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ABSTRACT
We study the problem of adversarially robust self-supervised learn-
ing on graphs. In the contrastive learning framework, we intro-
duce a new method that increases the adversarial robustness of the
learned representations through i) adversarial transformations and
ii) transformations that not only remove but also insert edges. We
evaluate the learned representations in a preliminary set of exper-
iments, obtaining promising results. We believe this work takes
an important step towards incorporating robustness as a viable
auxiliary task in graph contrastive learning.

1 INTRODUCTION
Imagine we have unlimited labeled training data and a prediction
task to solve. Due to the results from recent years, our first approach
is to try a deep-learning-based model. In various domains, including
computer vision, natural language processing, or—more recently—
graphs, deep learning models have proven to set the state of the
art, given they receive sufficient data.

How should we proceed when there is not enough data? In this
scenario, the picture becomes less clear. Generally, finding the data
is often not the main issue, but finding the labels for this data is.
Recent developments in deep learning attempt to tackle this prob-
lem by resorting to self-supervised learning, where the labels are
obtained by exploiting the internal structure of raw data. As one in-
stance of this approach, contrastive learning methods have recently
achieved impressive results [2, 18]. On a high level, contrastive
learning attempts to learn the representations by applying trans-
formations to the input without fundamentally changing it. The
goal is to make the representations of a single input under different
transformations similar, while the representations of different in-
puts should differ. The field of graphs lends itself particularly well
to this setup. Notably, the Web enables us to mine massive graphs
from, for example, the Web structure itself or social networks. On
the other hand, labeling graph data is challenging as labels should
reflect the complex network structure. Zhu et al. [39] show that we
can use contrastive learning successfully in this setting.

Similarly to contrastive learning, the subject of adversarial at-
tacks also evolves around identity-preserving (imperceptible) trans-
formations. However, adversarial attacks aim to find imperceptible
transformations that, despite looking innocent, cause a mispredic-
tion in the model. It was shown that even highly accurate neural
networks are vulnerable to such attacks [7, 25, 31], and thus unreli-
able, which is an especially important issue when they are used in

safety-critical systems such as autonomous vehicles or face recogni-
tion systems. This lead to a great interest in building robust models,
i.e., those less susceptible to adversarial attacks. In the contrastive
learning setting, Kim et al. [19] recently demonstrate that using
adversarial transformations allows us to learn robust representa-
tions. However, while the vulnerability to attacks is widely present
in the graph domain [3, 41], an investigation of adversarial trans-
formations to learn robust representations is so far missing. In this
paper, we explore this, and consider the use of adversarial trans-
formations within the graph contrastive learning setting. We make
the following contributions:

(1) We propose Graph Robust Contrastive Learning (GROC),
a fully self-supervised graph algorithm aiming to achieve ro-
bustness to adversarial attacks. To the best of our knowledge,
we are the first to integrate adversarial transformations into
the graph contrastive learning framework.

(2) We conduct an evaluation of GROC on several popular trans-
ductive node classification datasets. The preliminary results
show that GROC improves the robustness against adversar-
ial attacks while maintaining a comparable performance on
clean examples.

(3) We outline possible future directions. We plan to extend our
work to improve the efficiency of our method and extend
our experiments to include a more comprehensive set of
baselines and evaluation settings.

2 RELATEDWORK
2.1 Graph Self-Supervised Learning
Early work on graph self-supervised learning focuses mostly on
generative approaches. Hu et al. [13] propose to improve the per-
formance of graph neural networks on downstream applications
by using the tasks of link prediction, node ranking, and cluster re-
covery. Hu et al. [12] propose the pretraining tasks of attribute and
edge generation, improving model performance on downstream
tasks, including node classification, link prediction, and community
detection.

While the above approaches improve graph representations, re-
cent breakthroughs in contrastive learning, mainly within computer
vision [2, 10], motivate the study of similar algorithms in the graph
domain [9, 27, 28, 30, 33, 36, 39, 40]. In contrastive learning, the
model is supposed to discriminate between positive (similar) and
negative (dissimilar) pairs. In the formulation that we focus on, Zhu
et al. [39], further improved in Zhu et al. [40], create two views of
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Figure 1: A high-level illustration of our method, GROC. (a) We start by choosing a set of anchor nodes from the graph. (b)
Then, we apply two stochastic transformations 𝜏 ′1 and 𝜏 ′2 that randomly mask node features, to obtain two distinct views.
The graph is reduced to the union of receptive fields of anchor nodes—here 1−hop neighborhoods. (c) We apply adversarial
transformations 𝜏 ′′1 and 𝜏 ′′2 to these two views, removing and inserting edges based on gradient signals. (d) Through contrastive
learning, we force the embeddings of each anchor node in both views together (green arrows), and force the embeddings of
different anchor nodes apart (red arrows).

the same graph by randomly removing edges and masking node
features. In their work, positive pairs are the corresponding nodes
in two views, while negative pairs are all other nodes in the same
view (intra-view pairs) or the other view (inter-view pairs). You
et al. [36] use a similar procedure but focus on graph-level repre-
sentations. Note that none of these works, as opposed to ours, have
robustness as one of their goals during training.

Orthogonally to our contributions, Grill et al. [8] recently suggest
a novel self-supervised method that does not require negative pairs,
improving the results of contrastive methods. This approach was
subsequently adapted to the domain of graphs [1, 32].

2.2 Graph Adversarial Attacks & Defenses
The main insights regarding robustness, that even highly accurate
networks are vulnerable to adversarial attacks, directly transfer to
graphs. Dai et al. [3] propose RL-S2V, an attack which learns to
create misclassifications through edge insertion and removal with
reinforcement learning. Nettack [41] crafts adversarial examples
by perturbing the graph structure and altering the node features.
Zügner and Günnemann [42] propose Meta-Attack, employing
meta-learning to produce adversarial examples.

In response to these attacks, researchers propose various graph
purification procedures [4, 34], as well as adversarial defenses, train-
ing procedures designed to improve the robustness of neural net-
works, usually achieved by adversarially augmenting clean exam-
ples during training [22]. However, due to the discrete nature of
edges and nodes in graphs, generating adversarial examples effi-
ciently during training is hard [15, 16]. Dai et al. [3] mitigate this
problem by using examples with randomly dropped edges. Zhu
et al. [38] propose Robust GCN, which absorbs the adversarial per-
turbations using Gaussian distributions as node representations
in each layer of the network. Jin et al. [17] improve the adversar-
ial robustness of graph neural networks by cleaning perturbed
graphs through the intrinsic properties of real-world graphs such
as low-rank adjacency matrices, sparse graphs, or homophily. Most
recently, Zhang and Zitnik [37] suggest a more general approach
that is able to defend against attacks on heterophily graphs.

This goal of improving the robustness of networks extends to
self-supervised contrastive learning methods as well. Recently, re-
searchers argue that by using adversarial transformations during
contrastive learning, a deep neural networkmodel can achieve state-
of-the-art robustness against image adversarial attacks [11, 14, 19].
In the graph domain, You et al. [36] include the evaluation of their
contrastive learning method in the setting of adversarial attacks.
However, they focus solely on graph classification, and more no-
tably, they do not explicitly include adversarial robustness as a goal
of their training.

3 GRAPH ROBUST CONTRASTIVE
LEARNING

In this section, we introduce ourmethod:GraphRobustContrastive
Learning (GROC) (Fig. 1). GROC builds on top of previous work
in contrastive learning on graphs, aiming to improve graph neural
networks’ robustness against adversarial attacks.

3.1 Background
Consider a graph G = (𝑉 ,𝑿 ,𝑨) with nodes 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛},
the node feature matrix 𝑿 ∈ R𝑛×𝑑 , and the unweighted adjacency
matrix 𝑨 ∈ {0, 1}𝑛×𝑛 . Our goal is to learn high-level representa-
tions (embeddings) of graph nodes 𝒁 ∈ R𝑛×𝑑′ with 𝑑 ′ << 𝑑 . To this
end, we learn a self-supervised encoder 𝑓𝜃 (G) = 𝒁 , where 𝑓 is a
graph neural network parametrized by 𝜃 . We denote the embedding
of node 𝑣 as 𝑓𝜃 (𝑣).

We train 𝑓𝜃 in the graph contrastive learning framework [36,
39, 40] inspired by Chen et al. [2]. The key idea is to treat G as
merely one view on the underlying input graph, not necessarily a
unique one. We then define a family of identity-preserving trans-
formations𝑇 , where two such transformations, 𝜏1, 𝜏2 ∈ 𝑇 map G to
two new views of the same underlying graph, that is 𝜏1 and 𝜏2 do
not change the fundamental structure of G and the node identities.
Therefore, we expect the embeddings of the same node under 𝜏1
and 𝜏2 to be similar. At the same time, we expect the embeddings of
different nodes to be dissimilar across and within two graph views.
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Algorithm 1: Graph Robust Contrastive Learning (GROC)

Input: G = (𝑉 ,𝑿 ∈ R𝑛×𝑑 ,𝑨 ∈ R𝑛×𝑛)
Output: Embedding matrix 𝒁 , for use in a downstream task

1: Initialize the parameters 𝜃 of an 𝑙-layer GNN encoder 𝑓
2: For each node 𝑣 , precompute 𝑉𝑙 (𝑣) and 𝐸𝑙 (𝑣), the set of nodes (resp. edges) within 𝑙 hops of 𝑣 that affect its final embedding
3: for 𝑒𝑝𝑜𝑐ℎ = 1, . . . , 𝑛𝑒𝑝𝑜𝑐ℎ𝑠 do
4: Randomly split 𝑉 in 𝑛/𝑏 batches 𝐵𝑖 of size 𝑏
5: for each batch 𝐵𝑖 do
6: Apply stochastic transformations 𝜏 ′1, 𝜏

′
2 to G to obtain two views, masking features independently with probability 𝑝1 (resp. 𝑝2)

7: 𝑆− ← ⋃
𝑣∈𝐵𝑖

𝐸𝑙 (𝑣) ⊲ Candidate set for edge removal
8: For each 𝑣 ∈ 𝐵𝑖 , 𝑉𝑙 (𝑣) ←

(
(⋃𝑣′∈𝐵𝑖

𝑉𝑙 (𝑣 ′)) \𝑉𝑙 (𝑣)
)
, and 𝑆+ ← {(𝑢, 𝑣) | 𝑣 ∈ 𝐵𝑖 , 𝑢 ∈ 𝑉𝑙 (𝑣)} ⊲ Candidate set for edge insertion

9: Temporarily add 𝑆+ to both views with weights 1/|𝑆+ |, removing them after the next step
10: For both views, apply 𝑓 and compute the contrastive loss as in Eq. (1), considering only the nodes in 𝐵𝑖
11: Backpropagate the loss to obtain a gradient intensity value 𝑔(𝑒) at each edge 𝑒
12: Further transform the views by applying the adversarial transformations 𝜏 ′′1 and 𝜏 ′′2 , where each 𝜏

′′
𝑖
removes 𝑞−

𝑖
· |𝑆− | edges from

𝑆− with the minimal 𝑔(𝑒) and adds 𝑞+
𝑖
· |𝑆+ | edges from 𝑆+ with the maximal 𝑔(𝑒)

13: For both views, apply 𝑓 and compute the contrastive loss as in Eq. (1), considering only nodes in 𝐵𝑖
14: Update 𝜃 by applying gradient descent to minimize the contrastive loss

Let 𝑁𝑒𝑔(𝑣) = {𝜏1 (𝑢) | 𝑢 ∈ 𝑉 \ {𝑣}} ∪ {𝜏2 (𝑢) | 𝑢 ∈ 𝑉 \ {𝑣}} be the
embeddings of nodes other than 𝑣 in both graph views and 𝜎 a sim-
ilarity metric. We can obtain 𝜃 through the following optimization:

argmax
𝜃

E𝜏1,𝜏2∼T


∑︁
𝑣∈𝑉

𝜎 (𝑧1, 𝑧2) −
∑︁

𝑢∈𝑁𝑒𝑔 (𝑣)
𝜎 (𝑧1, 𝑓𝜃 (𝑢))

 ,
where 𝑧1 ≡ 𝑓𝜃 (𝜏1 (𝑣)) and 𝑧2 ≡ 𝑓𝜃 (𝜏2 (𝑣)), and

The above optimization is intractable to solve due to the massive
search space of transformations T and a lack of an optimization
algorithm. We follow the approach of Zhu et al. [39] to tackle
this problem. We realize 𝜎 as the cosine similarity between two
embeddings after being fed through a 2−layer MLP. Sampling two
transformations 𝜏1, 𝜏2 from 𝑇 , we can define a contrastive loss
L(𝑣, 𝜏1, 𝜏2) for each node as follows:

L(𝑣, 𝜏1, 𝜏2) = − log
𝑒𝑥𝑝 (𝜎 (𝑧1, 𝑧2)/𝑡)

𝑒𝑥𝑝 (𝜎 (𝑧1, 𝑧2)/𝑡) +
∑

𝑢∈𝑁𝑒𝑔 (𝑣)
𝑒𝑥𝑝 (𝜎 (𝑧1, 𝑓𝜃 (𝑢))/𝑡)

,

where 𝑡 is a temperature parameter. Finally, to derive a gradient-
based update for 𝜃 , we aim to minimize

1

2𝑛

∑︁
𝑣∈𝑉
[L(𝑣, 𝜏1, 𝜏2) + L(𝑣, 𝜏2, 𝜏1)] . (1)

Zhu et al. [39] and Zhu et al. [40] follow this framework, con-
sidering the transformations that randomly remove a fraction of
edges and randomly mask a fraction of node features with 0. In
GRACE [39], the edges are removed uniformly. In GCA [40], the au-
thors investigate three variants where the edge removal probability
is inversely proportional to the degree-based, eigenvector-based,
or PageRank-based centrality scores of the edge.

3.2 Motivation
While the previously described contrastive learning methods obtain
impressive results on a wide variety of tasks despite having no
access to labels, their accuracy swiftly drops under adversarial
attacks, as we later demonstrate in Section 4.

Recall that the transformations used in contrastive learning aim
to produce a view which is distinct from the input but is also im-
perceptible, i.e., the transformation should not fundamentally alter
its identity, or in the case of graphs, the node identities. For most
domains, various ways to define the notion of imperceptibility
arise naturally, including 𝐿𝑝 norm perturbations and various im-
age transformations. However, properly defining this notion for
graphs is still an open challenge due to their discrete nature. Many
methods resort to independent perturbations of features and edges,
often simply performing random edge removal and random feature
masking. In the context of adversarial defenses, we value transfor-
mations that increase the loss our optimization procedure attempts
to minimize. We find the previously described choices lacking in
this regard, which negatively impacts adversarial robustness. To
partially alleviate this issue, we introduce several improvements to
the choice of transformations 𝜏1, 𝜏2.

3.3 Method
We represent each 𝜏𝑖 ∈ 𝑇 as a composition 𝜏𝑖 = 𝜏 ′

𝑖
◦ 𝜏 ′′

𝑖
. Namely,

we generate two distinct views by first applying stochastic transfor-
mations 𝜏 ′1, 𝜏

′
2, followed by adversarial transformations 𝜏 ′′1 , 𝜏

′′
2 . For

𝜏 ′
𝑖
we simply employ random feature masking. For 𝜏 ′′

𝑖
we employ

two types of edge-based transformations.
First, we perform edge removal as before. However, inspired by

similar methods from other domains, we use the gradient informa-
tion to make a more informed choice of edges to remove. Namely,
we perform one preliminary forward-backward pass after applying
𝜏 ′
𝑖
to obtain the gradients on edges. As we are minimizing Eq. (1),

we remove a subset of edges with minimal gradient values. We
discuss the choice of the number of edges to remove later.

Second, we introduce edge insertion, once again using the gradi-
ent information to choose the edges to insert. However, to obtain
the gradients on the edges from our candidate set for insertion 𝑆+,
we need to include those edges in the graph with a nonzero weight.
Using all absent edges as the candidate set is impractical. To solve
this, we tweak the training procedure by processing the nodes in
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randomized batches of size 𝑏, considering only the nodes in the
current batch (anchors) when constructing 𝑁𝑒𝑔(𝑣) and later Eq. (1).
With this setup, we restrict 𝑆+ to the set of edges (𝑢, 𝑣), where
𝑣 is an anchor node, and 𝑢 is within the 𝑙-hop neighborhood of
some anchor 𝑣 ′ ≠ 𝑣 , but not within the 𝑙-hop neighborhood of 𝑣 .
We temporarily insert all these edges into the graph with weights
1/|𝑆+ |, and after the preliminary pass, remove them, apart from
a subset of edges with maximal gradient values. Note that |𝑆+ | is
upper bounded by 𝑛𝑏, which for small values of 𝑏 is a significant im-
provement over O(𝑛2), and additionally reduces the impact of the
candidate edges on the result of the preliminary pass. Further, we
hypothesize that there is an additional benefit to node batching, as
this greatly reduces the number of negative examples in 𝑁𝑒𝑔(𝑣) for
each 𝑣 , focusing 𝑣 more on its representation in the other view. The
GROC algorithm is illustrated in Fig. 1 and detailed in Algorithm 1.

4 EXPERIMENTS
We provide a preliminary evaluation of GROC on a set of trans-
ductive node classification tasks. In this setting, given a partially
labeled graph, the task consists of learning to fill in the missing
labels. In our self-supervised setup, we first use the features of all
nodes, but notably no labels, to learn high-level representations of
each node. Then, we follow the linear evaluation protocol [33], and
train a simple linear classifier on the produced embeddings, using
the labels of training nodes for supervision.

We report standard classification accuracy and robust accuracy,
so far assuming the threat model of Nettack [41], a common tar-
geted gray-box attack, here used in an evasion setting. We vary
the perturbation budget from 1 to 5 and use a 2-layer GCN [20] as
the surrogate model. The robust accuracy is reported on a set of 10
the most easily attacked nodes (the ones with the lowest surrogate
margin), 10 the least easily attacked nodes, and 20 additional ran-
dom nodes from the test set. In the future, we plan to investigate
additional attack methods, such as RL-S2V [3] or Meta-Attack [42].

For our implementation we use PyTorch [26], heavily relying on
the PyTorchGeometric [6] library. For Nettack, we use the reference
implementation from the DeepRobust [21] library. We perform all
experiments on a single GPU.

4.1 Networks and Datasets
As our encoder 𝑓𝜃 , we use a 2-layer GCN with layer sizes respec-
tively 2𝑛ℎ and 𝑛ℎ , and activation 𝑎𝑐𝑡 , with the concrete values
shown in Table 3. We evaluate on the following five datasets:
• The standard citation network benchmarks Cora, Citeseer
and Pubmed [29], where nodes and edges represent the docu-
ments and the citations between them. We follow the dataset
splits of Kipf and Welling [20] based on the setup of Yang
et al. [35], using 20 nodes per class for training, 500 nodes
for the validation, and 1000 nodes for the test set.
• AmazonPhoto [23], a segment of the Amazon co-purchase
graph. Nodes represent products, and edges imply that two
products are frequently purchased together. We randomly
construct the training and validation sets with 10% of the
nodes each; the remaining nodes constitute the test set.
• WikiCS [24], a dataset of computer scienceWikipedia articles
with edges based on hyperlinks between them. We use all

20 dataset splits provided in the original paper and report
the average results.

To meet our evaluation’s assumptions, we preprocess each dataset
if needed to ensure that the features are binary (thresholding at 0)
and the graph is undirected with no multiple edges.

4.2 Investigated Methods
We compare GROC against two other self-supervised methods,
GRACE [39] and GCA [40]. We show comparisons with the degree-
based variant of GCA (GCA-DE), as we did not observe significant
differences compared to other variants. Furthermore, we evaluate
GRACE-ADV, an extension of GRACE that, instead of removing
edges randomly, uses gradient signals as in GROC. Finally, we
include a fully supervised baseline GCN, where we train the entire
network with the supervision from node labels.

4.3 Hyperparameters
For GCN, we match the setup of Kipf and Welling [20], using a 2-
layer GCN with the hidden layer size of 16. For all self-supervised
baselines we follow the hyperparameter choices from GRACE and
GCA to choose the GCN parameters (𝑛ℎ and 𝑎𝑐𝑡 ), the training
parameters (𝑛𝑒𝑝𝑜𝑐ℎ𝑠 , the initial learning rate for the Adam optimizer
𝜂, and the L2 penalty parameter 𝜆), the contrastive loss temperature
𝜏 , as well as the feature masking rates 𝑝1 and 𝑝2 and the edge
removal rates 𝑞−1 and 𝑞−2 . Notably, for GRACE-ADV we reduce 𝑞−1
and 𝑞−2 on two datasets as necessary to obtain convergence.

For GROC, we use the same set of hyperparameters, again re-
ducing 𝑞−1 and 𝑞−2 as in GRACE-ADV and additionally using signifi-
cantly fewer epochs for training as it converges early. Additionally,
GROC introduces three more hyperparameters: the edge insertion
rates 𝑞+1 and 𝑞+2 and 𝑏, the size of node batches. We experimentally
find that a set of 10 anchor nodes per batch works well across
all datasets. We tune the edge insertion rates separately for each
dataset. In Table 3 we show all hyperparameter choices.

4.4 Results
The results of our experiments are shown in Tables 1 and 2. As
a sanity check, we see that all self-supervised methods achieve
standard accuracy comparable with the supervised GCN. As a sec-
ond sanity check, we see that the accuracy rapidly drops for all
baseline methods as we increase the perturbation budget of Net-
tack from 1 to 5. This confirms that they are indeed susceptible
to adversarial attacks and motivates our focus on building a more
robust self-supervised method.

Notice that GRACE-ADV often shows an improvement in adver-
sarial robustness over the vanilla version of GRACE, demonstrating
the efficacy of introducing adversarial transformations into the
training framework, i.e., removing those edges that hurt the con-
trastive loss the most, instead of randomly.

Finally, we observe that the combination of edge insertion and
adversarial transformations leads to the most robust method overall,
GROC, which consistently boosts the robustness of the baseline
methods. Note that graph attacks often rely heavily on edge inser-
tion1, which explains its importance as part of the transformation
1We further empirically confirm this by directly examining the attacks performed by
Nettack.
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Table 1: The results on Cora, Citeseer and Pubmed datasets. 𝐴𝑐𝑐 denotes standard accuracy, 𝑁 represents the robust accuracy
under Nettack with perturbation budget 𝑁 .

Cora Citeseer Pubmed

Method Acc 1 2 3 4 5 Acc 1 2 3 4 5 Acc 1 2 3 4 5

GCN 81.5 66.0 47.5 39.5 32.5 26.0 68.9 57.5 44.0 39.5 29.5 22.5 79.4 50.0 40.0 33.5 30.5 27.0

GRACE 81.6 63.0 47.5 40.0 30.0 23.5 69.8 61.5 49.5 39.0 33.0 30.5 82.9 49.0 38.5 33.0 30.5 29.0
GCA-DE 82.4 63.5 47.5 39.0 30.0 23.5 68.8 61.5 49.5 39.0 33.0 29.0 83.5 50.5 36.0 31.0 29.5 27.0

GRACE-ADV 82.4 65.5 48.0 41.0 32.0 27.5 70.7 62.5 50.5 38.5 33.0 30.5 84.0 48.5 40.5 36.0 33.5 32.0
GROC 77.0 69.0 58.5 47.5 42.5 37.5 67.6 67.5 58.0 45.5 35.5 30.0 83.3 53.5 43.5 38.5 35.0 32.5

Table 2: The results on AmazonPhoto and WikiCS datasets. 𝐴𝑐𝑐 denotes standard accuracy, 𝑁 represents the robust accuracy
under Nettack with perturbation budget 𝑁 .

AmazonPhoto WikiCS

Method Acc 1 2 3 4 5 Acc 1 2 3 4 5

GCN 91.5 66.0 58.5 49.5 46.0 41.0 77.4 62.1 53.0 47.3 43.8 42.0

GRACE 92.3 71.5 62.5 56.5 53.0 49.0 79.0 63.8 55.6 50.2 45.9 43.6
GCA-DE 91.7 70.0 63.0 57.0 53.0 50.5 79.1 64.8 55.8 50.2 46.0 43.5

GRACE-ADV 91.0 72.0 63.5 56.5 54.5 50.0 79.2 65.2 55.4 50.0 46.6 44.3
GROC 91.3 72.5 64.0 57.5 53.5 50.5 77.5 64.5 57.6 54.0 50.0 47.1

in the contrastive learning setting. GROC is the only method that
learns to incorporate adversarial edge insertion into its representa-
tion, thus allowing for higher adversarial robustness.

4.5 Limitations
While GROC succeeds in improving the adversarial robustness
of graph contrastive learning methods, we point out that more
work is needed, as the robustness of GROC currently comes at a
price. While, due to batching, one epoch carries more information
(and we can thus converge in fewer epochs), the complete training
procedure of GROC takes an order of magnitude longer in total time.
Therefore, we identify the work on optimizing and improving the
method’s performance as an important direction for future work.

Additionally, to make the evaluation thorough and gain more
complete insights into the proposed method’s effects, we plan to
include more datasets, inductive classification settings, and evaluate
the adversarial robustness under a larger set of adversarial attacks.
We further plan to include supervised adversarial defenses [5, 15]
in our evaluation.

5 CONCLUSION
In this work, we focused on the issue of adversarial robustness of
self-supervised learning methods on graphs. We suspected, and
later experimentally confirmed, that the previously introduced con-
trastive learning methods are vulnerable to adversarial attacks. As
a first step towards achieving robustness in this setting, we intro-
duced a novelmethod, GROC, that enhances the generation of graph
views by introducing adversarial transformations and edge inser-
tion. We confirmed that this approach can improve the adversarial

robustness of the produced representations through a preliminary
set of experiments. We hope that this work will ultimately lead to
more successful and more robust contrastive learning algorithms
on graphs.
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