
ETH Zurich – Distributed Computing Group

Roger Wattenhofer

Graph Neural Networks

ML

ML

ETH Zurich – Distributed Computing Group

Roger Wattenhofer

Graph Neural Networks

recommender

systems

knowledge graphs

chemo-informatics
question answering

systems

molecule recognition

social networks

Distributed Computing (Message Passing)

Nodes communicate with neighbors by sending messages.

In each synchronous round, every node sends a message to its neighbors.

Graph Neural Networks

Nodes communicate with neighbors by sending messages.

In each synchronous round, every node sends a message to its neighbors.

ML

“Designed” algorithm

Usually node IDs

Individual messages

Solve graph problems

like coloring or routing

“Learned” algorithm

Usually node features

Aggregated messages

Mostly classification

(node or graph)

Message Passing GNNs

v

Message Passing GNNs

av = AGGREGATE ({{ hu | u ∈ N(v) }})

v

Message Passing GNNs

av = AGGREGATE ({{ hu | u ∈ N(v) }})

hv
(t+1) = UPDATE (hv , av)

v

Message Passing GNNs

vv vv vv vv

෍ ෍ ෍

Message Passing GNNs

vv vv vv vv

෍ ෍ ෍

Limitations of GNNs?

Weisfeiler-Lehman Graph Isomorphism Test

,

Limits of GNNs

v v

Limits of GNNs

v v

v

Limits of GNNs

v v

v

Limits of GNNs

v v

v

Limits of GNNs

v v

v

Limits of GNNs

v v

v v

Limits of GNNs

v v

v v

Limits of GNNs

v v

v v

Limits of GNNs

v v

v v

Limits of GNNs

v v

v v

Limits of GNNs

v v

v v

Limits of GNNs

Limits of GNNs

v

v

Limits of GNNs

v

v

v v

Limits of GNNs

v

v

v v

Limits of GNNs

v

v

v v

Limits of GNNs

v

v

v v

Limits of GNNs

v

v

v v

Graph Neural Networks

Graph Neural Networks

Graph Neural Networks

→ run GNN on metagraph

→ extend GNN model

→ add random features

→ DropGNN: GNNs with dropouts

More Expressive GNNs?

GNNs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

GNNs with Dropouts

Run #1

Multiple runs of the GNN

Each node removed with probability p independently

GNNs with Dropouts

Run #1

Multiple runs of the GNN

Each node removed with probability p independently

GNNs with Dropouts

Run #2

Multiple runs of the GNN

Each node removed with probability p independently

GNNs with Dropouts

Run #2

Multiple runs of the GNN

Each node removed with probability p independently

GNNs with Dropouts

Run #3

Multiple runs of the GNN

Each node removed with probability p independently

GNNs with Dropouts

v v

vv

GNNs with Dropouts

v v

vv

GNNs with Dropouts

v v

vv

GNNs with Dropouts

v v

vv

GNNs with Dropouts

recognize

v v

vv

GNNs with Dropouts

v

v

v v

GNNs with Dropouts

v

v

v v

GNNs with Dropouts

v

v

v v

GNNs with Dropouts

v

v

v v

GNNs with Dropouts

v

v

v v

GNNs with Dropouts

recognize

v

v

v v

GNNs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

GNNs with Dropouts

hv = RUNAGGREGATE (hv
[1], hv

[2], … , hv
[r])

Multiple runs of the GNN

Each node removed with probability p independently

GNNs with Dropouts

hv = RUNAGGREGATE (hv
[1], hv

[2], … , hv
[r])

Multiple runs of the GNN

Each node removed with probability p independently

GNNs with Dropouts

hv = RUNAGGREGATE (hv
[1], hv

[2], … , hv
[r])

Multiple runs of the GNN

Each node removed with probability p independently

GNNs with Dropouts

hv = RUNAGGREGATE (hv
[1], hv

[2], … , hv
[r])

Multiple runs of the GNN

Each node removed with probability p independently

Multiple runs of the GNN

Each node removed with probability p independently

GNNs with Dropouts

both training

and testing!

hv = RUNAGGREGATE (hv
[1], hv

[2], … , hv
[r])

GNNs with Dropouts

MEAN aggregation of neighbors

vv

0

GNNs with Dropouts

0

1

01

1

vv

MEAN aggregation of neighbors

0

GNNs with Dropouts

0

1

01

1

MEAN = 0.66

vv

MEAN aggregation of neighbors

0

GNNs with Dropouts

0

1

01

1

MEAN = 0.66MEAN ∈ {0, 0.5, 1}

vv

MEAN aggregation of neighbors

More runs:

+ more stable distribution

‒ more runtime overhead

DropGNN with 1-dropouts

v

N nodes

2N dropout

combinations

DropGNN with 1-dropouts

v

More runs:

+ more stable distribution

‒ more runtime overhead

N nodes

N different

1-dropouts

DropGNN with 1-dropouts

v

Observe every 1-dropout

More runs:

+ more stable distribution

‒ more runtime overhead

N nodes

N different

1-dropouts

DropGNN with 1-dropouts

v

Observe every 1-dropout

More runs:

+ more stable distribution

‒ more runtime overhead

N nodes

N different

1-dropouts

DropGNN with 1-dropouts

v

Observe every 1-dropout

More runs:

+ more stable distribution

‒ more runtime overhead

N nodes

N different

1-dropouts

DropGNN with 1-dropouts

v

Observe every 1-dropout

More runs:

+ more stable distribution

‒ more runtime overhead

N nodes

N different

1-dropouts

DropGNN with 1-dropouts

v

Observe every 1-dropout

More runs:

+ more stable distribution

‒ more runtime overhead

N nodes

N different

1-dropouts

DropGNN with 1-dropouts

v

Observe every 1-dropout

More runs:

+ more stable distribution

‒ more runtime overhead

Theorem: if #runs ≈ N ∙ log N, then we observe

every 1-dropout with high probability.

N nodes

DropGNN with 1-dropouts

v

Observe every 1-dropout

More runs:

+ more stable distribution

‒ more runtime overhead

DropGNN with 1-dropouts

Theorem: There are graphs that cannot be

distinguished from 1-dropouts only.

vv

DropGNN with 1-dropouts

v

vv

Theorem: There are graphs that cannot be

distinguished from 1-dropouts only.

DropGNN with 1-dropouts

Theorem: in DropGNNs with port numbers, any

two graphs can be distinguished from 1-dropouts.

vv

Theorem: There are graphs that cannot be

distinguished from 1-dropouts only.

Example: CORA Benchmark

Example: CORA Benchmark

Title Keywords Neighbor

Labels

Neighbor

Keywords

Primes is in P … Crypto, … …

Experiments: QM9 dataset

Property Unit GNN DropGNN PPGNN

μ Debye 0.358 0.077 0.0934

⍺ Bohr3 0.89 0.238 0.318

ϵHOMO
Hartree 0.00541 0.00235 0.00174

ϵLUMO
Hartree 0.00623 0.00241 0.0021

𝚫ϵ Hartree 0.0066 0.0044 0.0029

〈R2〉 Bohr2 28.5 0.472 3.78

ZPVE Hartree 0.00216 0.000153 0.000399

U0
Hartree 2.05 0.251 0.022

U Hartree 2.0 0.146 0.0504

H Hartree 2.02 0.0845 0.0294

G Hartree 2.02 0.188 0.24

Cv
cal/(mol

K)
0.42 0.0740 0.0144

Other Extension Ideas?

Port Numbers

Angle Features

Random Features

2-WL

Comparisons of Extensions

Open Questions

• Theory: characterization of graphs that

can be distinguished by extensions?

• Experiments: other applications where

the graph structure is crucial?

• General: similar approach in other deep

learning areas?

Thank You!
Questions & Comments?

Roger Wattenhofer, ETH Zurich, www.disco.ethz.ch

