ Superblock NIPoPoWs ‘
Soft Fork ‘ Hard Fork ‘ Soft Fork ‘ Hard Fork

‘ naive SPV ‘

| ™

Vanilla. TXCHAIN Impr. |Vanilla TXCHAIN Impr. |Vanilla TXCHAIN Impr. |Vanilla TXCHAIN Impr. | Vanilla TXCHAIN Impr.
inmB inmB factor|inmB inmB factor|inmB inmB factor|inmB inmB factor|inmB inmB factor

1 5,080.0 50800 1.0 | 579 579 1.0 | 3.04 3.04 1.0 | 8.71 8.71 1.0 | 4.57 4.57 1.0
10 |5,080.01 5,080.0 1.0 | 581 579 1.0 | 3.05 3.04 1.0 | 8.73 8.71 1.0 | 458 4.57 1.0
100 15,080.09 5,080.0 1.0 | 5.94 5.79 1.02 | 3.13 3.04 1.03 | 8.85 8.71 1.02 | 4.66 4.57 1.02
1000 [5,080.88 5,080.0 1.0 | 7.23 579 1.25 | 3.96 3.04 1.3 | 10.15 8.71 1.16 | 5.49 4.57 1.2
10000 (5,088.83 5,080.01 1.0 | 20.21 5.81 3.48 | 12.27 3.05 4.02|23.13 8.73 2.65| 13.8 4.58 3.01
50000 |5,124.15 5,080.08 1.01 | 77.78 592 13.13| 49.15 3.14 15.63| 80.69 8.84 9.12|50.68 4.68 10.84
100000| 5,168.3 5,080.29 1.02 |149.51 6.17 24.22]95.14 337 2822|1524 9.09 16.76] 96.66 49 19.72

	TxChain: Efficient Cryptocurrency Light Clients via Contingent Transaction Aggregation

