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An Introduction to Graph Neural Networks from
a Distributed Computing Perspective

Pal Andras Papp and Roger Wattenhofer

ETH Ziirich, Switzerland
{apapp,wattenhofer}@ethz.ch

Abstract. The paper provides an introduction into the theoretical ex-
pressiveness of graph neural networks. We discuss the basic properties
and main applications of standard GNN models, and we show how these
constructions are both upper and lower bounded in expressive power by
the Weisfeiler-Lehman test. We then outline a wide variety of approaches
to increase the expressiveness of GNNs above this theoretical limit, and
discuss the strengths and weaknesses of these methods.
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High-res 3D simulations

up to 19k particles
2 different simulators (MPM & SPH)



Distributed Computing (Message Passing)

Nodes communicate with neighbors by sending messages.
In each synchronous round, every node sends a message to its neighbors.




Graph Neural Networks

Nodes communicate with neighbors by sending messages.
In each synchronous round, every node sends a message to its neighbors.




DC Track

“Designed” algorithm
Usually node IDs
Individual messages

Solve graph problems
like coloring or routing

ML Track

“Learned” algorithm
Usually node features
Aggregated messages

Mostly classification
(node or graph)




Message Passing GNNs
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Message Passing GNNs

a, = AGGREGATE ({{ h,| ue N(v) }})

h, &Y =UprDATE (h,, a,)
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Message Passing GNNs
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Limitations of GNNs?



Weisfeiler-Lehman Graph Isomorphism Test

Original labels Relabeled Relabeled
i=0 i=1 =2
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Limits of GNNSs
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Limits of GNNSs
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More Expressive GNNs?

— run GNN on metagraph
— extend GNN model
— add random features

— DropGNN: GNNs with dropouts



DropGNN: Random Dropouts Increase the
Expressiveness of Graph Neural Networks

Pal Andras Papp Karolis Martinkus Lukas Faber Roger Wattenhofer
ETH Zurich ETH Zurich ETH Zurich ETH Zurich
apapp@ethz.ch martinkus@ethz.ch  1faber@ethz.ch wattenhofer@ethz.ch

Abstract

This paper studies Dropout Graph Neural Networks (DropGNNs), a new approach
that aims to overcome the limitations of standard GNN frameworks. In DropGNNs,
we execute multiple runs of a GNN on the input graph, with some of the nodes
randomly and independently dropped in each of these runs. Then, we combine
the results of these runs to obtain the final result. We prove that DropGNNs can
distinguish various graph neighborhoods that cannot be separated by message
passing GNNs. We derive theoretical bounds for the number of runs required to
ensure a reliable distribution of dropouts, and we prove several properties regarding
the expressive capabilities and limits of DropGNNs. We experimentally validate
our theoretical findings on expressiveness. Furthermore, we show that DropGNNs
perform competitively on established GNN benchmarks.



GNNSs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently
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Multiple runs of the GNN

Each node removed with probability p independently

Run #2



GNNSs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

Run #3
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GNNSs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently
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Multiple runs of the GNN

Each node removed with probability p independently

h, = RUNAGGREGATE h 2, ..., hM)
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Multiple runs of the GNN

Each node removed with probability p independently

h, = RUNAGGREGATE (h 4, ..., h I



GNNSs with Dropouts

Multiple runs of the GNN

Each node removed with probability p independently

h, = RUNAGGREGATE (h 1], h 2], ... h ID)



GNNSs with Dropouts

both training
and testing!

Multiple runs of the GNN }

Each node removed with probability p independently

h, = RUNAGGREGATE (h 1], h 2], ... h ID)



GNNSs with Dropouts

MEAN aggregation of neighbors
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MEAN aggregation of neighbors




GNNSs with Dropouts

MEAN aggregation of neighbors
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GNNSs with Dropouts

MEAN aggregation of neighbors
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MEeaN € {0, 0.5, 1} MEAN = 0.66



DropGNN with 1-dropouts

More runs:

+ more stable distribution
— more runtime overhead




DropGNN with 1-dropouts

More runs:

+ more stable distribution
— more runtime overhead

N nodes

2N dropout
combinations
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DropGNN with 1-dropouts

More runs: N nodes

|
+ more stable distribution ;
. |

— more runtime overhead !
:

|
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Observe every 1-dropout

Theorem: if #runs = N - log N, then we observe
every 1-dropout with high probability.



DropGNN with 1-dropouts

Theorem: There are graphs that cannot be
distinguished from 1-dropouts only.
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DropGNN with 1-dropouts

Theorem: There are graphs that cannot be
distinguished from 1-dropouts only.

Theorem: in DropGNNs with port numbers, any
two graphs can be distinguished from 1-dropouts.






Example: CORA Benchmark

cites content

cited_paper_id [int paper_id int
citing_paper_id |int word_cited_id | varchar
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paper

paper_id |int
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Example: CORA Benchmark
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Experiments: QM9 dataset

Property | Unit GNN DropGNN PPGNN
U Debye 0.358 0.077 0.0934

« Bohr® 0.89 0.238 0.318
€homo Hartree | 0.00541 0.00235 0.00174
€L.uMo Hartree | 0.00623 0.00241 0.0021
Ae Hartree 0.0066 0.0044 0.0029
(R2) Bohr2 28.5 0.472 3.78
ZPVE Hartree 0.00216 0.000153 0.000399
Uo Hartree | 2.05 0.251 0.022

U Hartree 2.0 0.146 0.0504

H Hartree | 2.02 0.0845 0.0294

G Hartree 2.02 0.188 0.24

C cal/(mol | 0.42 0.0740 0.0144

K)




Other Extension Ideas?
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Angle Features




input graph

what GNNs see

Random Features
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Comparisons of Extensions
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Open Questions

* Theory: characterization of graphs that
can be distinguished by extensions?

* Experiments: other applications where
the graph structure is crucial?

* General: similar approach in other deep
learning areas?



Thank You!

Questions & Comments?
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Roger Wattenhofer, ETH Zurich, www.disco.ethz.ch




