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GNN Pretraining

By design Graph Neural Networks (GNNs) are well-suited for structured data including
social networks, knowledge graphs and molecules. They are typically trained in a supervised
manner, unfortunately for some domains like molecules task-specific labels are scarce as
obtaining them is both time-consuming and expensive. Furthermore, GNNs in this domain
also require good out-of-distribution generalization. Given these challenges and the success
of pre-training in computer vision and natural language processing (NLP), there has been a
lot of effort over the past few years to develop pre-training approaches for GNNs in the hope
of similar results. Hu et al. [1] combines self-supervised node-level and supervised graph-
level pre-training, which can be considered one of the earliest works to successfully transfer
knowledge onto a downstream task. Many other approaches have been proposed since then,
including graph-autoregressive-models like GPT-GNN [2], graph contrastive learning like
GraphCL [3], L2P-GNN [4] which aims to learn to pre-train and thus can be considered
meta-learning, as well as data-active pre-training [5] to select the most informative pre-
training input out of a cross-domain dataset. Also well known concepts from NLP have been
adapted to GNNs, MoleBert [6] adapts tokenization to molecular graphs to increase the
vocabulary size for a harder and more informative pre-training task and GPPT [7] adapts
prompting to graph data in order to narrow the training objective gap between pre-training
task and downstream task.
Despite the variety of proposed approaches, we are still far away from a general purpose
pre-training framework for GNNs that enables successful and meaningful knowledge transfer
to downstream tasks independent of their domain and type, leading to a so-called foundation
GNN model. In this thesis we therefore want to make steps in this direction.

Contact
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