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Abstract. The paper provides an introduction into the theoretical ex-
pressiveness of graph neural networks. We discuss the basic properties
and main applications of standard GNN models, and we show how these
constructions are both upper and lower bounded in expressive power by
the Weisfeiler-Lehman test. We then outline a wide variety of approaches
to increase the expressiveness of GNNs above this theoretical limit, and
discuss the strengths and weaknesses of these methods.
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High-res 3D simulations

up to 19k particles
2 different simulators (MPM & SPH)



Distributed Computing (Message Passing)

Nodes communicate with neighbors bgnding messages
In eachsynchronous roundevery node sends a message to its neighbors.




Graph Neural Networks

Nodes communicate with neighbors bgnding messages
In eachsynchronous roundevery node sends a message to its neighbors.




DC Track

NnDesi gnedo
Usually node IDs
Individual messages

Solve graph problems
like coloring or routing

ML Track

ALearnedo
Usually node features
Aggregated messages

Mostly classification
(node or graph)
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Message Passing GNNs



Message Passing GNNs

a, = AGGREGATE ({{ h, | u™~ N(v) }})



Message Passing GNNs

a, = AGGREGATE ({{ h, | u™~ N(v) }})

h, #Y = UpPDATE ( h,, a,)



Message Passing GNNs



Message Passing GNNs
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Limitations of GNNs?



WeisfeilerLehman Graph Isomorphism Tes



