Graph Neural Networks

Roger Wattenhofer

18th

International Conference on Distributed Computing and Intelligent Technology

Kalinga Institute of Industrial Technology Deemed to be University, Bhubaneswar, Odisha, India

DC Track

Prof. Hagit Attiya

Technion, Israel

Prof. Philippas Tsigas

Chalmers University, Sweden

Prof. Roger Wattenhofer

ETH Zurich, Switzerland

ML Track

Prof. Matthew E. Taylor Univ. of Alberta, Canada

Prof. Michael Cashmore Univ. of Strathclyde, Glasgow

Prof. U. Deva Priyakumar IIIT Hyderabad, India

Graph Neural Networks

Roger Wattenhofer

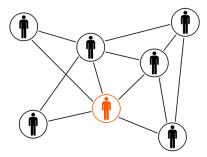
An Introduction to Graph Neural Networks from a Distributed Computing Perspective

Pál András Papp and Roger Wattenhofer

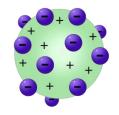
ETH Zürich, Switzerland {apapp,wattenhofer}@ethz.ch

Abstract. The paper provides an introduction into the theoretical expressiveness of graph neural networks. We discuss the basic properties and main applications of standard GNN models, and we show how these constructions are both upper and lower bounded in expressive power by the Weisfeiler-Lehman test. We then outline a wide variety of approaches to increase the expressiveness of GNNs above this theoretical limit, and discuss the strengths and weaknesses of these methods.

social networks

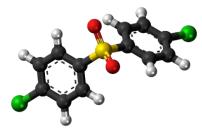


chemo-informatics



question answering systems

molecule recognition



recommender systems

knowledge graphs

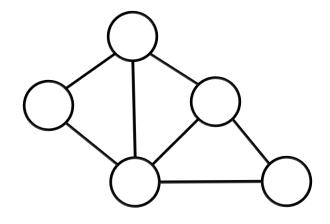
High-res 3D simulations

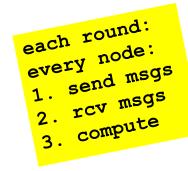
up to 19k particles 2 different simulators (MPM & SPH)

Distributed Computing (Message Passing)

Nodes communicate with neighbors by sending messages.

In each synchronous round, every node sends a message to its neighbors.

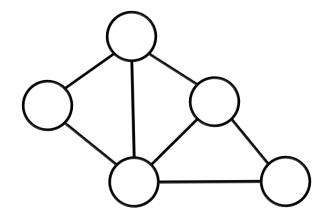


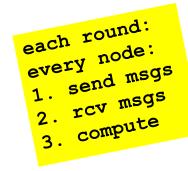


Graph Neural Networks

Nodes communicate with neighbors by sending messages.

In each synchronous round, every node sends a message to its neighbors.





DC Track

"Designed" algorithm

Usually node IDs

Individual messages

Solve graph problems like coloring or routing

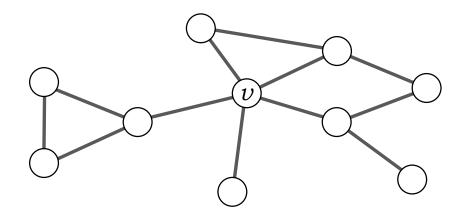
ML Track

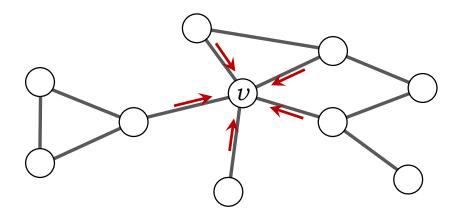
"Learned" algorithm

Usually node features

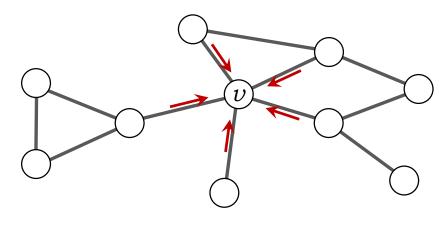
Aggregated messages

Mostly classification (node or graph)

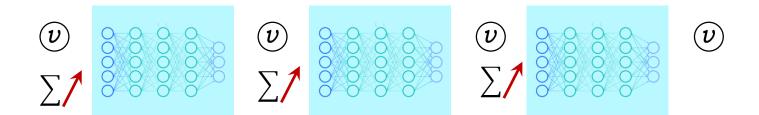




 $a_v = \text{Aggregate} (\{ \{ h_u \mid u \in N(v) \} \})$



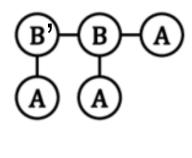
 $a_{v} = \text{Aggregate} (\{ \{ h_{u} \mid u \in N(v) \} \})$ $h_{v}^{(t+1)} = \text{Update} (h_{v}, a_{v})$



Limitations of GNNs?

Weisfeiler-Lehman Graph Isomorphism Test

Original labels i = 0



 $\Sigma = \{A, B\}$

Relabeled i = 1

$$\begin{array}{c}
B, AB \\
\Rightarrow D \\
\hline
D \\
\hline
C \\
\hline
\hline
C \\$$

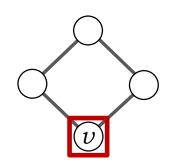
 $\begin{array}{ccc}
A,B & A,B \\
\mapsto C & \mapsto C
\end{array}$

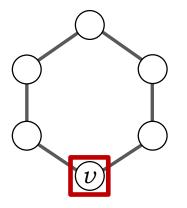
 $\Sigma = \{A, B, \boldsymbol{C}, \boldsymbol{D}, \boldsymbol{E}\}$

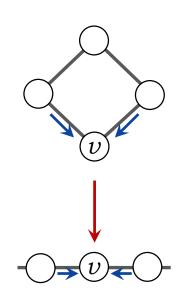
Relabeled i = 2

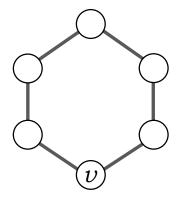
 $\begin{array}{cccc} D, CE & E, CCD & C, E \\ H & H & H & H \\ \hline H & H \\ \hline$

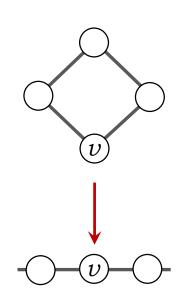
 $\Sigma = \{A, B, C, D, E, \mathbf{F}, \mathbf{G}, \mathbf{H}, \mathbf{I}\}$

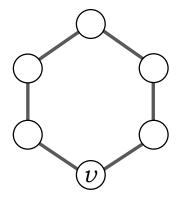


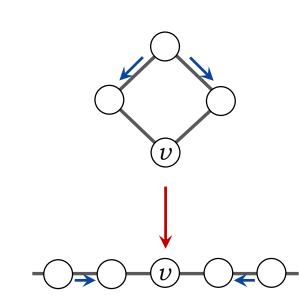


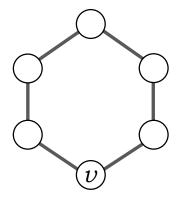


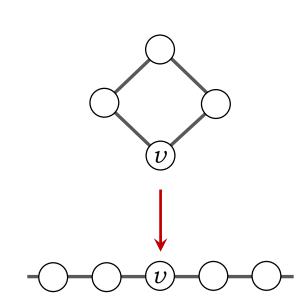


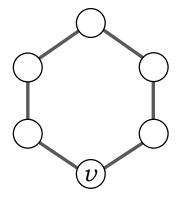


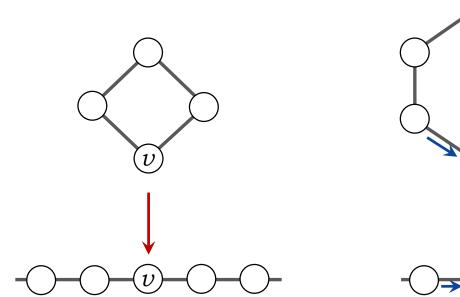


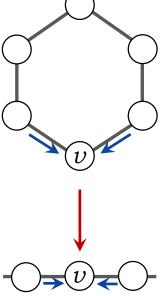


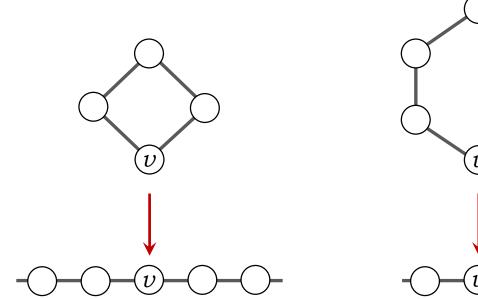


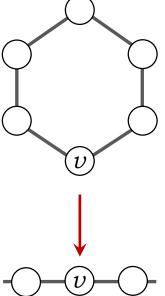


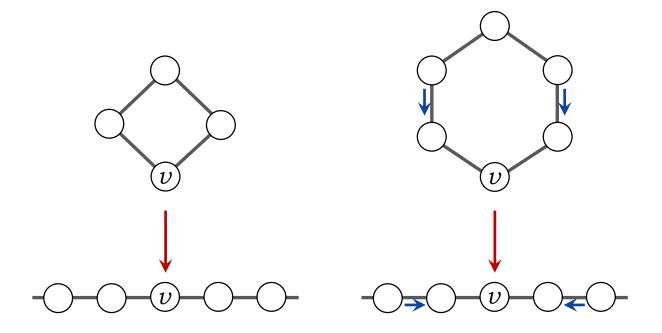


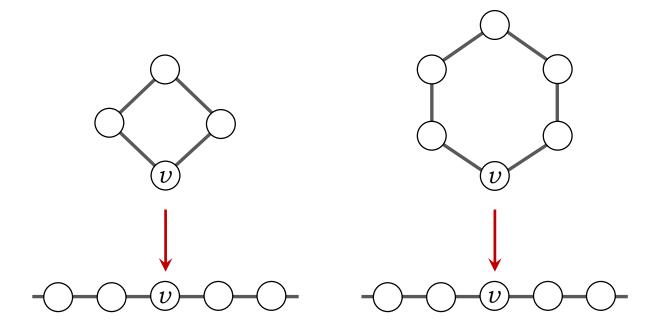


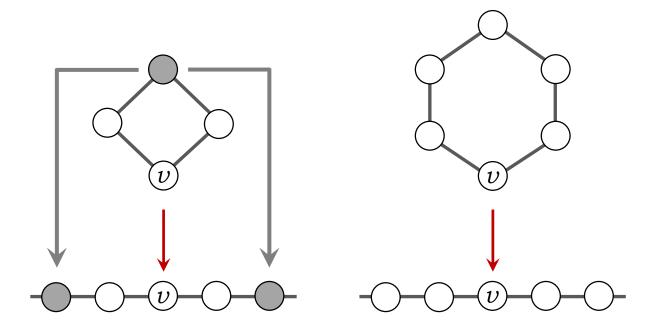




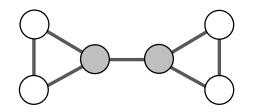


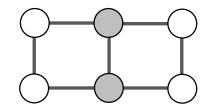


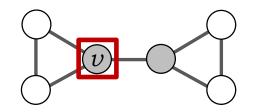


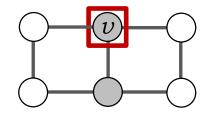


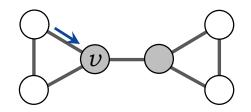


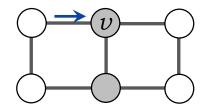


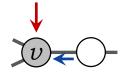


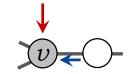


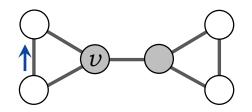


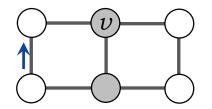


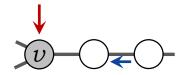


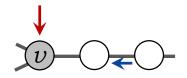


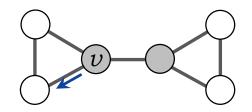


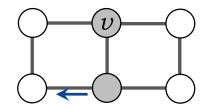


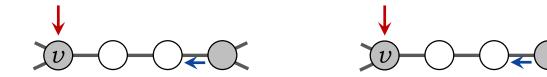


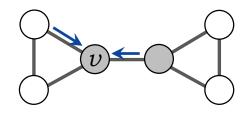


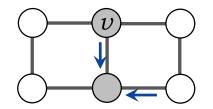


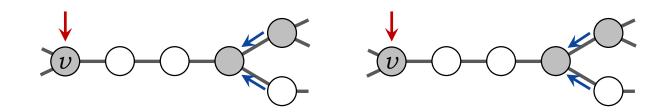


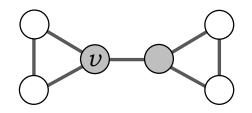


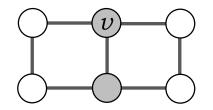


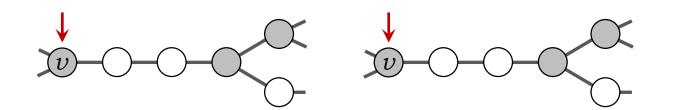




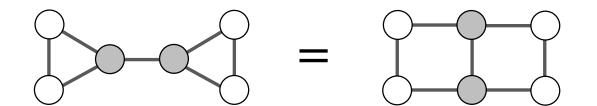




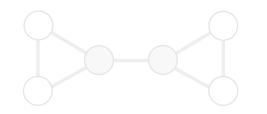


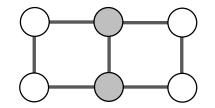


Graph Neural Networks

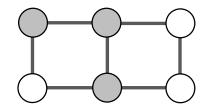


Graph Neural Networks

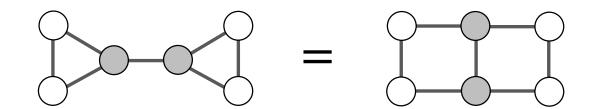




 \neq



Graph Neural Networks



More Expressive GNNs?

 \rightarrow run GNN on metagraph

 \rightarrow extend GNN model

 \rightarrow add random features

 \rightarrow **DropGNN:** GNNs with dropouts

DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks

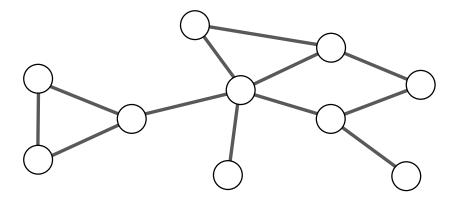
Pál András Papp	Karolis Martinkus	Lukas Faber	Roger Wattenhofer
ETH Zurich	ETH Zurich	ETH Zurich	ETH Zurich
apapp@ethz.ch	martinkus@ethz.ch	lfaber@ethz.ch	wattenhofer@ethz.ch

Abstract

This paper studies Dropout Graph Neural Networks (DropGNNs), a new approach that aims to overcome the limitations of standard GNN frameworks. In DropGNNs, we execute multiple runs of a GNN on the input graph, with some of the nodes randomly and independently dropped in each of these runs. Then, we combine the results of these runs to obtain the final result. We prove that DropGNNs can distinguish various graph neighborhoods that cannot be separated by message passing GNNs. We derive theoretical bounds for the number of runs required to ensure a reliable distribution of dropouts, and we prove several properties regarding the expressive capabilities and limits of DropGNNs. We experimentally validate our theoretical findings on expressiveness. Furthermore, we show that DropGNNs perform competitively on established GNN benchmarks.

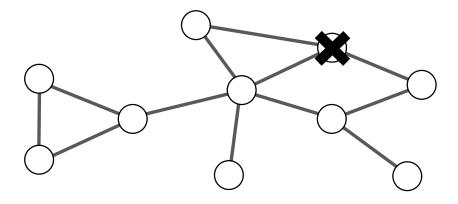
Multiple runs of the GNN

Each node removed with probability *p* independently



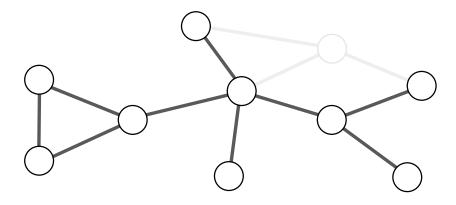
Multiple runs of the GNN

Each node removed with probability *p* independently



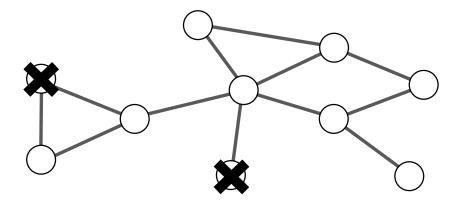
Multiple runs of the GNN

Each node removed with probability *p* independently



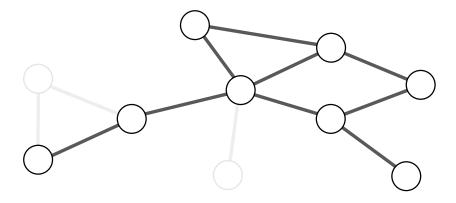
Multiple runs of the GNN

Each node removed with probability *p* independently



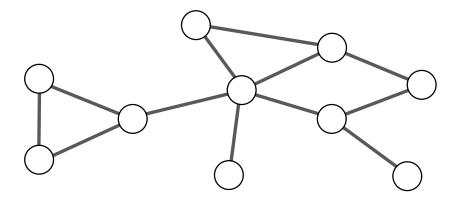
Multiple runs of the GNN

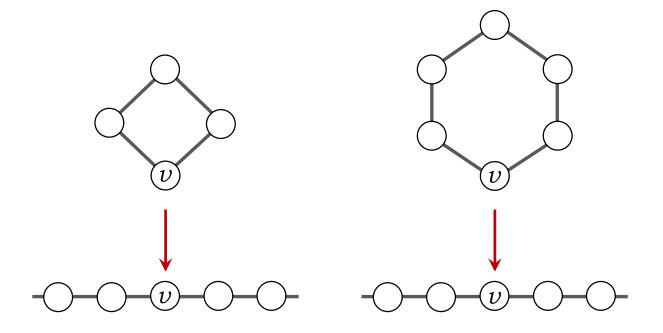
Each node removed with probability *p* independently

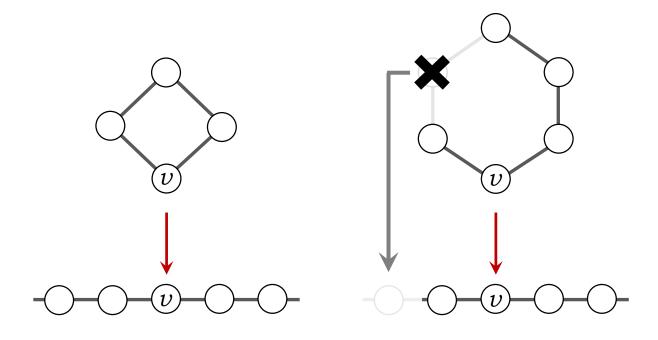


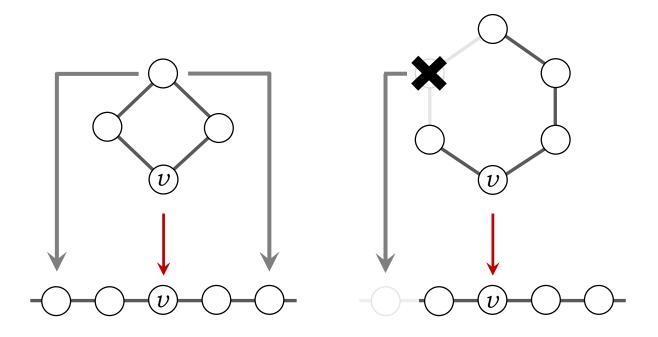
Multiple runs of the GNN

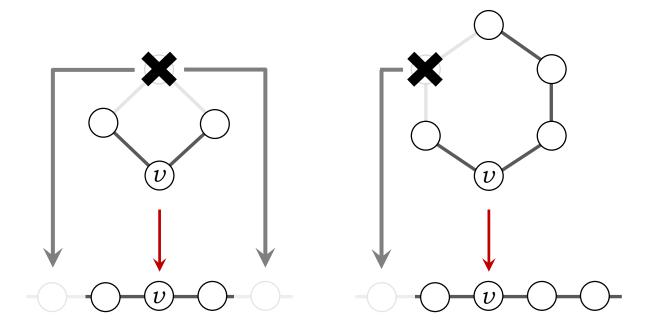
Each node removed with probability *p* independently

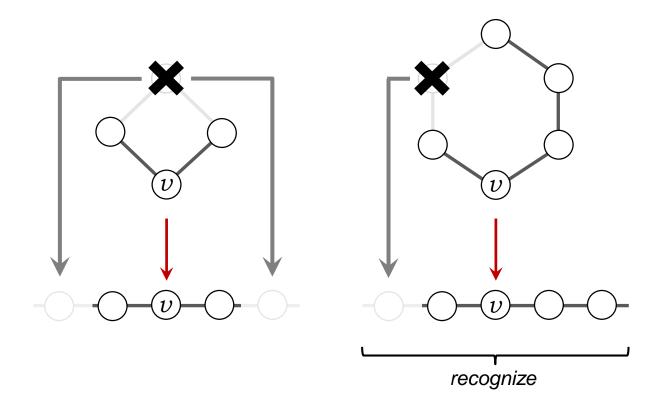


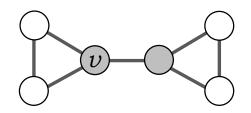


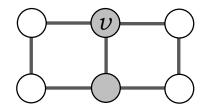


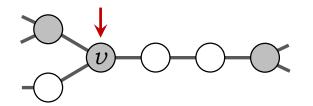


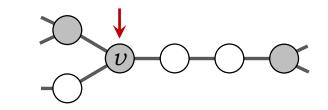


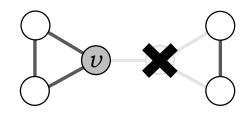


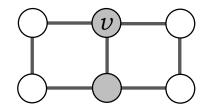


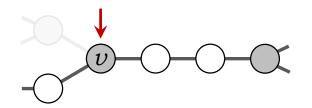


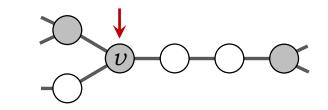


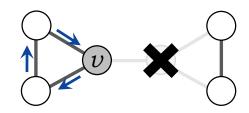


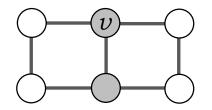


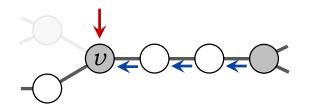


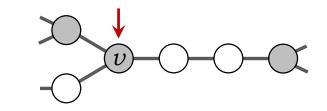


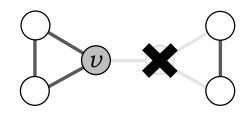


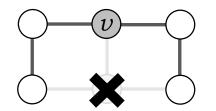


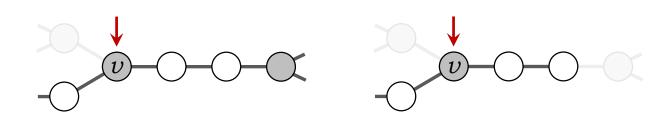


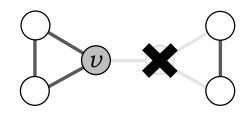


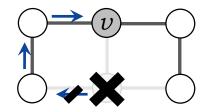


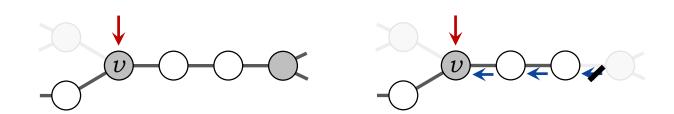


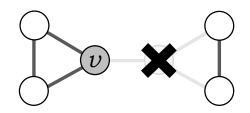


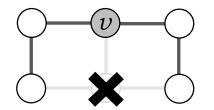


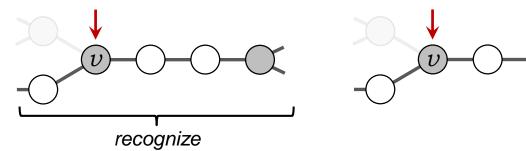


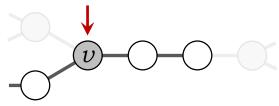






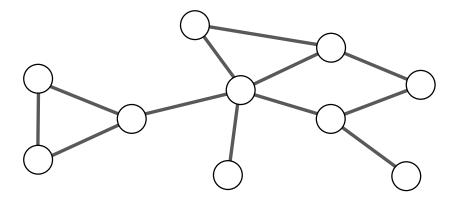






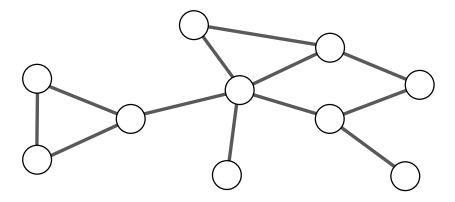
Multiple runs of the GNN

Each node removed with probability *p* independently



Multiple runs of the GNN

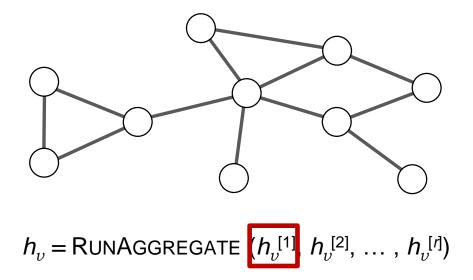
Each node removed with probability *p* independently



 $h_v = \text{RUNAGGREGATE} (h_v^{[1]}, h_v^{[2]}, \dots, h_v^{[r]})$

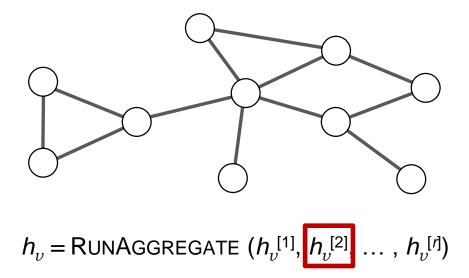
Multiple runs of the GNN

Each node removed with probability *p* independently



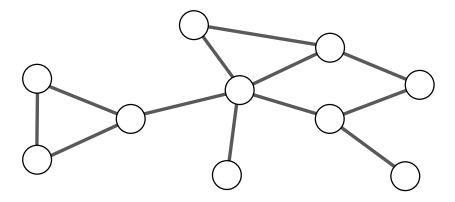
Multiple runs of the GNN

Each node removed with probability *p* independently



Multiple runs of the GNN

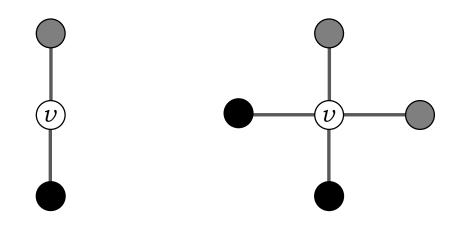
Each node removed with probability *p* independently

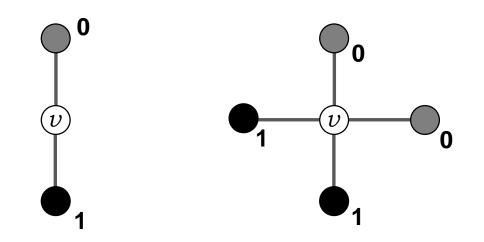


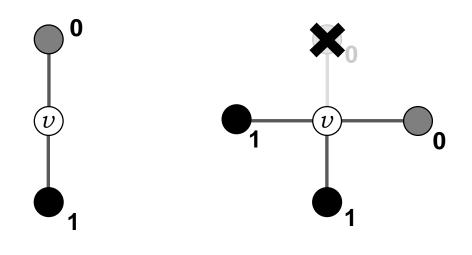
 $h_v = \text{RUNAGGREGATE} (h_v^{[1]}, h_v^{[2]}, \dots, h_v^{[r]})$

Multiple runs of the GNN Each node removed with probability *p* independently

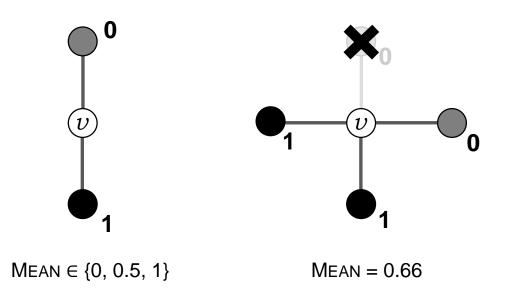
 $h_v = \text{RUNAGGREGATE} (h_v^{[1]}, h_v^{[2]}, \dots, h_v^{[r]})$





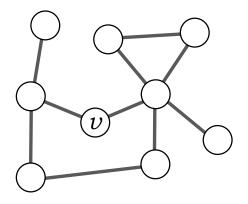


MEAN = 0.66



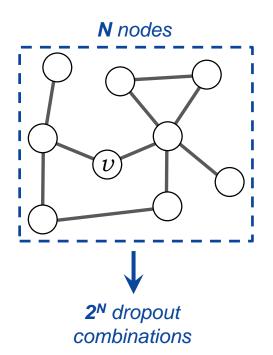
More runs:

- + more stable distribution
- more runtime overhead



More runs:

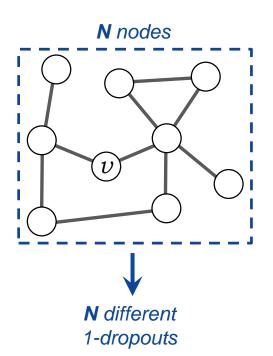
- + more stable distribution
- more runtime overhead



More runs:

- + more stable distribution
- more runtime overhead

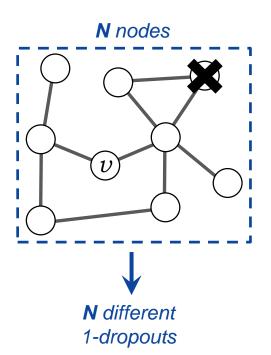
Observe every 1-dropout



More runs:

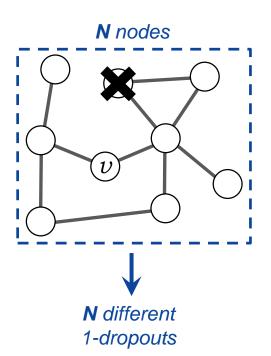
- + more stable distribution
- more runtime overhead

Observe every 1-dropout



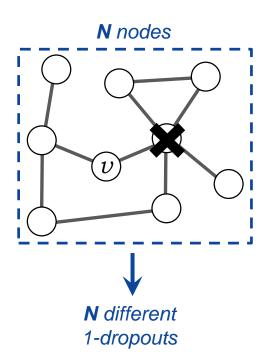
More runs:

- + more stable distribution
- more runtime overhead



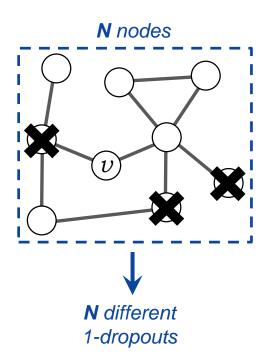
More runs:

- + more stable distribution
- more runtime overhead



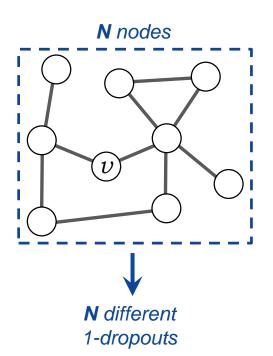
More runs:

- + more stable distribution
- more runtime overhead



More runs:

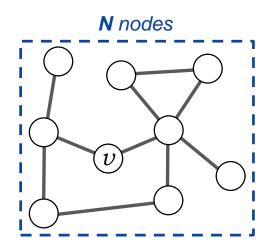
- + more stable distribution
- more runtime overhead



More runs:

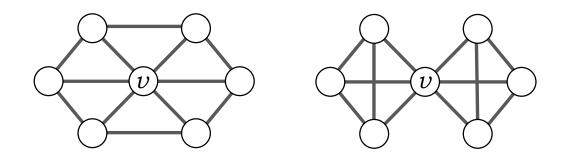
- + more stable distribution
- more runtime overhead

Observe every 1-dropout

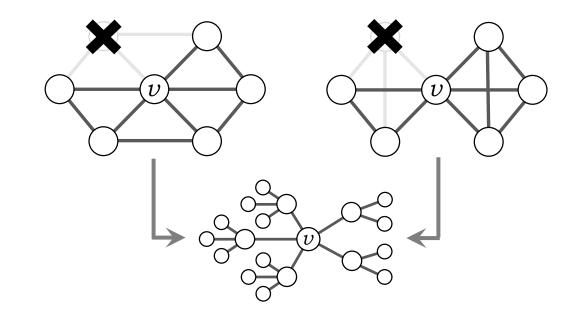


Theorem: if $\#runs \approx N \cdot \log N$, then we observe every 1-dropout with high probability.

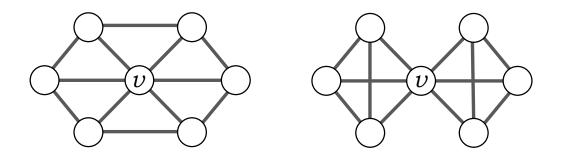
Theorem: There are graphs that cannot be distinguished from 1-dropouts only.



Theorem: There are graphs that cannot be distinguished from 1-dropouts only.

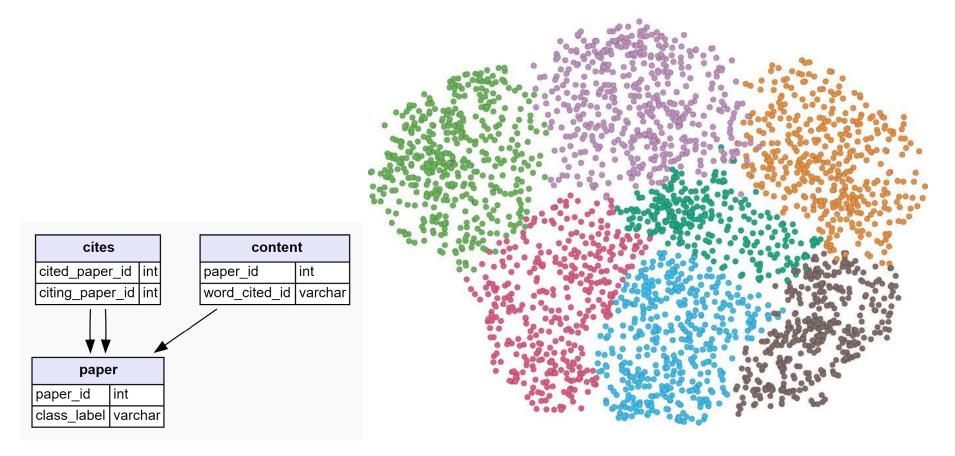


Theorem: There are graphs that cannot be distinguished from 1-dropouts only.

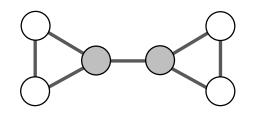


Theorem: in DropGNNs with *port numbers,* any two graphs can be distinguished from 1-dropouts.

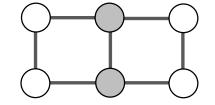
Example: CORA Benchmark



Example: CORA Benchmark



Title	Keywords		Neighbor Keywords
Primes is in P		Crypto,	

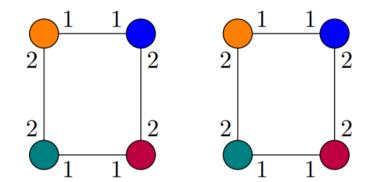


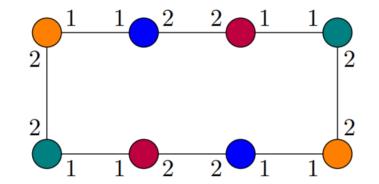
Experiments: QM9 dataset

Property	Unit	GNN	DropGNN	PPGNN
μ	Debye	0.358	0.077	0.0934
α	Bohr ³	0.89	0.238	0.318
$\epsilon_{ m HOMO}$	Hartree	0.00541	0.00235	0.00174
ϵ_{LUMO}	Hartree	0.00623	0.00241	0.0021
$\Delta\epsilon$	Hartree	0.0066	0.0044	0.0029
$\langle R^2 \rangle$	Bohr ²	28.5	0.472	3.78
ZPVE	Hartree	0.00216	0.000153	0.000399
U_0	Hartree	2.05	0.251	0.022
U	Hartree	2.0	0.146	0.0504
Н	Hartree	2.02	0.0845	0.0294
G	Hartree	2.02	0.188	0.24
C _v	cal/(mol K)	0.42	0.0740	0.0144

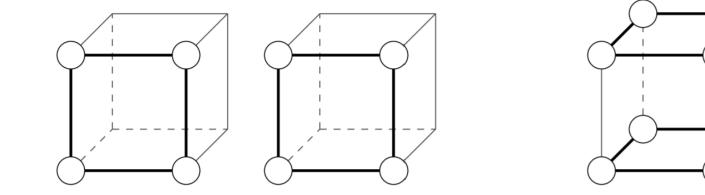
Other Extension Ideas?

Port Numbers

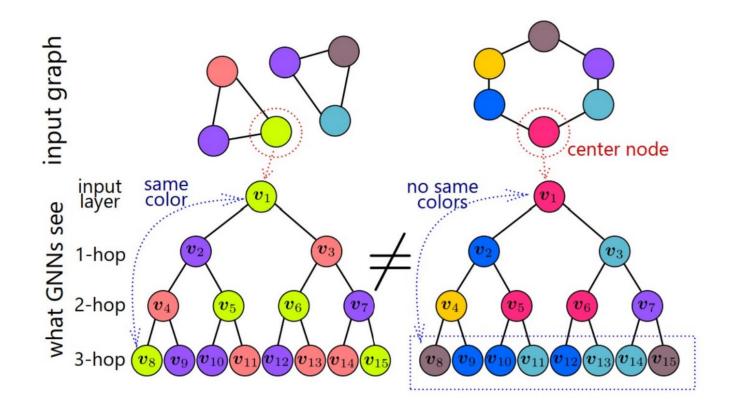




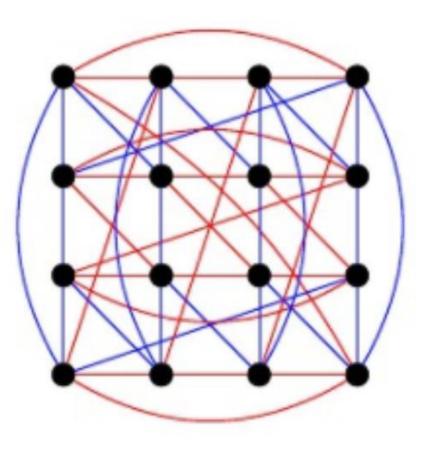
Angle Features

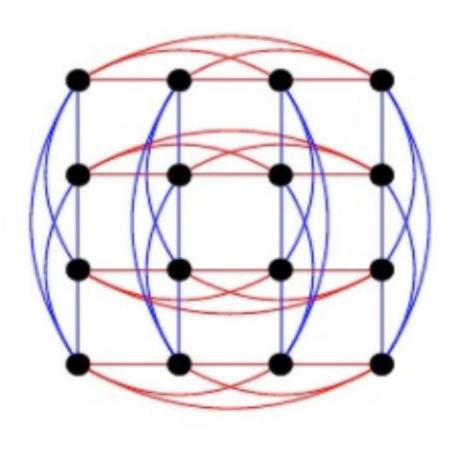


Random Features

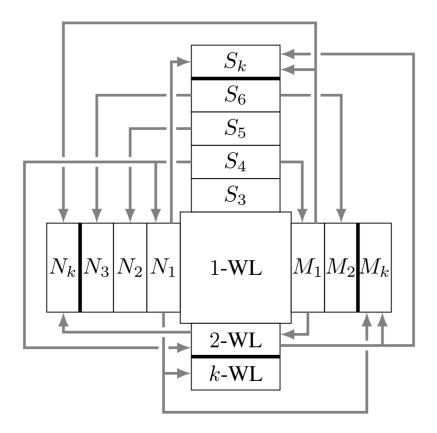


2-WL





Comparisons of Extensions



Open Questions

- **Theory:** characterization of graphs that can be distinguished by extensions?
- **Experiments:** other applications where the graph structure is crucial?
- **General:** similar approach in other deep learning areas?

Thank You!

Questions & Comments?

Roger Wattenhofer, ETH Zurich, www.disco.ethz.ch