Learning Algorithms with Self-Play: A New Approach to the Distributed Directory Problem

ICTAI ‘21

Oliver Richter, Lukas Rusch, Roger Wattenhofer (ETH Zurich, Switzerland)
Pankaj Khanchandani (Adobe Systems, India)
Distributed Directory
Arrow

[Demmer & Herlihy 1998]
Arrow on Rings
Arvy
Arvy
Arvy
Arvy Performance

\[\sigma = \text{input request sequence} \]

\[\text{Cost}(\sigma) = \frac{\text{Cost of Algorithm}(\sigma)}{\text{Cost of Oracle}(\sigma)} \]

\[\text{Competitive Ratio} = \max_{\sigma} \text{Cost}(\sigma) \]
Arvy Performance

<table>
<thead>
<tr>
<th>Graph</th>
<th>Arvy Protocol</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree</td>
<td>Arrow</td>
<td>O(1)</td>
</tr>
<tr>
<td>Cycles</td>
<td>Bridge</td>
<td>O(1)</td>
</tr>
<tr>
<td>Grids</td>
<td>Arrow</td>
<td>O(√n)</td>
</tr>
</tbody>
</table>
Arvy Performance

<table>
<thead>
<tr>
<th>Graph</th>
<th>Arvy Protocol</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree</td>
<td>Arrow</td>
<td>O(1)</td>
</tr>
<tr>
<td>Cycles</td>
<td>Bridge</td>
<td>O(1)</td>
</tr>
<tr>
<td>Grids</td>
<td>Arrow</td>
<td>O(√n)</td>
</tr>
<tr>
<td>Treewidth = ?</td>
<td>Arvy = ?</td>
<td>?</td>
</tr>
</tbody>
</table>
Route Agent π_A
Request Agent π_σ

... trained to minimize competitive ratio

... trained to maximize competitive ratio
Treewidth