
Improving Raft When There Are Failures
Short Paper

Christian Fluri
Distributed Computing Group

ETH Zurich
Zurich, Switzerland

fluric@student.ethz.ch

Darya Melnyk
Distributed Computing Group

ETH Zurich
Zurich, Switzerland

dmelnyk@ethz.ch

Roger Wattenhofer
Distributed Computing Group

ETH Zurich
Zurich, Switzerland
wattenhofer@ethz.ch

Abstract—This paper investigates the Raft consensus algorithm
in the presence of failures. We are especially interested in how
the single failures - link failures, isolation and partition - affect
the running time of the leader election, which is an important
building block of Raft. Our tests show that such failures are
non-negligible. We therefore propose new timeout policies which
can improve the performance of Raft.

Index Terms—fault tolerance, Raft, network partition, consen-
sus

I. INTRODUCTION

When introducing the CAP theorem [2], Eric Brewer con-
vincingly argued that real world systems should also respect
availability. Since then, the distributed systems community is
not only focusing on consistency, but also the other two letters
in “CAP”: partition tolerance and availability.

Various newer protocols have emerged, some allowing
byzantine failures, others allowing more benign failures such
as crash failures. Systems that only allow crash failures provide
weaker correctness guarantees, but in reality they show better
performance. The biggest impact on the crash-failure side
was made by the Raft protocol [11]. By now hundreds of
implementations of Raft exist.

In this paper we ask how efficient Raft really is in light
of different failure scenarios. In particular we look at (i) link
failures, (ii) isolated servers, and (iii) full network partitions.
We introduce a novel extension of Raft: ReplicaRV, which we
compare the original Raft simulation.

II. BACKGROUND

The first state replication algorithm that could deal with
server and link failures was Paxos [7]. This algorithm did
however not get much attention until a new and simplified
version of it was presented in [8]. Since then, Paxos was
extended to different versions of Multi-Paxos [5], [9], [12]
which all dealt with more clients. However, the Paxos protocol
has been argued to be difficult to understand and the algorithm
therefore exists today in many simplified writeups, e.g. [10].
In 2013, the Raft consensus algorithm was introduced in [11]
where the authors claimed to have significantly simplified the
state replication for multiple requests and multiple servers.

It can be argued that Raft is just another implementation of
Multi-Paxos. Instead of leaving the timing issue as an exercise
to the user, Raft describes the timing of messages in great
detail, and as such is directly implementable. Several similar
approaches exist [1], [4], [6]; PiChain [3] for instance has a
similar timing behavior as Raft, with the additional advantage
that it does not need any explicit leader election, and as such
may be robust during server isolations and partitions. In this
paper we concentrate on Raft which seems to be the most
popular implementation as of today.

A. Short Introduction to Raft

The Raft consensus algorithm simplifies the well known
Paxos algorithm by introducing leaders who are allowed to
dictate the state of the system in contrast to the the two-
phase commit of Paxos. In the following, we only present
the five main ideas of the protocol that are needed for further
understanding of this paper. For more details the interested
reader is referred to the original paper [11].

1) Leader Election: A server can be in one of the three
states: follower, candidate and leader. At the very beginning,
each server starts as a follower. It waits until it either receives
a heartbeat message from a leader or its local clock reaches a
timeout. A server that has reached a timeout tries to become
the leader and therefore transforms to a candidate state. A
candidate initiates a leader election by asking each server for
its vote. All servers must give their vote to the first valid
candidate that requests it. A candidate becomes a leader as
soon as it gets a quorum of the votes, which must be more than
half of all the possible votes. In order to update every server
about the end of the election and to prevent new timeouts, the
leader starts to repeatedly send a heartbeat to all other servers.
Potential candidates will return to the follower state once they
receive a heartbeat from a current leader.

2) Terms: The time of the algorithm is divided into terms
and it is a local integer value stored at the server. In order
to initiate a leader election, a candidate will increment its
term number and claim to be the leader of this new term.
As the whole environment is asynchronous, two servers do
not necessarily have an equal term number at the same global
time. Whenever a server receives a message with a newer term,
it will update its own term to the newer one and become a978-1-5386-8489-4/18/$31.00 ©2018 IEEE

follower. This way, there will be only one possible leader in
a given term. We use terms as a measure of efficiency in this
paper.

3) Log Replication: After a leader is elected for a given
term, the log replication can begin. Whenever a client sends
a command to a server, this server will redirect it to the
current leader. The leader will append the command to its
own log and try to replicate this log entry to all its followers.
As soon as half of the servers have appended this command
and answered positively to the leader, the command will be
committed and the leader can apply the command to its state
machine. A committed command will eventually be executed
on all servers.

At all times a follower has to check if its previous log entries
coincide with the leader before it appends a new entry from
the leader. If this is not the case, the follower will delete all
entries up to the most recent coinciding one, then stepwise ask
for the missing messages and append them. By continuing like
this, the followers will eventually have the same log entries as
the leader. Every log entry contains the term number at which
it was appended to the leader’s log and an increasing index
number to identify its positions.

4) Consistency: In order to maintain consistency of the
committed commands among the servers and clients, a server
which does not contain all the committed log entries has to be
prevented from winning an election. The followers therefore
only vote for candidates that are consistent with all their
committed log entries. Since the committed entries are already
present in the majority of the servers, only candidates with all
committed log entries have a chance to win an election. With
these restrictions it can be shown that none of the committed
entries will be deleted again and eventually all the committed
entries will be executed on every server.

5) Messages: For the Raft implementation only four mes-
sage types are required:

• RequestVote: A message sent by a candidate to initiate
an election and to ask every server for its vote. The reply,
which contains a positive or negative vote, is denoted by
RequestVoteReply.

• AppendEntry: A message responsible for the log replica-
tion between the leader and its followers. Whenever a log
entry has to be added at the follower, the leader sends an
AppendEntry message which contains one log entry. Then
the follower will send an AppendEntriesReply message to
the leader to verify that it appended the entry. If there is
no more log entry to be added, the leader sends an empty
AppendEntry message which serves as a heartbeat.

B. Our Contributions

The running time of the Raft protocol depends on the
number of terms needed for a successful leader election. Link
failures, isolation of a single server and network partition can
however influence the number of rounds needed to select a
leader as we will explain next.

1) Link Failures: In practice, links between servers can
have a non-negligible failure rate. In such an environment
many leader elections fail due to the lack of received Re-
questsVotes and RequestVoteReplies and the chance for a
candidate to win a leader election decreases. The original
algorithm has no mechanism to effectively react to this is-
sue and thereby the whole progress is significantly slowed
down with higher failure rates. As there are two successfully
received messages needed for one vote – RequestVote and
RequestVoteReply – we expect a non-linear increase of the
required terms for a leader election for increasing failure rates.

2) Isolation: A server that gets isolated from the rest of
the system might influence the other servers in different ways.
Assume that the isolated server is the leader of the current
term and its messages can reach the remaining nodes. Such
a leader can append new entries to the other server’s log but
it will not know if its followers could successfully append
them. Without feedback, the leader cannot commit any new
commands but also the followers will keep receiving heartbeats
and will thus not initiate a new election, which results in a
deadlock. An isolated server that is in a candidate or follower
state can also interrupt the progress. As the isolated server
does not receive any AppendEntry messages from the others,
it will repeatedly timeout, increase its term and start a new
leader election. Therefore, it might interrupt the progress of
the system by forcing other servers to update their term and
restart as followers. Consequently, other servers have to find
a new leader and commit new log entries before the isolated
server initiates the next leader election.

3) Partition: In a network it can also happen that some
part of the servers get completely cut off from the rest
and cannot communicate with the other part at all. In this
case the partitions will run two separate leader elections
simultaneously. Note however that only the partition with the
majority of the servers can be successful.

In this paper we analyze how much the failures affect the
running time of the protocol and suggest new ways in which
additional and more adaptive timeouts can improve the running
time of Raft.

III. IMPLEMENTATION

In order to keep the implementation simple, we imple-
mented Raft following the instructions in [11]. We run the
simulation on one machine. Therefore, we created all server
processes as independent threads and let them communicate
via sockets.

As programming language we have chosen Python 3.6,
since it provides a threading library with a fair distributed
scheduling in terms of CPU allocation. The library used for
the asynchronous messaging is ZeroMQ.

For our implementation we needed to guarantee that the
messages are sent and received in a fair way and in as little
time as possible. In order to also achieve scalability, we
decided to place a socket listener in front of each socket. For
each socket listener there has to be a new thread generated
that constantly performs a blocking socket-read. Whenever

it receives some message, it restarts the reading process and
places the received message in a queue. The server can then
listen to the messages in the queue in a FIFO (First In First
Out) manner.

Threads are essential to provide concurrency in a distributed
system. For every server we therefore use one main thread
which reads the message queue and reacts according to the
messages, i.e. it sends a reply to the leader. Additionally, there
is one thread for each socket and a thread for each timeout that
is needed to warn a server in case of a timeout. This works
analogously for the clients.

For the simulation of link failures a stochastic bidirectional
model is used, e.g a link failure of 0.1 means that every
message on that specific link is lost with a probability of 10%.

IV. EVALUATION

In this section we will address the three issues of the Raft
protocol that were pointed out in Section II-B and discuss how
they may be resolved.

1) Link Failures: We analyze the algorithm with non-
negligible failures between the servers as described in Sec-
tion II-B1. Therefore we compare the two policies, Replica
RequestVote and Replica AppendEntry, with the original im-
plementation.

We built a naive policy called Replica RequestVote, or short
ReplicaRV, which dynamically deals with failures. The idea is
to send the RequestVote and the corresponding reply messages
several times. The number of times a message is sent is equal
to the number of terms that passed since the last known leader
was active, e.g. if the candidate starts an election in term 4
and its last known leader was active in term 1, it sends each
message 3 times.

With this policy some elections may still fail, but with
increasing number of terms the messages are sent so frequently
that at least one of the messages is expected to reach its
recipient.

Figure 1 shows that without ReplicaRV the number of re-
quired terms increases non-linearly with respect to the number
of general link failures. With ReplicaRV the number of terms
remains considerably lower. We can conclude that even a quite
naive mechanism like ReplicaRV significantly improves the
leader election.

2) Isolated server: We first consider the case where the
isolated server starts as the leader. In order to resolve a
deadlock in this case we add the following new mechanism:

• Commit Timeout: We add an additional timer to the
leader which will timeout whenever no more log entries
(if existing) have been committed within a certain time
interval. This kind of timeout indicates that the leader
cannot access a majority of the servers anymore and this
server is forced to give up its leadership and restart as a
candidate.

In fact, this policy works for any isolated cluster, consisting
of a minority of servers, including a leader. Due to the lack
of progress, the isolated leader will always be reset to the

0.0 0.1 0.2 0.3 0.4 0.5
link failure probability

0

5

10

15

20

te
rm

s
fo
r
e
le
ct
io
n

without ReplicaRV

with ReplicaRV

Fig. 1. The impact of the Replica RequestVote on an election with non-
negligible link failures (timeouts: 0.1-0.15[s], servers: 10, 200 trials)

candidate state after some time and thereby enable the non-
isolated servers to find a new leader. On the other hand a
successful leader will rarely be reset as it is able to commit
new entries. Therefore, the Commit Timeout does not interfere
with normal configurations.

The second case consists of an isolated candidate. One
solution to prevent interruptions by such a server is the so
called LastLeaderTerm Policy. To the already existing safety
requirements in the leader election, which guarantee the last
log entry of the candidate to be at least up to date, a new
requirement is added and checked first. Each RequestVote
has to contain the LastLeaderTerm which is the last term
the candidate has seen a leader. The server that receives this
RequestVote message first checks if its own LastLeaderTerm
is higher. If this is the case, the server will reject this message
by just sending a negative reply and it will not update its term.
If the LastLeaderTerm of the candidate is higher or equal, the
follower proceeds with the RequestVote as normal. However,
this policy violates the safety guarantees of Raft and cases
can be created that end up in a dead-lock with just one server
failure. Consequently, the LastLeaderTerm Policy should only
be applied to followers that currently receive heartbeats from
a viable leader, i.e. the LastLeaderTerm is equal the current
term. With this restriction it can be shown that the safety
requirements are still met.

3) Partition: We consider the network partition problem for
a small number of 10 servers. For a large number of servers,
the simulation effort increases such that the leader election
cannot be finished successfully anymore. Therefore, instead
of increasing the number of servers, we can try to make the
lower and upper timeout bounds tighter, e.g. if we halve the
timeout interval, the density of timeouts will be doubled. This
simulates a situation where the timeout interval remains and
the number of servers gets doubled.

In Figure 2 we simulate 10 servers with a varying number
of servers that are cut off and vary the upper bounds on the
timeouts. The results show that the election time continuously

0 1 2 3 4
number of servers cut off

1

2

3

4

5
te
rm

s
fo
r
e
le
ct
io
n

timeout: 0.1-0.1125[s]

timeout: 0.1-0.125[s]

timeout: 0.1-0.15[s]

timeout: 0.1-0.2[s]

Fig. 2. Comparison between different timeout intervals (10 servers, 200 trials)

increases as the timeout interval gets halved. For a certain time
interval, the election time seems to increase even more and the
algorithm will start to become unstable at a certain point. This
can be explained by the increasing timeout density, when the
timeout bounds get tighter.
The number of servers to be simulated seems to be limited for
a fixed timeout interval. When the number of servers is too
high, the upper timeout boundary needs to be increased. Raft
has no dynamic timeout adjustment yet and therefore most
certainly will not work fluently for a large number of servers.
To deal with this issue, we introduce two possible approaches:

• increaseTimeout: Each server remembers the last leader
term and counts the consecutive terms without a leader.
Every time there is a new term without a leader, it
increases its upper bound of the timeout by the original
interval length of the timeout (upper bound minus lower
bound). This way the interval increases linearly until a
new leader is found. This can be done as well with an
exponential increase of the boundary, but the method
proved to perform worse in our experiments.

• increaseCandidateTimeout: The candidate counts the
number of positive and negative votes it has received.
Then it adapts its upper timeout bound for the next
timeout according to the ratio between the positive and
negative replies. Thus, candidates with many negative
votes get handicapped in the next timeout by a larger
timeout interval. On the other hand, the candidates with
a lot of positive votes get a tighter timeout interval.
This strategy gives an advantage to the more promising
candidates.

Figure 3 compares the performance of Raft with the in-
troduced policies. We used 10 servers and a tight timeout
boundary of 0.1-0.10625[s] where we varied the partition size.
The graph shows a significant impact of the two policies. Both
policies have a positive effect on the performance whenever
a larger percentage of the servers gets cut off. The two
policies together seem to improve the progress even more,
which indicates that the policies are not making the same

0 1 2 3 4
number of servers cut off

2

3

4

5

6

7

te
rm

s
fo
r
e
le
ct
io
n

no improvement

increaseCandidateTimeout

increaseTimeout

increaseTimeout and
increaseCandidateTimeout

Fig. 3. Comparison between the different timeout policies (timeouts: 0.1-
0.10625[s], 10 servers, 200 trials)

improvements.

A. Discussion

The original Raft algorithm revealed some severe problems
in configurations with link failures and isolated servers. These
problems could be resolved efficiently by adjusting the timeout
lengths and adding new timeouts for leaders, enabling a leader
to resign from its current position. The partition remains the
most involved issue. It is still not clear how well the algorithm
works with a larger number of servers as our simulation does
not provide a reliable answer.
One possible solution is to directly increase the upper timeout
boundary linearly as the number of servers increase. This
way the timeout density stays the same and we assume that
it remains likely to find a leader, even for a large number
of servers. The election time will not increase either as the
change of having an early timeout remains roughly the same.
However, there will be servers with large timeouts that would
slow down the algorithm and make it less prone to failures.

REFERENCES

[1] Mahesh et al. Balakrishnan. CORFU: A Shared Log Design for Flash
Clusters. NSDI’12.

[2] Eric Brewer. CAP Twelve Years Later: How the ”Rules” Have Changed.
Computer, 45(2), February 2012.

[3] Conrad Burchert and Roger Wattenhofer. piChain: When a Blockchain
meets Paxos. OPODIS 2017, pages 2:1–2:13.

[4] Mike Burrows. The Chubby Lock Service for Loosely-coupled Dis-
tributed Systems. OSDI ’06.

[5] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. Paxos
Made Live: An Engineering Perspective. PODC ’07.

[6] James C. et. al Corbett. Spanner: Google’s Globally-Distributed
Database. OSDI ’12, pages 261–264.

[7] Leslie Lamport. The Part-time Parliament. ACM Trans. Comput. Syst.,
16(2), 1998.

[8] Leslie Lamport. Paxos made simple. 2001.
[9] David Mazieres. Paxos Made Practical. 2009.

[10] Meling, Hein and Jehl, Leander. Tutorial Summary: Paxos Explained
from Scratch. Springer International Publishing, 2013.

[11] Diego Ongaro and John Ousterhout. In Search of an Understandable
Consensus Algorithm. USENIX Association, 2014.

[12] Robbert Van Renesse and Deniz Altinbuken. Paxos Made Moderately
Complex. ACM Comput. Surv., 47(3), 2015.

