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Distributed Computing (Message Passing)

Nodes communicate with neighbors by sending messages.

In each synchronous round, every node sends a message to its neighbors.
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ML

“Designed” algorithm

Usually node IDs

Individual messages

Solve graph problems 

like coloring or routing 

“Learned” algorithm

Usually node features

Aggregated messages

Mostly classification 

(node or graph)
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av = AGGREGATE ( {{ hu |  u ∈ N(v) }} )

hv
(t+1) = UPDATE ( hv , av )
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Limitations of GNNs?



Weisfeiler-Lehman Graph Isomorphism Test
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→ run GNN on metagraph

→ extend GNN model

→ add random features

→ DropGNN: GNNs with dropouts

More Expressive GNNs?
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Multiple runs of the GNN

Each node removed with probability p independently
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Run #3

Multiple runs of the GNN

Each node removed with probability p independently
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Multiple runs of the GNN

Each node removed with probability p independently

GNNs with Dropouts

both training 

and testing!

hv = RUNAGGREGATE (hv
[1], hv

[2], … , hv
[r])



GNNs with Dropouts

MEAN aggregation of neighbors

vv



0

GNNs with Dropouts

0

1

01

1

vv

MEAN aggregation of neighbors



0

GNNs with Dropouts

0

1

01

1

MEAN = 0.66

vv

MEAN aggregation of neighbors



0

GNNs with Dropouts

0

1

01

1

MEAN = 0.66MEAN ∈ {0, 0.5, 1}

vv

MEAN aggregation of neighbors



More runs:

+ more stable distribution

‒ more runtime overhead

DropGNN with 1-dropouts
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N nodes

2N dropout 

combinations
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Theorem: if #runs ≈ N ∙ log N, then we observe 

every 1-dropout with high probability.

N nodes

DropGNN with 1-dropouts

v

Observe every 1-dropout

More runs:

+ more stable distribution

‒ more runtime overhead
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DropGNN with 1-dropouts

Theorem: in DropGNNs with port numbers, any 

two graphs can be distinguished from 1-dropouts.

vv

Theorem: There are graphs that cannot be 

distinguished from 1-dropouts only.
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Example: CORA Benchmark

Title Keywords Neighbor 

Labels

Neighbor 

Keywords

Primes is in P … Crypto, … …



Experiments: QM9 dataset

Property Unit GNN DropGNN PPGNN

μ Debye 0.358 0.077 0.0934

⍺ Bohr3 0.89 0.238 0.318

ϵHOMO
Hartree 0.00541 0.00235 0.00174

ϵLUMO
Hartree 0.00623 0.00241 0.0021

𝚫ϵ Hartree 0.0066 0.0044 0.0029

〈R2〉 Bohr2 28.5 0.472 3.78

ZPVE Hartree 0.00216 0.000153 0.000399

U0
Hartree 2.05 0.251 0.022

U Hartree 2.0 0.146 0.0504

H Hartree 2.02 0.0845 0.0294

G Hartree 2.02 0.188 0.24

Cv
cal/(mol 

K)
0.42 0.0740 0.0144



Other Extension Ideas?



Port Numbers



Angle Features



Random Features



2-WL



Comparisons of Extensions



Open Questions

• Theory: characterization of graphs that 

can be distinguished by extensions?

• Experiments: other applications where 

the graph structure is crucial?

• General: similar approach in other deep 

learning areas?



Thank You!
Questions & Comments?

Roger Wattenhofer, ETH Zurich, www.disco.ethz.ch


