
Brief Announcement: Byzantine Agreement with Unknown
Participants and Failures

Pankaj Khanchandani

ETH Zurich

kpankaj@ethz.ch

Roger Wattenhofer

ETH Zurich

wattenhofer@ethz.ch

ABSTRACT
A set of participants that want to agree on a common opinion de-

spite the presence of malicious or Byzantine participants need to

solve an instance of a Byzantine agreement problem. This classic

problem has been well studied but most of the existing solutions

assume that the participants are aware of 𝑛 — the total number

of participants in the system — and 𝑓 — the upper bound on the

number of Byzantine participants. In this paper, we examine a syn-

chronous system with Byzantine faults where the participants are

neither aware of 𝑛 nor 𝑓 . The participants have unique identifiers,

which are not necessarily consecutive. For such a system, we give

algorithms for rotor-coordinator and consensus, both with the re-

siliency of 𝑛 > 3𝑓 , which is also the optimal resiliency for solving

consensus when the participants know 𝑛 and 𝑓 . Thus, resiliency is

unaffected even if the Byzantine participants can lie about 𝑛 and 𝑓 .

ACM Reference Format:
Pankaj Khanchandani and Roger Wattenhofer. 2020. Brief Announcement:

Byzantine Agreement with Unknown Participants and Failures. In Sympo-
sium on Principles of Distributed Computing (PODC ’20), August 3–7, 2020,
Virtual Event, Italy. ACM, New York, NY, USA, 3 pages. https://doi.org/10.

1145/3382734.3405740

1 INTRODUCTION
Many modern networks have to function without knowing the size

of the system in advance. Consider, for example, a database cluster

that requires frequent node scaling because of changing load, or

a wireless sensor network that experiences a changing number of

faulty or disconnected nodes over time. Nakamoto’s blockchain [10]

is a prominent example where the network is permissionless, i.e.,

the network is open to any number of nodes. So, the number of par-

ticipants and consequently, the number of failures also change over

time. Agreement is a fundamental distributed computing primitive

for fault-tolerant networks, however, much of the existing literature

assumes that the size 𝑛 of the network and/or the upper bound 𝑓

on the number of failures is known to every node [2, 5, 9, 12].

In this paper, we consider fault-prone systems where the nodes

do not know the number of nodes 𝑛 and the maximum number

of Byzantine nodes 𝑓 and give algorithms for rotor-coordinator —
selects a unique leader in every round — and consensus — every

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODC ’20, August 3–7, 2020, Virtual Event, Italy
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7582-5/20/08. . . $15.00

https://doi.org/10.1145/3382734.3405740

correct node has a binary input and the correct nodes output a

common binary value that is an input of some correct node [8].

Since a correct node does not know 𝑛 and 𝑓 and a Byzantine node

may not announce itself to everyone, there might be more Byzan-

tine nodes in the system than what a correct node thinks, and so a

larger proportion of good nodes might be required. We show, how-

ever, that these problems can be solved without affecting resiliency.

Specifically, we give algorithms for solving the above problems

in synchronous systems with the resiliency of 𝑛 > 3𝑓 , which is

optimal for consensus.

2 RELATEDWORK
If the nodes do not know 𝑛 and 𝑓 and the network is asynchronous,

i.e., the message delays are unbounded, then agreement with proba-

bilistic termination is impossible since the nodes do not know how

many messages to receive before deciding. There is a line of work

that deals with this problem using oracles or failure detectors. They

either assume 𝑓 [1, 4, 7] or the failure detector eventually removes

the Byzantine nodes [11].

The Byzantine agreement problems have been studied since the

work by Lamport et al. [8]. The king algorithm [3] solves consensus

in𝑂 (𝑓 +1) roundswith polynomial message complexity and optimal

resiliency of 𝑛 > 3𝑓 . The round complexity can be improved to

𝑓 + 1 [6]. A rotor-coordinator, as also used in [3], rotates through

the opinions of at most 𝑓 + 1 coordinator nodes before selecting a

correct one. The rotor-coordinator can be easily implemented by

rotating through 𝑓 + 1 nodes when 𝑓 is known and the identifiers

are consecutive, unlike in our model, where it is non-trivial.

3 MODEL
The system consists of 𝑛 nodes, out of which at most 𝑓 are faulty.

The faulty nodes can behave in anyway whatsoever, also known as

Byzantine behavior. We call the non-Byzantine nodes correct. The
nodes have unique identifiers, which are not necessarily consecu-

tive. Each node only knows its identifier at initialization apart from

a possible input and does not know any global information like

𝑛 or 𝑓 . The system is synchronous and the computation proceeds

in rounds. In each round, every node receives the messages that

were sent to it in the previous round, does some local computations,

and then sends messages to the other nodes to be consumed in the

following round. A correct node can broadcast a message to all the

nodes or send a message to a specific node that sent a message to

the node before. The identifier of a node is included in the mes-

sage it sends so the receiver of the message can decipher its sender.

Thus, a Byzantine node cannot forge its identifier when commu-

nicating directly. However, it can help other Byzantine nodes to

do so indirectly by claiming to have received messages from other,

possibly non-existent nodes. Byzantine nodes can send duplicate

https://doi.org/10.1145/3382734.3405740
https://doi.org/10.1145/3382734.3405740
https://doi.org/10.1145/3382734.3405740

PODC ’20, August 3–7, 2020, Virtual Event, Italy Pankaj Khanchandani and Roger Wattenhofer

messages across rounds but duplicate messages from the same node

in a round are simply discarded.

Note that the only way for a correct node to know about the

existence of another node is to receive a message from that node.

A Byzantine node may get itself known to only a subset of nodes,

however, it can behave as if it already knows all the nodes without

having receivedmessages from them.We refer to the abovemodel as

the id-only model. We give the rotor-coordinator and the consensus

algorithms for the id-only model in Sections 4 and 5, both with the

resiliency of 𝑛 > 3𝑓 .

4 ROTOR-COORDINATOR
A rotor-coordinator selects the opinion of a unique leader or a co-

ordinator in every round. As there are at most 𝑓 faulty nodes, a

correct node is selected as a leader after at most 𝑓 + 1 rounds. Algo-
rithm 1 gives the pseudocode. The idea is that every correct node

Algorithm 1 Rotor-coordinator algorithm for a node 𝑣 . The sets

𝐶𝑣 and 𝑆𝑣 are used by 𝑣 to store process identifiers. The set 𝐶𝑣 is

ordered by the process identifiers in increasing order. We use |𝐶𝑣 |
for the size of 𝐶𝑣 and 𝐶𝑣 [𝑖] for its 𝑖th member, where 𝑖 ≥ 0. The

set 𝐵𝑣 holds messages before they are broadcast by 𝑣 at the end

of a round. Note that each iteration of the loop is a single round.

Coordinator’s opinion is accepted in Line 17.

1: 𝐶𝑣 ← 𝜙 ⊲ Set of candidate coordinators
2: 𝑆𝑣 ← 𝜙 ⊲ Set of selected coordinators

3: Broadcast init ⊲ Round 1

4: Broadcast echo(𝑝) if received init from 𝑝 ⊲ Round 2

5: for 𝑟 ← 0→∞ do ⊲ Rounds 3 up to termination

6: 𝐵𝑣 ← 𝜙

7: Let𝑛𝑣 be the number of nodes that sent at least one message

to 𝑣 until the round 𝑟 .

8: if Received at least 𝑛𝑣/3 echo(𝑝) and 𝑝 ∉ 𝐶𝑣 then
9: 𝐵𝑣 ← 𝐵𝑣 ∪ {echo(𝑝)}
10: end if
11: if Received at least 2𝑛𝑣/3 echo(𝑝) and 𝑝 ∉ 𝐶𝑣 then
12: 𝐶𝑣 ← 𝐶𝑣 ∪ {𝑝}
13: end if
14: 𝑝 ← 𝐶𝑣 [𝑟 mod |𝐶𝑣 |] ⊲ Select the next coordinator as 𝑝 .

15: Let 𝑝 ′ be the coordinator selected in the previous round.

16: if Received opinion(𝑥) from 𝑝 ′ then
17: Accept 𝑥 as the coordinator’s opinion

18: end if
19: if 𝑝 ∈ 𝑆𝑣 then
20: break
21: end if
22: 𝑆𝑣 ← 𝑆𝑣 ∪ {𝑝}
23: if 𝑣 = 𝑝 then ⊲ Check if 𝑣 itself is the coordinator.

24: Let 𝑜𝑣 be 𝑣 ’s current opinion.

25: 𝐵𝑣 ← 𝐵𝑣 ∪ {opinion(𝑜𝑣)} ⊲ To broadcast 𝑣 ’s opinion.

26: end if
27: Broadcast 𝐵𝑣 if its non-empty

28: end for

broadcasts its willingness to become a coordinator initially, when

the faulty nodes may or may not participate (Line 3). Every correct

node 𝑣 keeps a set of candidate coordinators 𝐶𝑣 , which it updates

in a reliable broadcast fashion (Lines 9 and 12). In each round, a

correct node 𝑣 selects the coordinator with the next larger identifier,

say 𝑝 , from the set𝐶𝑣 and adds it to the set of selected coordinators

𝑆𝑣 (Lines 14 and 22). The node 𝑣 accepts the opinion from 𝑝 in the

next round as the coordinator’s opinion (Line 17) and broadcasts

its own opinion as the coordinator’s opinion in case 𝑣 was selected

as the coordinator from the set𝐶𝑣 (Line 25). The node 𝑣 terminates

when it reselects the same node as the coordinator (Line 20). The

hope is that by the time a correct node terminates, it has already

witnessed a round in which every correct node accepts the opinion

of a common and a correct coordinator. We start by showing that

if a correct node adds 𝑝 to its set of candidate coordinator 𝐶𝑣 , then

another correct node𝑢 adds 𝑝 to its set𝐶𝑢 as well by the next round.

Lemma 1. If 𝑛 > 3𝑓 and a correct node 𝑣 receives at least 𝑛𝑣/3
copies of a message𝑚 from distinct nodes in a round 𝑟 , then at least
one of those messages was sent by a correct node.

Proof. Let 𝑓 ′′𝑣 be the number of faulty nodes that sent𝑚 to 𝑣

in the round 𝑟 . Since every correct node transmits a message in the

first round (Line 3), we have 𝑛𝑣 ≥ 𝑔, where 𝑔 is the number of good

nodes. So, we can write 𝑛𝑣 = 𝑔+ 𝑓 ′𝑣 , where 𝑓 ′𝑣 is the number of faulty

nodes that sent at least one message to 𝑣 until the round 𝑟 . Using

𝑓 ′′𝑣 ≤ 𝑓 ′𝑣 and 𝑛𝑣 = 𝑔 + 𝑓 ′𝑣 , the number of correct nodes𝐺 that sent a

message to 𝑣 in the round 𝑟 are at least 𝑛𝑣/3− 𝑓 ′′𝑣 ≥ (𝑔− 2𝑓 ′𝑣)/3. As
𝑔 > 2𝑓 , we have 𝐺 > 2(𝑓 − 𝑓 ′𝑣)/3 or at least one as 𝑓 ≥ 𝑓 ′𝑣 . So, at
least one correct node sent the message𝑚 to 𝑣 in the round 𝑟 . □

Lemma 2. If 𝑛 > 3𝑓 and a correct node 𝑣 receives at least 2𝑛𝑣/3
copies of a message𝑚 in a round 𝑟 , then every correct node 𝑢 receives
at least 𝑛𝑢/3 copies of𝑚 in the round 𝑟 .

Proof. As 𝑣 receives at least 2𝑛𝑣/3messages, at least 2𝑛𝑣/3− 𝑓 ′′𝑣
of them were sent by the correct nodes, where 𝑓 ′′𝑣 is the number

of messages received by 𝑣 from the faulty nodes in the round 𝑟 .

Let 𝑓 ′𝑣 be the number of faulty nodes from which 𝑣 received at

least one message until the round 𝑟 . Then, we have 2𝑛𝑣/3 − 𝑓 ′′𝑣 =

2(𝑔+ 𝑓 ′𝑣)/3− 𝑓 ′′𝑣 , where 𝑔 is the number of good nodes. As 𝑓 ′′𝑣 ≤ 𝑓 ′𝑣
and 𝑓 ′𝑣 ≤ 𝑓 by definition, we have 2(𝑔 + 𝑓 ′𝑣)/3 − 𝑓 ′′𝑣 ≥ (2𝑔 − 𝑓)/3.

Using 𝑛 > 3𝑓 or 𝑔 > 2𝑓 , we have (2𝑔 − 𝑓)/3 = (𝑔 + (𝑔 − 𝑓))/3 >

(𝑔 + 𝑓)/3. Thus, at least (𝑔 + 𝑓)/3 correct nodes broadcast the

message𝑚 and every correct node receives at least (𝑔 + 𝑓)/3 copies
of 𝑚 in the round 𝑟 . For a correct node 𝑢, we have (𝑔 + 𝑓)/3 ≥
(𝑔 + 𝑓𝑢)/3 = 𝑛𝑢/3, where 𝑓𝑢 is the number of faulty nodes from

which 𝑢 has received at least one message until the round 𝑟 . □

Lemma 3. If a correct node 𝑣 adds 𝑝 to the set 𝐶𝑣 in a round 𝑟 , then
any correct node 𝑢 ≠ 𝑣 adds 𝑝 to the set 𝐶𝑢 by the round 𝑟 + 1.

Proof. Let 𝑟 be the first round in which a correct node 𝑣 adds

𝑝 to the set 𝐶𝑣 . Thus, the node 𝑣 received at least 2𝑛𝑣/3 echo(p)
messages. Using Lemma 2, each correct node𝑢 receives at least𝑛𝑢/3
echo(p) messages in the round 𝑟 . So, every correct node broadcasts

echo(p) message at the end of round 𝑟 (Line 27) and each one of

them receives 𝑔 echo(p) messages in the round 𝑟 + 1. As 𝑔 > 2𝑓 ,

we have 3𝑔 > 2(𝑓 + 𝑔) = 2𝑛. Thus, we have 𝑔 > 2𝑛/3 ≥ 2𝑛𝑢/3 for
every correct node 𝑢. Therefore, every correct node 𝑢 adds 𝑝 to the

set 𝐶𝑢 in the round 𝑟 + 1. □

Brief Announcement: Byzantine Agreement with Unknown Participants and Failures PODC ’20, August 3–7, 2020, Virtual Event, Italy

We call a round a good round if the same node 𝑝 was selected as

a coordinator by every correct node and the node 𝑝 is correct. In

the following, we show that every correct node witnesses a good

round before it terminates, if 𝑛 > 3𝑓 . We will call a round as a silent
round if the set𝐶𝑣 remains unchanged for every correct node 𝑣 , i.e,

no correct node executes Line 12 in that round. A non-silent round
is a round that is not silent. We observe that in a silent round, the

value of 𝐶𝑣 is identical for every correct node 𝑣 . If they were not,

then there is a silent round between a correct node 𝑣 adding an

identifier 𝑝 to its set𝐶𝑣 and another correct node 𝑢 ≠ 𝑣 adding 𝑝 to

its set 𝐶𝑢 . This contradicts 𝐿𝑒𝑚𝑚𝑎 3. With 𝑛 > 3𝑓 , a good round is

ensured as follows.

Lemma 4. If 𝑛 > 3𝑓 , then every correct node witnesses at least one
good round until it terminates.

Proof. Assume for contradiction that a node 𝑣 terminates in

the round with 𝑟 = 𝑟𝑡 without witnessing a good round. Consider

a round with 𝑟 = 𝑟𝑐 ≤ 𝑟𝑡 . Let 𝐹𝑣 ⊆ 𝐶𝑣 and 𝐺𝑣 ⊆ 𝐶𝑣 , respectively,

be the set of faulty node identifiers and the set of good or correct

node identifiers in 𝐶𝑣 when the coordinator node is selected in the

round 𝑟𝑐 (Line 14). Thus, we have |𝐶𝑣 | = |𝐹𝑣 | + |𝐺𝑣 |.
A correct node 𝑝 sends init to all the nodes (Line 3). So, every

correct node broadcasts echo(p) (Line 4) and consequently, every

correct node 𝑣 receives 𝑔 echo(p) messages. As 𝑛 > 3𝑓 , we have

𝑔 > 2𝑓 or 3𝑔 > 2(𝑓 + 𝑔) = 2𝑛. Thus, we have 𝑔 > 2𝑛/3 ≥ 2𝑛𝑣/3. So,
all the correct identifiers are added to𝐶𝑣 before the first coordinator

is selected.

So, we have |𝐺𝑣 | = 𝑛 − 𝑓 and |𝐶𝑣 | = |𝐹𝑣 | + 𝑛 − 𝑓 . Using 𝑛 > 3𝑓 ,

we get |𝐶𝑣 | > |𝐹𝑣 | + 2𝑓 . Say that there is no correct node 𝑢 that

added a faulty identifier to its set 𝐶𝑢 in the round with 𝑟 = 0. Then,

every correct node selects a common coordinator from the set 𝐺𝑣

and 𝑣 witnesses a good round before termination, a contradiction.

Thus, there is a correct node 𝑢 that adds a faulty identifier to its set

𝐶𝑢 in the round with 𝑟 = 0. For every non-silent round afterwards,

at least one faulty node identifier is added to the set 𝐶𝑢 of some

correct node𝑢. Using Lemma 3, if a faulty node identifier 𝑝 is added

to 𝐶𝑢 , every correct node 𝑤 ≠ 𝑢 adds 𝑝 to 𝐶𝑤 by the next round.

Thus, we have 2𝑓 ≥ 𝑛ns , where 𝑛ns is the number of non-silent

rounds prior to the round 𝑟𝑐 and starting from the round 𝑟 = 0.

Therefore, we have |𝐶𝑣 | > |𝐹𝑣 | + 𝑛ns .
Moreover, until the round 𝑟𝑐 , node 𝑣 has neither witnessed a good

round, nor it has selected the same node again as a coordinator by

our assumption. So, in all the silent rounds prior to the round 𝑟𝑐 , a

unique faulty node was selected as a coordinator by 𝑣 . Therefore,

if ns is the number of silent rounds prior to the round 𝑟𝑐 , then

|𝐹𝑣 | ≥ 𝑛𝑠 since 𝑣 selects a node as a coordinator only after adding

it to the set 𝐶𝑣 . So, we have |𝐶𝑣 | > 𝑛𝑠 + 𝑛ns .
Since 𝑟 starts from 0, we have 𝑛𝑠 +𝑛ns = 𝑟𝑐 . So, we have |𝐶𝑣 | > 𝑟𝑐

and 𝑟𝑐 mod |𝐶𝑣 | = 𝑟𝑐 . Since the above inequality is true for every

round 𝑟𝑐 ≤ 𝑟𝑡 , a node that was already selected as a coordinator,

is in the set {𝐶𝑣 [𝑟 mod |𝐶𝑣 |] : 𝑟 < 𝑟𝑐 }. Therefore, for selecting the

same identifier as a coordinator again, it must be that 𝑟 > |𝐶𝑣 | > 𝑟𝑐 ,

a contradiction. □

Theorem 1. If 𝑛 > 3𝑓 , then every correct node terminates in 𝑂 (𝑛)
rounds and there is a round in which every correct node accepts the
opinion of a common and a correct coordinator node.

Proof. As a node terminates as soon as it selects the same node

as a coordinator and there are 𝑛 nodes in total, the node terminates

in at most 𝑛 rounds. Using Lemma 4, the node also witnesses a good

round before termination and accepts the corresponding opinion

in the next round (Line 17). □

5 CONSENSUS
Formally, each node has a binary input and must output a binary

value (termination) such that all the correct nodes output the same

value (agreement) and that value is an input of some correct node

(validity). It is possible to use the rotor-coordinator to design a con-

sensus algorithm in the id-only model based on the king algorithm

[3]. We use the rotor-coordinator’s opinion as the king’s opinion

and the thresholds of 𝑛 − 𝑓 and 𝑛 − 2𝑓 are replaced respectively by

2𝑛𝑣/3 and 𝑛𝑣/3. This results in an𝑂 (𝑛) round consensus algorithm
in the id-only model. In the full version, we give the full algorithm

and analysis.

6 DISCUSSION
In this paper, we considered distributed systems where the partic-

ipants are neither aware of the size 𝑛 nor the safe estimate 𝑓 of

Byzantine failures. We show that selecting a correct leader, and

consequently consensus, can be solved in this model with the re-

siliency of 𝑛 > 3𝑓 , which is optimal for consensus. The affect on

resiliency of other agreement problems such as early terminating

consensus is also explored in the full version. It is unclear if the

resiliency of the rotor-coordinator is optimal, a question left for

future work.

Acknowledgements: We would like to thank Christoph Lenzen

for the discussions and giving feedback on an earlier draft.

REFERENCES
[1] Eduardo A. P. Alchieri, Alysson Neves Bessani, Joni da Silva Fraga, and Fabíola

Greve. Byzantine Consensus with Unknown Participants. In International Con-
ference On Principles Of Distributed Systems (OPODIS), Luxor, Egypt, December

2008.

[2] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simula-
tions, and Advanced Topics, chapter 5. John Wiley & Sons, 2004.

[3] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Towards Optimal Distributed

Consensus. In 30th Annual Symposium on Foundations of Computer Science (FOCS),
Research Triangle Park, NC, October 1989.

[4] David Cavin, Yoav Sasson, and André Schiper. Consensus with Unknown Partic-

ipants or Fundamental Self-Organization. In International Conference on Ad-Hoc
Networks and Wireless (ADHOC-NOW), Vancouver, BC, Canada, July 2004.

[5] Bernadette Charron-Bost, Matthias Függer, and Thomas Nowak. Approximate

Consensus in Highly Dynamic Networks: The Role of Averaging Algorithms.

In 42nd International Colloquium on Automata, Languages, and Programming
(ICALP), Kyoto, Japan, July 2015.

[6] Juan A. Garay and Yoram Moses. Fully Polynomial Byzantine Agreement for

𝑛 > 3𝑡 Processors in 𝑡 + 1 Rounds. SIAM Journal on Computing (SICOMP), 1998.
[7] Fabiola Greve and Sebastien Tixeuil. Knowledge Connectivity vs. Synchrony

Requirements for Fault-Tolerant Agreement in Unknown Networks. In 37th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), Edinburgh, UK, June 2007.

[8] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals

Problem. ACM Transactions on Programming Languages and Systems (TOPLAS),
1982.

[9] Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and Vijay K. Garg. Multidi-

mensional Agreement in Byzantine Systems. Distributed Computing, 2015.
[10] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008.

[11] Erfan Taheri and Mohammad Izadi. Byzantine Consensus for Unknown Dynamic

Networks. The Journal of Supercomputing, 2015.
[12] Lewis Tseng andNitin H. Vaidya. Fault-Tolerant Consensus in Directed Graphs. In

Symposium on Principles of Distributed Computing (PODC), Donostia-San Sebastián,
Spain, July 2015.

	Abstract
	1 Introduction
	2 Related Work
	3 Model
	4 Rotor-coordinator
	5 Consensus
	6 Discussion
	References

