On Consistent Updates in Software Defined Networks

Ratul Mahajan
Microsoft Research

Abstract— We argue for the development of effi-
cient methods to update the data plane state of an SDN,
while maintaining desired consistency properties (e.g.,
no packet should be dropped). We highlight the inher-
ent trade-off between the strength of the consistency
property and dependencies it imposes among rules at
different switches; these dependencies fundamentally
limit how quickly data plane can be updated. For one
basic consistency property—no packet should loop—we
develop an update algorithm that has provably minimal
dependency structure. We also sketch a general archi-
tecture for consistent updates that separates the twin
concerns of consistency and efficiency.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks]: Network Architecture and Design

General Terms: Algorithms

1. INTRODUCTION

From early papers on the topic (e.g., [3, 1, 4, 2]), we
can learn that the primary promises of SDNs were that
1) centralized control plane computation can eliminate
the ill-effects of distributed computation (e.g., looping
packets), and i) separating control and data planes sim-
plifies the task of configuring the data plane in a manner
that satisfies diverse policy concerns. For example, to
eliminate oscillations and loops that can occur in cer-
tain iBGP architectures, the Routing Control Platform
(RCP) [3, 1] proposed a centralized control plane archi-
tecture that directly configured the data plane of routers
in an autonomous system.

4D aimed to simplify network management [4]. It ob-
served that the “data plane needs to implement, in ad-
dition to next-hop forwarding, functions such as tunnel-
ing, access control, address translation, and queuing.” In
today’s networks, this “requires complex arrangements
of commands to tag routes, filter routes, and configure
multiple interacting routing processes, all the while en-
suring that no router is asked to handle more routes and
packet filters than it has resources to cope with.” Based
on this observation, it argues for centrally computing
data plane state in a way that obeys all concerns.

Similarly, ETHANE reasoned that for simplified man-
agement of enterprise networks “policy should deter-
mine the path that packets follow” [2]. It then argued
for SDNs because the requirements of network man-
agement “are complex and require strong consistency,
making it quite hard to compute in a distributed man-

Roger Wattenhofer

ETH Zurich

ner.” These promises have led to SDNs garnering a lot
of attention from both researchers and practitioners.

However, as we gain more experience with this
paradigm, a nuanced story is emerging. Researchers
have shown that, even with SDNs, packets can take
paths that do not comply with policy [10] and that traf-
fic greater than capacity can arrive at a link [5]. What
explains this gap between the promise and these incon-
sistencies? The root cause is that promises apply to
the eventual behavior of the network, after data plane
state has been changed, but inconsistencies emerge dur-
ing data plane state changes.

Since changes to data plane state, in response to fail-
ures, load changes, and policy changes, are an essential
part of an operational network, so will be the inconsis-
tencies. Thus, successful use of SDNs requires not only
methods to compute policy-compliant data plane state
but also methods to change that state in a way that
maintains desired consistency properties.

This paper takes a broad view of this aspect of SDNs.
The key to consistently updating a network is care-
fully coordinating rule updates across multiple switches.
Atomically updating the rules of multiple switches is
difficult and uncoordinated updates can lead to incon-
sistencies such as packet loops and drops. Thus, when
a rule can be safely updated at a switch depends on
what rules are present at other switches, and in some
cases, these dependencies can be circular. By analyz-
ing a spectrum of possible consistency properties and
the dependency structures they induce, we find an in-
herent trade-off. Dependency structures are simpler for
weaker consistency properties and are more intricate for
stronger properties. For instance, simply ensuring that
no packet is dropped does not induce any dependency
amongst switches, but ensuring that no packet sees a
mix of old and new rules [10] makes rules at a switch
depend on all other switches in the network.

We also take a detailed view of a basic consistency
property—no packet loops—and develop two new up-
date algorithms that induce less intricate dependency
structures than currently known algorithms [10]. One
of our algorithms induces provably minimal dependen-
cies.

Motivated by our analysis, we sketch a general ar-
chitecture for consistent network updates. It decouples
across two modules the two concerns that are primary
during network updates: consistency and speed. Given



the consistency property of interest, the first module
computes a correct plan for updating the network. This
plan is represented as a directed acyclic graph in which
nodes are rule updates and edges represent their depen-
dencies. The second module is responsible for quickly
applying the plan based on the properties of the net-
work, e.g. the time for individual switches to apply up-
dates and distances between the controller and switches.
Preliminary experimental results highlight the value of
this architecture as well as open challenges.

2. LOOP FREEDOM

To expose the nuances of consistently updating SDNs,
we focus first on a basic consistency property—Iloop
freedom. As the name suggests, it implies that no
packet should loop in the network. In §3, we will ana-
lyze a broader set of consistency properties.

Consider the five-node network in Figure 1. Assume
that we want to update the routing to Node d from the
pattern on the left to that on the right. A naive method
is to send out all forwarding updates (e.g., ask v to send
packets destined to d to x.) in one shot. However, dur-
ing application of these updates, it might happen that
x updates its rule before y, introducing a routing loop
between = and y. This loop will eventually disappear,
once y updates its rule, but in an asynchronous sys-
tem with possible message delays and losses, we cannot
guarantee when this will happen.

Reitblatt et al.’s procedure [10] can provide loop free-
dom during updates. It relies on ingress nodes stamp-
ing packets with version numbers. Assuming the ver-
sion currently being stamped is k, the procedure works
as follows: i) send new rules at each node applicable
to packets with version k + 1; ii) after all nodes have
acknowledged that they have updated, ask the ingress
nodes to switch to version k + 1; 4ii) after waiting for
a time during which all version k packets should have
left the network, delete the old rules.

This procedure is onerous because it requires that all
nodes be updated (in step i) before new rules become
usable (in step %), which means that delays in updating
even one node will delay the update. However, it also
guarantees a consistency property that is stronger than
loop freedom—each packet is routed entirely using the
old rules or the new rules, and never a mix of the two
sets. We call this property packet coherence in §3.

A natural question is: if we want only loop freedom
(not packet coherence), is there an update procedure
that does not rely on updating all nodes before start-
ing to use any of the new forwarding rules?' This is
not a technicality, as nodes in a production network
can often react slowly, or they may even be temporarily
unreachable via the controller [6]. Thus, solutions in

nterestingly, a majority of the motivating examples in [10]
do not need packet coherence, but need only loop freedom.

which the network can quickly start using as many of
the new forwarding rules as possible, while maintaining
the consistency property, are preferable.

A related, fundamental question is: for a given con-
sistency property, what is the minimal procedure? This
is the question we raise in this paper. While §3 contains
a broader discussion, we describe below two update pro-
cedures for loop freedom. Both have looser dependency
requirements than Reitblatt et al.’s procedure; the first
one is simpler and the second one is in fact minimal.
Vanbever et al. [12] work on a related problem, and
study the migration of a conventional (non-SDN) net-
work to a new IGP protocol. The main differences in
the two settings arise from the fact that they focus on
updating an entire node (i.e., all its forwarding entries),
while we can update individual forwarding entries.

2.1 A simple procedure

Our first procedure can be understood in terms of a
dependency tree in which a node can safely update to
new rules after its parent has switched. Thus, a node
only depends on its ancestors, and any slowdowns else-
where in the network have no impact on its ability to
switch. For simplicity, we first describe our procedures
as if there was a single destination d, and then discuss
the case of multiple destinations. A valid dependency
tree is, for instance, the destination rooted in-tree with
respect to the new set of rules. In this tree, the desti-
nation is the root, and a node c is a child of p iff the
new rule of ¢ points to p. In Figure 1, this is basically
the tree shown on the right.

A simple update procedure then is: start with the
root of a destination-rooted dependency tree and suc-
cessively update the children, pursuing the branches in
parallel. This procedure guarantees loop freedom be-
cause nodes in the dependency tree of the destination
will switch to the new rule only after all downstream
nodes along the new path have switched.

2.2 A minimal procedure

While correct, the procedure above is not minimal.
Observe that v can switch to new rules immediately,
irrespective of whether z (its parent in the destination
tree) is updated; no matter what, packets will end up
at x, with no possibility to experience a loop.

One may wish for the fastest procedure, in the sense
that dependencies are minimum. Surprisingly, this is
not trivial. Consider the example in Figure 2, again
with the old (new) rules on the left (right). Node w
may switch to the new rule immediately, but not nodes
w and v. If they both switch immediately, and w is still
using the old rule, we get a loop. So, one of them must
wait for w to switch. However, either one is fine, i.e.,
either u waits for w and v, w may switch immediately,
or v waits for w and w, w may switch immediately. In
other words, there are two valid dependency trees, one



v v
u X u X u u

* — w, - W -

; ;/ld >c‘f I i A A
% y % y v v u w u w

Figure 1: Illustrating loop freedom

that is fast node u (at the expense of v), and one which
is fast for v (at the expense of w). Thus, the minimum
solution does not exist, and we must instead look for
a minimal solution in which no node can improve its
dependencies without some other node getting worse.

In designing such a solution, we observe that there
may be many nodes that can switch immediately. In
Figure 1, v and y can switch immediately, for different
reasons. We thus expand the concept of a dependency
tree into a dependency forest. As before, children wait
for their parents before switching, but we now have mul-
tiple roots and trees. Our goal is to look for a depen-
dency forest that is minimal in the sense that one cannot
attach a node at an ancestor of its current parent.

In our algorithm, each node is in one of three states,
old, mew, or limbo, depending on whether the node
is guaranteed to only use its old rule or new rule, or
whether it might use both rules, respectively. Since the
destination d does not have any rules, neither old nor
new, it is by definition in state new.

We construct the dependency forest as follows. We
start out with only the old rules, by definition a loop-
free in-tree to destination d. Now, for each node u, we
test whether adding u’s new rule will introduce a loop,
using a loop-detection subroutine (described below). If
not, node u is entering the state limbo, and added as
a root in the dependency forest. On the other hand, if
u’s new rule introduces a loop, node u remains old, and
must wait until we find its parent in the dependency for-
est. The initialization is completed after we processed
all the nodes, and found all the roots (which are now
leaves in our incomplete dependency forest). Next we
add the children to the dependency forest, one after an-
other. In each step, we choose a limbo (dependency
forest leaf) node u. We remove u’s old rule from the
network (putting u in the new state), and then check
upon all the old nodes, trying to find nodes v where the
new rule of v does not introduce a loop (using the same
loop-detection subroutine), thanks to removing u’s old
rule. If we find such a node v, then node v is a child of
u in the dependency forest, and a new leaf of the depen-
dency forest, in limbo state. If no such node v exists,
node u remains a childless leaf of the dependency for-
est. We can show that at least one old node is eligible
for the limbo state, and as such we can always make
progress until all nodes are in the new state.

The loop-detection subroutine can be implemented

Figure 2: Illustrating multiple min-
(82). imal solutions (§2.2).

Figure 3: Illustrating circular de-
pendencies in prefix routing (§2.3).

in various ways, e.g., using Tarjan’s algorithm [11].
But this algorithm does not only detect loops; it finds
strongly connected components. We employ a simpler
solution for loop-detection. Our solution is recursive,
starting at the new rule u.new = v. Nodes are in one of
three states, unknown, seen, and wvisited. Both u,v are
seen, all other nodes are unknown. Now we do a depth-
first search (DFS), starting at v. If the DFS visits w,
depending on the state of w, we do the following: if w
is unknown, we mark w as seen and continue DFS. If w
is visited, we backtrack DFS. If w is seen, we found a
loop. When backtracking to w, we mark w as visited.
If the DFS does not find a loop, and we backtrack all
the way to the starting node v, the network is loop-free
and we can safely add the new rule.

Once a dependency forest is computed, we update
the individual dependency trees in parallel. For this
procedure, we can prove that the computed dependency
forest guarantees loop-freedom and is minimal [9].

2.3 Multiple destinations

While we described the procedures above in terms of
a single destination node, their correctness and opti-
mality hold in the presence of multiple destinations if
rules are per-destination. This setting maps to layer 2
routing, which uses MAC addresses as destinations, or
tunnel-based routing, which users tunnel identifiers as
destinations. (Both large-scale SDNs described in re-
cent literature use tunnel-based routing [5, 6].) Here,
we can compute dependency trees or forests for each
destination separately and apply updates in parallel.

A more complex case is where individual rules con-
trol routing to multiple destinations and different rules
control overlapping sets of destinations. (For non-
overlapping destination sets, the situation is similar to
above; replace destination sets with a virtual destina-
tion.) This situation can emerge in prefix-based routing
and longest-prefix matching. In this case, no (loop-free)
dependency forests may exist. Consider, for instance,
the network in Figure 3. Each node has two rules: one
for itself as the destination and one default rule (which
will cover the other two destinations). In the old rout-
ing, default rules point clockwise. In the new routing,
they point counter-clockwise. Now, no matter which of
the new default rules is changed first, we immediately
cause a loop for some destination. We can capture such
circular dependencies using rule dependency graphs. We



None Self Downstream Downstream Global
subset all
Eventual Always
. guaranteed
consistency

Drop Impossible Add before
freedom remove
Memory Impossible Remove before

limit add

Loop Impossible (Lemma 6 ) Rule dep. forest Rule dep. tree

freedom (82.2) (§2.1)

Packet Impossible (Lemma 7 ) Per-flow ver. Global ver.
coherence numbers numbers [10]
Bandwidth Impossible (Lemma 8 ) Staged partial

limit moves [5]

Table 1: Some basic consistency properties (rows) and their dependencies (columns). Proofs of lemmas are in [9].

discuss how to handle them in §4, after getting a better
understanding of the consistency space.

3. CONSISTENCY SPACE

Thus far, we have focused on loop freedom; we now
take a broader view of the range of consistency proper-
ties. Table 1 helps frame this view. Its rows correspond
to consistency properties. We defined loop freedom and
packet coherence in §2; the others are:

Eventual consistency No consistency is provided
during updates. If the new set of rules computed by the
controller are consistent (by any definition), the network
will be eventually consistent.

Drop freedom No packet should be dropped during
update. Drops will occur if a switch lacks a rule to
handle a packet and, for scalability, it is not configured
to send unmatched packets to the controller [5, 6].

Memory limit The number of rules that a switch
is required to hold is always below a certain limit. A
natural limit is the physical capacity of the flow table,
but other limits may also be enforced.

Bandwidth limit The amount of traffic arriving at
a link should not exceed a certain limit. Physical link
capacity is a natural limit, but other limits may be in-
teresting as well (e.g., margin for burstiness). The limit
must be maintained without dropping traffic; otherwise,
we can trivially meet any limit.

The consistency properties we list are not the only
ones of interest. Some networks may require different
properties (e.g., balanced load across two links), and
some others may require guarantees that combine two
or more properties (e.g., packet coherence + memory
limits [7]). We chose these consistency properties be-
cause they are basic and natural, capturing the basic
expectations of the experience of packets and network
elements.

The consistency properties are listed in rough order
of strength, and satisfying a property lower on the list
often (but not always) satisfies a property above it. Ob-
viously, packet coherence implies drop and loop freedom
(assuming that the old and new rules sets are free of

drops and loops). Perhaps less obviously, bandwidth
limits imply loop freedom because flows in a loop will
likely surpass any bandwidth limit.

However, these properties cannot be totally ordered.
Packet coherence and bandwidth limits are orthogonal,
as packet coherence does not address bandwidth, and
bandwidth limits can be achieved with solutions beyond
packet coherence. Drop freedom and loop freedom are
also orthogonal. In fact, trivial solutions for one violates
the other—dropping packets before they enter a loop
guarantees loop freedom, and just sending packets back
to the sender provides drop freedom but creates loops.

The columns in Table 1 denote dependency struc-
tures. They capture rules at which other switches must
be updated before a new rule at a switch can be used
safely. Thus, the dependency is at the rule level, not
switch level; dependencies are often circular at switch
level—a rule on switch u depends on a rule on v, which
in turn depends on w for other rules. Further, the de-
pendency captures when a new rule can be installed and
used safely, not when an old rule can be safely removed.
Even after all new rules are being used, the rule set in
the network may not be the same as the new rule set;
additional (unused) rules may still exist. Such rules will
be removed in a clean-up phase. The safe usage time of
a new rule is important because it determines when the
network is carrying traffic in the new pattern (which
may have been necessitated by a failure).

The different structures in Table 1 are:

None The rule does not depend on any other update.
Self The rule depends on updates at the same switch.

Downstream subset The rule depends on updates
at a subset of the switches that lie downstream for im-
pacted packets.

Downstream all The rule depends on updates at all
switches that lie downstream for impacted packets.

Global The rule depends on updates at potentially
all switches, even those not on the path for impacted
packets.

These dependency structures are qualitative, not
quantitative (e.g., time it takes for the update), but



in general, update procedures with fewer dependencies
(i.e., to the left) are preferable. The cells in Table 1
denote whether a procedure exists to update the net-
work with the corresponding consistency property and
dependency structure. We can prove that certain com-
binations are impossible [9]. For example, packet co-
herence cannot be achieved in a way that rules depend
on updates at only a subset of downstream switches.

As we can see, weaker consistency properties (towards
the top) need weaker dependency structures (towards
the left). At one extreme, eventual consistency has no
dependencies. Slightly stronger properties, drop free-
dom and memory limit, have dependencies on other
rules at the switch itself. A simple procedure for drop
freedom is to add the new rule in the switch before the
old rule is removed. When installed with higher priority,
the new rules become immediately usable, without wait.
A simplistic method for maintaining memory limits is
to remove an old rule on the switch before adding the
new rule. But this method may cause drops or loops.

At the other extreme, maintaining bandwidth limit
requires global coordination. The intuition here is that
maintaining bandwidth limits at a link requires coor-
dinating all flows that use it, and some of these flows
share links with other flows, and so on. Hong et al. [5]
describe a procedure to effect such transitions by mov-
ing flows partially across multiple stages.

Interestingly, all cells to the immediate right of im-
possible cells are occupied, which implies that, across
past work and this paper, qualitatively optimal algo-
rithms for maintaining all these consistency properties
are known. However, this does not imply that finding
consistent update procedures is a “solved problem,” for
three reasons. First, some networks may need different
properties, for which effective procedures or even best-
case structures are unknown (e.g., load balancing across
links and maintaining packet ordering within a flow).

Second, even for the properties in Table 1, the pic-
ture looks rosy partly because the table focuses on
consistency properties in isolation. The combinations
are hard to ensure, and efficient algorithms are not
known. For instance, drop freedom and memory limit,
while easy to ensure individually, are challenging to en-
sure in combination. Maintaining the combination re-
quires global dependencies, as introducing some rule
at a switch might need to remove another rule first,
which can only be removed after having added a new
rule somewhere else.

Third, the table only shows the qualitative part of
the story and ignores quantitative effects that may be
equally important. Even though [10] and [5] both have
global dependencies, [10] can resolve the dependencies
in two rounds, whereas [5] may need more stages. Be-
cause of these reasons, what is presented in this paper is
just the tip of iceberg for consistent updates in SDNs.

Network
characteristics

Routing Consistency
policy property

Rule Update plan Update Plan optimizer
generator generator DAG and executor

Figure 4: Proposed architecture

4. AN ARCHITECTURE FOR SDN UPDATES

We have argued that maintaining consistency dur-
ing rule updates is a key hurdle towards realizing the
promise of SDNs. The question is: how can we accom-
plish this in a flexible, efficient manner? A straightfor-
ward possibility is for the same software module (con-
troller) to decide on new rules and then micro manage
the update process in a way that maintains consistency.
This monolithic architecture is undesirable because it
mixes three separable concerns— 4) the rule set should
policy-compliant; i7) rules updates should maintain the
desired consistency property; i) the updates process
should be efficient, which depends intimately on net-
work characteristics (e.g., the mean and variance of ap-
plying an update to a switch).

We propose an alternative architecture (Figure 4)
with three parts, one for each concern above: i) the rule
generator produces policy-compliant rules; i) the up-
date plan generator produces a plan for applying those
rules in a way that ensures consistency; and iii) the plan
optimizer and executor executes the plan efficiently.?

We represent the update plan using an update DAG
(directed acyclic graph) in which nodes are updates (i.e.,
rule additions, deletions, or changes) and directed edges
are dependencies between updates. Updates that do not
have an inbound edge can be implemented immediately.

Using only updates as nodes does not capture all
types of dependencies. Safe application of some updates
requires time delays; e.g., in [10], rules with old version
numbers can be removed only after time to drain in-
transit packets has elapsed. Further, some updates may
have dependencies such that they can be applied when
any one of their parents have been applied; e.g., switch
the rules of node v in Figure 2 such that u.old = w and
u.new = d. Then, in order to prevent a loop, node v
must wait for either v or w, not both.

To generally handle such dependencies, we introduce
combinator nodes into the update DAG. Current com-
binators include delay and logical functions. A delay
combinator is considered applied (i.e., its dependent up-
dates can be now applied) after the specified time has
elapsed since its parent updates were applied. A logical
combinator is a logical function (e.g., AND or OR) over
the binary state (applied or not) of its parents. It is

2In analogy to programs, compilers, and runtimes, the first
part declaratively specifies the desired network state, the
second produces instructions to safely update the network,
and the third part executes the instructions efficiently, tak-
ing into account the properties of the underlying hardware.



considered applied when the function evaluates to true.
These two combinators suffice to efficiently represent
update plans for all procedures in Table 1; future work
may uncover the need for additional combinators.

The update plan generator proceeds in two steps.
It first computes, using the old rules, new rules, and the
desired consistency property, a rule dependency graph
where nodes correspond to deletion of old rules or ad-
dition of new rules. It then converts this graph into
an update DAG such that, starting from the old rules,
applying the DAG leads to new rules.

This second step is straightforward if the graph is
cycle-free; otherwise, we must break cycles. How this
should be done depends on the consistency property,
but a few general tools exist. One is using version num-
bers [10], which help when a new rule must wait for an
old rule to be removed. Introducing version numbers
makes it clear which of the (otherwise) conflicting rules
should be used. As an extension, if one is not willing
to wait for a rule to be inserted, additional informa-
tion (similar to source routing) may be embedded in
the packet as to how it should be handled downstream
and the circular dependency vanishes.

Another tool for breaking cycles is using helper up-
dates, which exist in neither the old or new rule sets
but help with consistent updates. SWAN’s staged par-
tial moves [5] can be expressed using helper updates
that move subsets of flows to avoid overloading any link.
Circularity due to prefix-based routing (§2.3) can also
be broken using helper updates. In Figure 3, we can
eliminate the cycle by breaking a single (default) rule
into one for each of the two destinations covered by the
default rule, introducing these rules during the update
process and then removing them later.

The plan executor applies the update DAG cor-
rectly and quickly. In deciding the order and timing
of updates, it needs to factor in several concerns, in-
cluding the delays from the controller to the switch, the
mean and variance of the time a switch takes to apply
an update, and limiting load on a switch. Further, in
some cases, the update DAG may contain a long chain
of dependencies. In the worst case, with n nodes in
the network, the chain can be O(n) long (e.g., ensuring
loop freedom for changing direction in a ring network.)
Long chains may be shortened, for instance, using ver-
sion numbers. Alternatively, we may also introduce a
new primitive in switches by which a switch informs its
dependents when it is safe to apply an update, which
would enable updates to be done without O(n) round
trip exchanges with the controller. Developing efficient
algorithms for applying update DAGs, while accounting
for all these concerns, is a rich area for future work.
Sometimes, in the middle of forwarding state changes,
we may need to change the network to yet another state
(e.g., due to a failures). Such events are easier to han-

100% i - I l ;
]
80% I I I 6

60% s

40% .
2
20% ul
u0

0%

1221 1239 1755 3257 3967 6461
Figure 5: Chain lengths in update DAGs in six Rocket-
fuel topologies. The z-axis label denotes the ASN.

dle in our architecture. The rule generator can compute
the new state of the network, without worrying about
the current, transient state. The plan executor knows
the current state of the network, with some small uncer-
tainty that corresponds to update messages that have
been sent to the switches but have not been acknowl-
edged. Using this state as the starting point, the plan
generator can generate a new update DAG, which may
cancel out updates in the old DAG. Then, the plan ex-
ecutor can start applying this new update DAG.

5. PRELIMINARY EVALUATION

We have a preliminary implementation of the archi-
tecture above. Our focus thus far has been loop freedom
and the update DAGs that emerge for it. In one exper-
iment, we took Rocketfuel ISP topologies with intra-
domain routing weights [8]. We considered link failures
in these topologies, and our goal was loop free network
updates from pre- to post-failure least-cost routing.

Figure 5 plots the distribution of the length of de-
pendency chains that emerge across ten trials, where
a randomly selected link was failed in each, and up-
date DAGs were computed using the procedure in §2.2.
We see that roughly half of the updates depend on 0
or 1 other switch, and 90% of all rules are dependent
on at most 3 other switches. In contrast, had we used
Reitblatt’s procedure [10], which ensures the stronger
property of packet coherence, rules would have had to
wait for all other switches (well over a hundred in some
cases), and a single slow switch can impede everyone.

We also see a small fraction of cases with chain
lengths greater than 5. These are prime candidates for
implementation through localized chain shortening op-
timizations by the plan executor.

6. SUMMARY

We argued that consistent updates in SDNs is an im-
portant and rich area for future research. We high-
lighted the trade-off between the strength of the con-
sistency property and the dependency structure it im-
poses, and developed minimal algorithms for loop free-
dom. We also sketched an architecture for consistent
and quick updates in SDNs.



7. REFERENCES

[1]

[7]

8]

[10]

[11]

[12]

M. Caesar, D. Caldwell, N. Feamster, J. Rexford,
A. Shaikh, and J. van der Merwe. Design and
implementation of a routing control platform. In
NSDI, 2005.

M. Casado, M. J. Freedman, J. Pettit, J. Luo,

N. Mckeown, and S. Shenker. ETHANE: taking
control of the enterprise. In SIGCOMM, 2007.

N. Feamster, H. Balakrishnan, J. Rexford,

A. Shaikh, and K. van der Merwe. The Case for
Separating Routing from Routers. In SIGCOMM
Workshop on Future Directions in Network
Architecture (FDNA ), 2004.

A. Greenberg, G. Hjalmtysson, D. A. Maltz,

A. Myers, J. Rexford, G. Xie, H. Yan, J. Zhan,
and H. Zhang. A clean slate 4D approach to
network control and management. In SIGCOMM
CCR, 2005.

C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang,
V. Gill, M. Nanduri, and R. Wattenhofer.
Achieving high utilization with software-driven
WAN. In SIGCOMM, 2013.

S. Jain, A. Kumar, S. Mandal, J. Ong,

L. Poutievski, A. Singh, S. Venkata, J. Wanderer,
J. Zhou, M. Zhu, J. Zolla, U. Holzle, S. Stuart,
and A. Vahdat. B4: Experience with a
globally-deployed software defined WAN. In
SIGCOMM, 2013.

N. P. Katta, J. Rexford, and D. Walker.
Incremental consistent updates. In HotSDN, 2013.
R. Mahajan, N. Spring, D. Wetherall, and

T. Anderson. Inferring link weights using
end-to-end measurements. In Internet
Measurement Workshop, 2002.

R. Mahajan and R. Wattenhofer. On consistent
updates in software defined networking (extended
version). Technical Report MSR-TR-2013-99,
Microsoft Research, 2013.

M. Reitblatt, N. Foster, J. Rexford,

C. Schlesinger, and D. Walker. Abstractions for
network update. In SIGCOMM, 2012.

R. E. Tarjan. Depth-first search and linear graph
algorithms. SIAM J. Comput., 1(2):146-160, 1972.
L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois,
and O. Bonaventure. Lossless migrations of
link-state IGPs. IEEE/ACM Trans. Netw., 2012.



	Introduction
	Loop Freedom
	A simple procedure
	A minimal procedure
	Multiple destinations

	Consistency space
	An architecture for SDN updates
	Preliminary evaluation
	Summary
	References

