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ABSTRACT
In this paper, we consider energy-efficient gathering of cor-
related data in sensor networks. We focus on single-input
coding strategies in order to aggregate correlated data. For
foreign coding we propose the MEGA algorithm which yields
a minimum-energy data gathering topology in O

(
n3
)

time.
We also consider self-coding for which the problem of find-
ing an optimal data gathering tree was recently shown to
be NP-complete; with LEGA, we present the first approxi-
mation algorithm for this problem with approximation ratio
2(1 +

√
2) and running time O(m + n log n).

Categories and Subject Descriptors:
F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems—computations on
discrete structures;
G.2.2 [Discrete Mathematics]: Graph Theory—graph algo-
rithms;
G.2.2 [Discrete Mathematics]: Graph Theory—network prob-
lems

General Terms: Algorithms, Theory.

Keywords: Sensor networks, data gathering, data aggre-
gation, distributed algorithms, energy efficiency.

1. INTRODUCTION
Recent advances in wireless networking and microelec-

tronics have led to the vision of sensor networks consisting of
hundreds or even thousands of cheap wireless nodes—each
equipped with some memory, a processor, a power unit, and
a short-range radio—covering a wide range of application
domains [1, 6, 11]. These networks of the future can be
readily deployed in physical environments to collect infor-
mation from an area of interest in a robust and autonomous
manner. Because of the requirement of unattended opera-
tion in remote or even hostile environments and due to the
nodes being operated by a fugacious battery or a feeble solar
cell, energy efficiency is a major concern in sensor networks.
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We focus on one generic type of applications for sensor
networks, namely monitoring, in which all nodes periodi-
cally produce relevant information by sensing an extended
geographic area that is eventually transmitted to an infor-
mation sink for processing. Example scenarios that fall in
this category include monitoring of continuous environmen-
tal conditions such as temperature, humidity, or seismic ac-
tivity. Because of power and transmission range limitations,
multi-hop routing techniques are applied to transmit the
data from all nodes to the information sink. Since different
sensor nodes partially monitor the same spatial region, data
is often correlated. In order to account for this circumstance
and to save energy data should be already processed as it
flows from the information source to the sink. This tech-
nique is commonly referred to as (in-network) data aggre-
gation. Thereby, a sensor node uses a so called aggregation
function to encode the data available at that node before
forwarding it to the sink. Several coding strategies were
proposed in recent research that can be classified as follows.
On the one hand there are the so called multi-input coding
strategies [14, 27], where aggregation is performed at a node
only if all input information from multiple nodes is available
in order to exploit correlation among several nodes. On the
other hand, there also exist single-input coding strategies
[10] where the encoding of a node’s information only de-
pends on the information of one other node.

In this paper, we only consider conditional coding where
data from one node can be compressed in the presence of
data from other nodes. We therefore only refer to condi-
tionally encoded data as encoded data and speak about raw
data otherwise even though a node may also apply an en-
coding scheme to its gathered data in the absence of side
information. In particular, we focus on single-input coding
strategies because they feature several advantages compared
to multi-input coding strategies. The most important one
is certainly the ability to apply single-input coding also in
asynchronous networks where no timing assumptions can be
made. Using multi-input coding on the other hand, certain
timing assumptions have to be made since packets cannot
be delayed for an indefinite time at intermediate nodes while
waiting for belated information [24]—data freshness at the
sink should not suffer too much from data aggregation. We
distinguish two classes of single-input coding, namely self-
coding and foreign coding. Using self-coding, data is only
allowed to be encoded at the producing node and only in
the presence of side information from at least another node.
With foreign coding in contrast, a node is only able to en-
code raw data originating at another node as it is routed
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Figure 1: Simple network example. Raw data has
size sr while encoded data is of size se, with se < sr.
On the left hand side self-coding is applied while
foreign coding is used on the right. For this ex-
ample foreign coding is more energy efficient than
self-coding.

towards the sink using its own data.
Figure 1 depicts a simple network example where three

sensor nodes (u, v, w) want to send their raw data of size
sr to a sink t. Communication links only exist between
nodes u and w, v and w, as well as w and t, respectively.
Therefore, packets from u and v have to be relayed at w to
reach the sink t. If a node is able to encode data due to side
information the data size reduces to se, with se < sr. The
configuration on the left depicts the usage of self-coding.
Since u and v do not have any side information the both
send a packet of sr bit towards t. Because of side information
from u, and v, respectively, node w is able to encode its data
such that the corresponding packet has size se and therefore
2sr + se bits have to be sent over the link (w, t). On the
right hand side of Figure 1 the same network is shown if
foreign coding is applied. As with self-coding, nodes u and
v send their packets of size sr to w. However, w encodes
the raw data of u and v using its own data before it relays
it the sink t. Thus, only sr + 2se bits are sent over (w, t).
Using se < sr, foreign coding transmits less bits over (w, t)
than self-coding and is thus more energy efficient for this
configuration.

In case of self-coding, [10] shows that already for a very
restrictive model where raw data is of size sr and a node
can encode its data to use only se bits, with se < sr, in
the presence of any side information, the problem of find-
ing a minimum-energy data gathering tree is NP-complete.
To the best of our knowledge, we are the first that provide
an approximation algorithm for this problem with approxi-
mation ratio 2(1 +

√
2). Algorithm LEGA is based on the

shallow light tree (SLT) introduced in [2, 3, 19] that unifies
the properties of the minimum spanning tree (MST) and the
shortest path tree (SPT).

Considering foreign coding, we introduce the algorithm
MEGA that results in a minimum-energy data gathering
topology under the assumption that the topology of the net-
work and the correlation structure of the nodes are known.
MEGA obtains an optimal solution for the data gathering
problem by reducing it to the problem of finding a MST in
a directed graph which is known to be computable in poly-
nomial time. We then introduce a distributed version of
MEGA which works in a slightly more restrictive model.

After discussing related work in the following section, we

state the network model for this paper in Section 3. Focus-
ing on foreign coding we present an algorithm computing
a minimum-energy data gathering topology in Section 4.
In Section 5, dedicated to the self-coding strategy, an ap-
proximation algorithm for the optimal data gathering tree
is introduced. Section 6 concludes the paper.

2. RELATED WORK
Already at the outset of the design of data gathering pro-

tocols for sensor networks researcher have identified the im-
portance of data aggregation in order to improve energy
efficiency. In [17] Directed Diffusion is proposed, a proto-
col in which sensors create gradients of information in their
respective neighborhoods. The sink node requests data by
broadcasting interests. If interests fit gradients, paths of
information flow are formed and in order to reduce commu-
nication costs, data is aggregated on the way. The key idea
in [15] is to reduce the number of nodes communicating di-
rectly with the sink by forming randomized clusters. Each
cluster-head encodes data arriving from nodes in its cluster,
and sends an aggregated packet to the sink. However, the
main drawback of the protocol in [15] is the requirement
that all nodes must be able to directly communicate with
the sink.

In [14] the problem of data gathering is addressed by us-
ing concave, non-decreasing cost functions to model the ag-
gregation function applied at intermediate nodes. The au-
thors propose a hierarchical matching algorithm resulting
in a aggregation tree that simultaneously approximates all
such cost functions up to a logarithmic factor. However, in
their model only the number of nodes providing data to an
aggregating node decides on its aggregation performance re-
gardless of the correlation among the available data. That
is, the impact of data correlation is not explicitly consid-
ered. This too simplistic assumption that an intermediate
node can aggregate multiple incoming packets into a single
outgoing packet albeit their correlation is also required by
other work [18, 21, 22].

Based on signal processing techniques, papers [7, 10] tackle
the problem of minimum-energy data gathering by applying
Slepian-Wolf coding. In their model the correlation among
nodes in known a-priori and is used in order to optimize
the rate allocation of a distributed compression algorithm
which obviates the need for the sensor nodes to exchange
their data among each other in order to strip their common
redundancy.

The work which is most related to the problem we con-
sider in this paper is the one involving the concept of self-
coding [10]. The authors prove that already for a restricted
model where nodes are only allowed to encode their own data
in the presence of side information the problem of finding
minimum-energy data gathering trees is NP-complete, by
applying a reduction to set cover. Moreover, [10] proposes a
heuristic based on a combination of a shortest path tree aug-
mented by travelling salesperson paths. We continue their
work by establishing a strict classification of coding strate-
gies. Furthermore, we provide an approximation algorithm
in case of self-coding and an optimal one for the foreign
coding strategy.



3. NETWORK MODEL
Sensor networks are commonly modeled by graphs. A

graph G = (V, E) consists of a set of n nodes V ⊂ R
2 in

the euclidian plane and a set of m edges E ⊂ V 2. Nodes
in V correspond to sensor nodes, whereas edges represent
links between these nodes. In order to prevent already basic
communication between directly neighboring nodes from be-
coming unacceptably cumbersome [23], it is often required
that a message sent over a link can be acknowledged by
sending a corresponding message over the same link in the
opposite direction. In other words, only undirected (sym-
metric) edges are considered. Let t ∈ V denote a particular
node called the sink node where the data from all nodes in
V should be gathered. We refer to the process of gathering
information on a certain time interval from each node as a
round. Therefore, at each round the data from all nodes in
V has to be send to t, where it is further processed.

Sensor nodes are considered to be able to adjust their
radio signal strength, in order to save energy. Therefore,
the weight w(e) for an edge e = (vi, vj) ∈ E is defined to
be the cost of transmitting one bit of data from node vi to
node vj , or vice versa. That is, we use an energy metric
for the graph G. We do not consider a specific radio model
such as the popular first order radio model presented in [15],
since we want our results to be independent from the applied
radio model. Therefore, the radio model is abstracted in the
edge weights of the graph G.

4. FOREIGN CODING
In this section we first introduce a model for the data

correlation in a network. Based on this model an algorithm
is presented that solves the minimum-energy data gathering
problem. We then propose a distributed version of MEGA
which works in a slightly more restrictive model.

4.1 Correlation Model
Since sensor networks are often used to sense real world

phenomena, each sensor node continuously produces infor-
mation as it monitors its vicinity. Thus, we assume that
each node vi ∈ V generates one data packet pi of size si bits
per round that describes the measured information sample
losslessly. Note that data packets from different nodes need
not have equal size.

Distributed sensor data is often correlated and it is there-
fore often possible to perform in-network aggregation. Data
aggregation can potentially take place at any intermediate
node as a data packet is routed towards the sink node. How-
ever, once a packet is encoded at a node it is not possible
to alter the packet again; hence, recoding is not possible.
In other words a node vi can use its data to encode pack-
ets containing correlated data that are routed through vi on
their paths to the sink node t. A packet from node vi that
is encoded at a node vj is denoted by pj

i ; its corresponding

size is sj
i . The compression rate depends on the data cor-

relation between the involved nodes vi and vj , denoted by
the correlation coefficient ρij = 1 − sj

i/si. Encoding at a
node vi only depends on the data collected by vi and not on
other data also routed through vi—recording is not possi-
ble. However, it must be guaranteed that encoding does not
result in cyclic dependencies that cannot be resolved while
decoding at the sink t. Such an encoding strategy does not
depend on timing assumptions in the encoding nodes, and

MEGA

Input: Graph G = (V, E) and sink s ∈ V
1: TSP = shortest path tree in G rooted at t

2: G̃ = (V, Ẽ) = complete directed graph

3: for all (vi, vj) ∈ Ẽ do
4: w′(vi, vj) = si (w(vi, vj) + w(vj , t)(1 − ρij))
5: end for
6: T ′ = DMST on G̃T

7: T = (V, ET ) = T ′T

8: for all vi ∈ V do
9: consider vj such that (vi, vj) ∈ ET

10: set vj as encoding relay for pi

11: end for
Output: Minimum-energy data gathering topology for G

therefore it is also applicable to asynchronous networks.
Then the minimum-energy data gathering problem for a

given graph G = (V, E) is defined as follows. Find a routing
scheme and a coding scheme to deliver data packets from all
nodes in V to a sink node t ∈ V , such that the overall energy
consumption is minimal. Let f(e) with e ∈ E denote the
number of bits transmitted over edge e. In order to minimize
the overall energy consumption our goal is to minimize the
following cost function:

C(G) =
∑
e∈E

w(e)f(e). (1)

4.2 Algorithm
In the following we present the minimum-energy gathering

algorithm (MEGA). The resulting topology of the algorithm
is a superposition of two tree constructions. A directed mini-
mum spanning tree of a directed graph whose edges are spec-
ified later in this section is used to determine the encoding
nodes for all data packets. Once a packet is encoded it is
routed on a shortest path towards the sink in order to save
energy. Given a graph G = (V, E) as described in Section 3
and a sink node t ∈ V , MEGA first computes a shortest path
tree (SPT) of G rooted at t (e.g. using Dijkstra’s algorithm
[12]). Since the weight of an edge in E corresponds to the
energy spent to transmit one bit of information from one
incident node to the other, the SPT comprises an energy-
minimal path from each node in V to the sink.

In a second step, the algorithm computes for each node vi

a corresponding node vj that encodes the packet pi using its
own data. Since cyclic dependencies in the encoding must
not occur in order to guarantee decoding this results in a
so-called coding tree. In order compute this coding tree,
we make use of an algorithm solving the directed minimum
spanning tree (DMST) problem (also known as the minimum
weight arborescence problem). Consider a directed graph
G = (V, E) with V and E being the set of nodes and edges,
respectively, and a weight w(e) associated with each edge e.
The problem is to find a rooted directed spanning tree such
that the sum of w(e) over all edges e in the tree is minimized
provided that all nodes are reachable from the root. Chu and
Liu[8], Edmonds [13], and Bock [4] have independently given
efficient algorithms for finding the MST on a directed graph.
Tarjan [25] gives an efficient implementation (see also [5]).
Edmonds algorithm is also described in [20]. Furthermore,
a distributed algorithm is given by Humblet [16].
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Figure 2: The figure on the left depicts an example graph G where all nodes should send their gathered data
to the sink node t. Each edge e in the given graph G is labeled according to the energy consumed to send
one bit of data over e. The SPT rooted at t is indicated by bold edges. On the right hand side the resulting
minimum-energy data gathering topology obtained by MEGA is shown. The coding tree (dashed arrows)
determines for each node its corresponding encoding node. Encoded data is sent on the SPT (solid lines)
towards the sink t.

In the following we propose the directed graph on which
MEGA computes the DMST with one of the above-men-
tioned algorithms. First, MEGA builds a complete directed

graph G̃ = (V, Ẽ). The weight w̃(e) for a directed edge

e = (vi, vj) in Ẽ is defined as

w̃(e) = si (σ(vi, vj) + σ(vj , t)(1 − ρij)) , (2)

whereas σ(vi, vj) denotes the weight of a shortest path from
vi to vj in G, that is, the sum of the edge weights on that

path. The weight of an edge in G̃ therefore stands for the
total energy consumption in order to route a data packet pi

to the sink using node vj as an encoding relay. This also
depends on the correlation coefficient of the involved nodes.
The DMST is by definition a minimum-weight directed tree
with edges directed off the root node (e.g. the sink t) but
we aim at a directed tree with edges pointing towards t.
Therefore, MEGA does not apply a DMST algorithm to

G̃ but to the transposed graph1 G̃T . Then, the edges in

G̃ corresponding to the ones in the DMST of G̃T form a
tree that defines the encoding relays for a nodes in V . The
resulting topology of MEGA comprises for each node vi all
edges on a shortest path from vi to its encoding relay vj

found by the above described DMST construction and all
edges on the path from vj to t on the SPT. It can be seen that
if the data is pairwise independent for all nodes the resulting
topology of MEGA is the SPT—this is the minimum-energy
data gathering topology for uncorrelated data.

On the left hand side of Figure 2 an example graph G
is depicted. The information from all nodes in G should
be gathered at the sink node t. To simplify matters it is
assumed that all nodes send a packet of equal size sr. For
each edge e in G the edge weight w(e) corresponding to
the energy consumption of sending one bit of data over e is
depicted in Figure 2. Data correlation among nodes vi and
vj is defined to be inverse proportional to their Euclidean
distance. That is, ρij = 1

1+d(vi,vj)
. Furthermore, a path loss

exponent of 2 is assumed and thus d(vi, vj) =
√

w(e), with

1The transpose of a directed graph G = (V, E) is GT =
(V, E′) with (vi, vj) ∈ E′ if and only if (vj , vi) ∈ E. That is,
the direction of each edge in G is reversed in the transposed
graph.

e = (vi, vj). Algorithm MEGA first computes a SPT rooted
at t—bold lines on the left of Figure 2. The coding tree
established by MEGA is depicted with dashed arrows on
the right hand side of Figure 2. The encoding relay of each
node is thereby determined by its outgoing arrow. Once a
packet is decoded it is send towards the sink on the SPT.
One can see that different data packets at a node are not
always sent to the same neighboring node. For example,
at node u the packet received from node v is first encoded
and then forwarded directly to the sink t whereas u’s packet
is sent to an intermediate node for encoding in order to
circumvent the costly edge (u, t).

The running time of the algorithm is O
(
n3
)

since solving

the all-pair shortest path problem on G takes O
(
n3
)

time
and the running time for the computation of the DMST on

G̃T is O
(
n2
)
.

4.3 Analysis
In order to show MEGA to be optimal we first establish

some properties of an optimal data gathering topology. In
an optimal solution for the graph G each packet pi is routed
along a distinct path from node vi to the sink t since multiple
paths would unnecessary increase the total energy consump-
tion. The packet pi is encoded at no more than one node vj

on its path towards the sink. Note that it is also possible
that pi is sent to t without any encoding. In this case t is
considered to be the encoding relay for node vi. Along the
lines of MEGA we can therefore establish a directed graph

G̃opt = (V, Ẽopt) for the optimal solution where each node

vi in V apart form t has exactly one outgoing edge in Ẽopt

pointing towards the encoding relay of the packet pi. It fol-

lows that |Ẽopt| = n−1. In order to guarantee the decoding
of all data at the sink node it is required that the encod-
ing does not lead to cyclic dependencies among the encoded
packets. By the construction rules of the directed graph

G̃opt such cyclic dependencies would be reflected in cycles

in G̃opt and therefore G̃opt must be cycle-free. Consequently,

the above elaborated properties of the directed graph G̃opt,
namely

- |Ẽopt| = n − 1,



- every node vi, vi ∈ V \ {t}, has an edge leading out
from it,

- and G̃opt does not contain cycles,

characterize a directed tree pointing into node t. Thus, we
obtain the following theorem:

Theorem 1. Given a graph G = (V, E) and a sink t ∈ V ,
algorithm MEGA computes a minimum-energy data gather-
ing topology for G.

Proof. The path for a packet pi in the optimal solu-
tion can be divided into two parts. First, pi is routed on a
path from vi to its encoding node vj and in a second step
the encoded packet pj

i is routed from vj to the sink t. In
the optimal topology both sub-paths are minimum-energy
paths—And thus shortest paths in G—in order to minimize
the overall cost function C(G) as defined in Equation (1).
In Equation (1) the total energy consumption is computed
by summing up the load of each edge in E times its corre-
sponding weight. Another way to compute the total energy
consumption is to charge each node vi the energy the packet
pi spends during p′

is way to the sink. For each node vi and
its corresponding encoding relay vj this account is summing
up to w̃(vi, vj) as defined in Equation (2). Consequently,
the total energy consumption is defined to be the sum of

all edge weights in G̃opt. MEGA computes exactly this ac-
count values for all possible encoding relays of a node vi

and assigns them to the corresponding edges in G̃. Using
a DMST algorithm on the transposed graph a directed tree
pointing into t is obtained that minimizes the sum of all edge
weights. Since the optimal solution Gopt also corresponds to

a directed tree in G̃opt, MEGA also minimizes C(G).

4.4 Distributed Computation
So far, the proposed centralized algorithm MEGA requires

total knowledge about the correlation among all nodes and
the topology of the network. In this section we consider
the well studied Unit Disk Graph (UDG) model [9] where
all nodes have the same limited transmission ranges. Ad-
ditionally, we restrict the raw-data packets of all nodes to
have equal size sr. Data correlation in sensor networks is
often assumed to be regional. Thus, in the following the
data correlation between two nodes vi and vj is modeled to
be inverse proportional to their Euclidean distance d(vi, vj).

Using the distributed algorithm described in [16] to com-
pute the DMST, MEGA can be implemented in a distributed
way. In a setup phase, the sink t starts building a SPT
rooted at t using e.g. Dijkstra’s algorithm. Thus, each node
in V is able to determine the energy consumption to send
t one bit of information. Then, each node vi in the graph
G broadcasts a sample packet pi. Upon receipt of a packet
pj from a neighboring node vj , vi encodes pi using pj in or-
der to compute the correlation coefficient between the two
neighbors. Additionally, vi can determine the energy cost
of a transmission to vj by using a Received Signal Strength
Indicator (RSSI) [26]. Node vi establishes an directed edge
(vi, vj) whose weight is set according to Equation (2). The

graph G̃ then consists of edges between direct neighbors in
G only. In order to guarantee that MEGA still results in an
optimal topology we have to show that in an optimal solu-
tion each node and its corresponding encoding relay are only
one hop away from each other. That is, they are neighbors
in the graph G.

ukujuiu1 vjvi

sr

ukujuiu1 vjvi

2sr 2sr sr

sr+su1
i sr+s

uj
ui

Figure 3: Configuration of the graph G̃ if the encod-
ing relay vj of node vi is more than one hop away
from vi (top) and a configuration using only one-
hop relays that results in less energy consumption
(bottom).

Assume for the sake of contradiction that the encoding
relay vj for a node vi in a minimum-energy data gathering
topology Gopt is more than one hop away from vi. Then the
packet pi is routed along a path p(vi, vj) = (vi, u1 . . . ui, uj ,
uk . . . vj) to its encoding relay vj . Since vi and vj are no
neighbors in G and G is a UDG, it follows that d(vi, vj) >
d(vi, u1) and consequently ρvi,vj < ρvi,u1—data correlation
is inverse proportional to the Euclidean distance. It follows

that sj
i > su1

i . Thus if (u1, vi) is not in G̃opt, that is vi is
not the encoding relay for u1, we choose u1 to be the en-
coding node of vi and obtain a topology with less energy
dissipation which contradicts the assumption. If (u1, vi) is

in G̃opt we are in a configuration as it is depicted in Figure 3

at the top. Node vi has an edge to vj in G̃opt (dashed ar-
row) and each node on p(vi, vj) up to uj has an edge to its

predecessor on the path. Since G̃opt is cycle-free, there is at
least one node on the path (uk in Figure 3) that does not
point to its predecessor. In Figure 3 all edges on the path
are labeled according to their load caused by all raw data
packets from nodes on the path. However, by changing the

edges in G̃opt subject to the configuration at the bottom of
Figure 3—and thus also the encoding relays— and due to
the assumption that all raw-data packets have equal size sr

edge (ui, uj) has a load of at most sr + s
uj
ui since the packet

pui is sent to uj and the encoded packet p
uj
ui possibly back

to ui on its way to the sink. The same holds for all other

edges on the path for which the corresponding edge in G̃opt is
reversed. Since s

uj
ui < sr for all direct neighbors in G, it fol-

lows that we can decrease the energy consumption of Gopt by
applying the transformation shown in Figure 3 which leads
to a contradiction. It is therefore adequate to restrict the

directed graph G̃ to comprise only edges connecting neigh-
boring nodes in G in order to obtain an optimal topology.
This consequently allows for the distributed computation of
the minimum-energy data gathering topology of G.

5. SELF-CODING
In this section we first determine a lower bound for the

energy consumption of an optimal data gathering topology
using self-coding. Then, an algorithm is presented that ap-
proximates an optimal topology up to a constant factor.

5.1 Correlation Model
In this section we consider the problem of constructing

efficient data gathering trees in the model of explicit com-



munication introduced in [10]. In this model nodes can only
encode their own raw data in the presence of other raw data
routed through them in contrast to the model introduced
in Section 4 where the inverse restriction is assumed. Thus,
the reduction in data size at a node vi is due to the direct
availability of side information locally at vi. If no side in-
formation is available at node vi the packet size of pi is sr

bits. However, if raw data is routed on their way to the sink
t through vi, the node can encode its data such that the size
of pi reduces to se bits with se < sr. That is, different from
the correlation model in Section 4 the correlation between
data is equal and therefore ρij = 1− se/sr for all vi, vj ∈ V
with i �= j. Consequently, if a node encodes its data us-
ing some other data, the encoded data will have exactly se

bits. It is shown in [10] that already for this restricted cor-
relation model the problem of finding minimum-energy data
gathering trees is NP-complete, by applying a reduction to
set cover. Moreover, [10] proposes a heuristic based on a
combination of a shortest path tree augmented by travelling
salesperson paths.

5.2 Lower Bound
Given a graph G = (V, E) and a sink node t ∈ V , we

present an approximation algorithm that guarantees a data
gathering tree for which the cost C(G) defined in Equa-
tion (1) is only a constant factor higher than the cost of an
optimal topology. We first give a lower bound on the cost,
that is, the energy consumption of the optimal topology.

Lemma 2 (Lower Bound). The cost of an optimal to-
pology copt is bounded from below by copt ≥ max(se ·cSSP, sr ·
cMST), where cSSP is the sum of the costs of all the shortest
paths to the sink t, and cMST is the cost of the minimum
spanning tree of all nodes in V .

Proof. Nodes in the graph can either send their raw data
directly to the sink, or use the raw data of other nodes to
encode their data, and then send their data to the sink. Let
B be the set of nodes sending their raw data to the sink
t without encoding. Let the nodes who encode their data
using the raw data of node u ∈ B be the set Su. The set B
and the sets Su for all u ∈ B form a partition over all nodes
in V , that is: V = B ∪∑u∈B Su.

After deciding how V will be partitioned, the optimal al-
gorithm will use the shortest paths (SP) to deliver the en-
coded data of all nodes in V \ B to the sink since this min-
imizes the total energy consumption. Therefore, nodes in
Su need to encode their data using the raw data of node
u, u being a node in set B. On the other hand, the sink t
needs to decode the encoded data of nodes in Su; to do so,
t also requires the raw data of u. The optimal topology to
distribute the raw data of u is given by the Steiner tree (ST)
where the nodes in Su, node u, and t are terminal nodes.
Summing up, the cost of the optimal topology is therefore

copt =
∑
u∈B

(
sr · ST(Su, u, t) +

∑
v∈Su

se · SP(v, t)

)
.

We can lower-bound this equation in two ways. By definition
SP(vi, vj) = ST(vi, vj) and any additional terminal node in
the Steiner tree increases the cost of the tree. Furthermore,

since se < sr it follows that

copt =
∑
u∈B

(
sr · ST(Su, u, t) +

∑
v∈Su

se · SP(v, t)

)
≥

∑
u∈B

se · SP(u, t) +
∑
u∈B

∑
v∈Su

se · SP(v, t)

=
∑
u∈V

se · SP(u, t) = se · cSSP .

On the other hand, all nodes in B send and all nodes in
V \B receive at least one packet containing raw data. Thus,
raw data is distributed at least on a spanning tree. Since
the minimum spanning tree (MST) is the cheapest possi-
ble spanning tree, the cost of the optimal algorithm is also
bounded from below by the cost of the MST, used to trans-
mit raw data. The lemma follows immediately.

5.3 Algorithm and Analysis
In the following we present the low energy gathering algo-

rithm (LEGA), an approximation algorithm that is optimal
up to a constant factor. The algorithm is based on the shal-
low light tree (SLT), a spanning tree that approximates both
the MST and the SPT for a given node (e.g. the sink). The
SLT was introduced in [2, 3]. Given a graph G = (V, E) and
a positive number γ, the SLT has two properties:

- Its total cost is at most 1 +
√

2γ times the cost of the
MST of the graph G;

- The distance on the SLT between any node in V and
the sink is at most 1 +

√
2/γ times the shortest path

from that node to the sink.

For more details on the construction of the shallow light tree
(SLT) we refer to [19].

The algorithm is as follows: First the SLT spanning tree is
computed, the sink node t being the root of the SLT. Then,
t broadcasts its packet pt to all its one-hop neighbor nodes
in the SLT. When node vi is receiving a packet pj consisting
of raw data of a neighboring node vj , vi encodes its locally
measured data pi using pj , and transmits the packet pj

i to
the sink t on the path given by the SLT. Then node vi

broadcasts its packet pi to all its one-hop neighbors but vj ;
in other words to all its children but its parent in the SLT.
The sink t has its own data pt available locally (or it can
use the data of one of its first-hop neighbors), and thus can
perform recursive decoding of the gathered data, based on
the encoded data that it receives from all other nodes in V .

Theorem 3. LEGA achieves a 2(1+
√

2)-approximation
of the optimal data gathering topology.

Proof. The total cost of LEGA is given by

cLEGA = sr · cSLT +
∑

vi∈V

se · |pathSLT (vi, t)|.

The first term follows from the fact that each node sends
its raw data to all its children in the SLT. The second term
corresponds to the sum of the shortest paths from all nodes
in V to the sink node t in the SLT. Using the SLT properties
and setting γ = 1 we obtain

cLEGA = sr · (1 +
√

2)cMST + se · (1 +
√

2)cSSP

≤ 2(1 +
√

2)copt.

The second equation follows directly from Lemma 2.



Since [19] provides an algorithm constructing the SLT of a
graph G that runs in O(m + n log n) time, the running time
of LEGA is also O(m + n log n).

6. CONCLUSION
In this paper we investigate the problem of gathering cor-

related data in sensor networks. In contrast to most of the
related work we provide algorithms for two important cod-
ing strategies that explicitly consider data correlation. In
case of self-coding, for which the problem is known to be
NP-complete, we present LEGA, a 2(1+

√
2)-approximation

algorithm. In addition, for the foreign coding strategy, algo-
rithm MEGA is proposed that results in an minimum-energy
data gathering topology.

The two considered coding strategies—self-coding and for-
eign coding—complement each other. It is intriguing that
one is optimally solvable in polynomial time while the other
is in NP. This leads to the fascinating question whether the
general problem (allowing both self-coding and foreign cod-
ing at the same time) will be in P or NP.
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