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ABSTRACT
Deep learning-powered iterative combinatorial auctions (DL-ICA)
are auctions that utilize machine learning techniques. Unlike tra-
ditional auctions, bidders in DL-ICA do not need to report the
valuations for all bundles upfront. Instead, they report their value
for certain bundles iteratively, and the allocation of the items is
determined by solving a winner determination problem. During
this process, the bidder profiles are modeled with neural networks.
However, DL-ICA may not always achieve the optimal winner
allocation due to the relatively low number of reported bundles,
resulting in reduced economic efficiency. This paper proposes an
algorithm that uses active learning for initial sampling strategies
to improve the resulting economic efficiency (social welfare). The
proposed algorithm outperforms previous studies in real-world
combinatorial auction models across various domains while using
fewer samples on average.
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1 INTRODUCTION
Traditional auctions only allow bidders to bid on individual items,
which can result in the exposure problem. For example, consider
an auction for advertisement slots on a TV channel where a bidder
needs three consecutive slots to broadcast a 30-second commercial.
If the first two slots have unexpectedly high prices due to intense
competition, the bidder may not have enough funds to acquire the
third slot, rendering the first two slots useless and decreasing the
social welfare of the auction. Combinatorial auctions (CA) allow
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bidders to bid on bundles of items to avoid the exposure prob-
lem [1, 3, 6], but the bundle space grows exponentially with the
number of items, making it impossible for bidders to report their
full value function. To address this issue, iterative algorithms have
been developed [5, 8], which interact with bidders and ask for a lim-
ited number of bundles in each round. However, these algorithms
may not always lead to the optimal allocation, resulting in reduced
economic efficiency.

Our work builds on previous research in deep learning-powered
iterative combinatorial auctions (DL-ICA) [12] and proposes a mod-
ification of the machine learning-based elicitation algorithm by
selecting a set of initial bundles more efficiently in order to improve
the efficiency of the final allocation. Previous studies have used
uniform random sampling for the initial request [2, 4, 12]. Uniform
sampling is a simple and straightforward method for selecting ini-
tial bundles in combinatorial auctions, but it has a fundamental
limitation: it does not take into account the complexity of the bid-
der’s valuation of different bundles. Since the bundle space can
be exponentially large, a random sample of bundles is unlikely
to explore the entire space and may not include bundles that are
highly valued by bidders. This can lead to a poor quality of elicited
valuations and, consequently, a suboptimal allocation.

Active learning is a solution that can significantly reduce the
amount of labeled data needed to train a model [10, 13]. In active
learning, the machine learning algorithm selects the most informa-
tive data points from a pool of unlabeled data points, and asks an
annotator to label them [11]. In DL-ICA, active learning allows the
algorithm to select the most informative bundles to ask the bidders
about. By doing so, the algorithm can gain a better understanding
of the bidder’s valuation function with fewer queries compared
to uniform sampling. This can lead to a more accurate and com-
plete estimation of the bidder’s valuation function, resulting in
a higher probability of finding an optimal allocation. Therefore,
active learning is a promising approach to improve the efficiency
of the elicitation process in combinatorial auctions.

Specifically, we propose a new algorithm, Greedy Active Learn-
ing on Input Values (GALI), which uses a greedy approach [14] to
select the most informative initial bundles in DL-ICA. Our contri-
bution is significant because it addresses an important challenge
in combinatorial auctions: improving economic efficiency while
reducing the number of bundles required from bidders. By using



Table 1: Comparison of Uniform Sampling (UF) and Greedy Active Learning on Input Values (GALI) in the LSVM and GSVM
models. The results “Average #Queries” and “Max #Queries” are measured per bidder. The value in parantheses in the Efficiency
column is the standard deviation of the efficiency.

Model Sampling Technique Average #Queries Max. #Queries Average #Iterations Max. #Iterations Efficiency in %

GSVM UF 39.7 49.6 4.6 10.0 97.95 (0.32)
GALI 37.2 45.5 3.9 8.4 99.18 (0.20)

LSVM UF 50.9 57.2 5.0 10.3 96.80 (0.41)
GALI 47.5 52.3 4.0 8.8 97.55 (0.32)

machine learning combined with active learning techniques, our
proposed algorithm achieves better results than previous studies.

2 GREEDY ACTIVE LEARNING ON INPUT
VALUES (GALI)

The goal of GALI is to ensuremaximumdiversity among the bundles
initially queried. To determine which bundle to query, the active
learning algorithm proposed by [13] iterates over all unlabeled
bundles in the pool and computes their distance to the closest
labeled bundle. The next bundle to be queried is then the bundle
with the greatest distance to the closest labeled bundle. Since the
size of our bundle space grows exponentially with the number of
items (for each item, you can either take it or not take it), finding
the next bundle to sample would lead to an exponential number
of computations. We propose to frame this problem as a set of
integer linear programs (ILPs), which can then be computed with
an efficient ILP-solver. Let𝑚 be the number of items, X = {0, 1}𝑚
the bundle space and 𝑆 ⊂ X the set of already sampled bundles. The
main idea is that for every sampled bundle 𝑠 ∈ 𝑆 , we want to find
some 𝑥 ∈ X\𝑆 that is furthest away from 𝑠 but still not closer to any
other bundle in 𝑆 \ 𝑠 . We need to find this bundle without iterating
over all the bundles in X. The following ILP (1) accomplishes this
by exploiting the structure of X and using a linearized notion of
the distance norm.

argmax
𝑥∈X

𝑚∑︁
𝑗=1

𝑥 𝑗 + 𝑠 𝑗 − 2𝑥 𝑗𝑠 𝑗

s.t.
𝑚∑︁
𝑗=1

𝑥 𝑗 + 𝑠 𝑗 − 2𝑥 𝑗𝑠 𝑗 ≤
𝑚∑︁
𝑗=1

𝑥 𝑗 + 𝑠′𝑗 − 2𝑥 𝑗𝑠′𝑗 ∀𝑠′ ∈ 𝑆. 𝑠′ ≠ 𝑠

𝑥, 𝑠 ∈ {0, 1}𝑚

𝑠′ ∈ {0, 1}𝑚 ∀𝑠′ ∈ 𝑆. 𝑠′ ≠ 𝑠

(1)

To determine all the bundles that should be queried from the bidders,
GALI starts with a random bundle. It then iteratively solves the
ILP (1) for each labeled bundle in the bundle space, where the next
bundle to be queried is the one with the largest distance to its
nearest already labeled bundle. Since the total number of bundles
to be queried from the bidders is mostly constrained by the finite
time the bidders have to properly evaluate them, this algorithm is
able to terminate with a relatively small overhead compared to the
uniform sampling approach. In particular, the bidder’s bundle bids

are not used to decide the next sample, so the bidders could submit
all of their bids at the end instead of being queried in each iteration.

3 EXPERIMENTAL EVALUATION
We evaluate our approach on two well-known auction models,
Global Synergy Value Model (GSVM) [7] and Local Synergy Value
Model (LSVM) [9], both of which include bidder profiles with re-
gional and national bidders. GSVMmodels an auction with 18 items
and 7 bidders, 6 regional and one national bidder. The items are ar-
ranged in two circles, a national circle with 12 items and a regional
circle with 6 items. The national bidder is interested in all of the
items in the national circle, while the regional bidders are interested
in 2 items in the national circle and 4 items in the regional circle.
LSVM consists of 18 items and 6 bidders. As in GSVM, one of them
is of national type, while the others are regional bidders. For each
model, we run 51 different instances. All hyperparameters were
kept consistent across both sampling strategies and were set accord-
ing to the optimal values found by [12]. The results are summarized
in Table 1. GALI is able to consistently outperform the UF baseline
in both auction models in terms of efficiency achieved. It even does
so while using on average fewer samples and fewer iterations.

4 CONCLUSION
This paper presents a novel approach to the initial sampling strategy
of the machine learning-based elicitation algorithm of Brero et
al. [5], with the aim of improving economic efficiency. The approach
involves the use of active learning to acquire initial bundle-value
pairs, specifically through the method of Greedy Active Learning on
Input Values (GALI). The experiments show that the use of GALI can
lead to higher efficiency in the allocation of goods for the GSVM and
LSVM auction models while requiring fewer bundles to be queried
from the bidders. In future work, it may be useful to explore other
active learning methods and evaluate their potential for improving
the efficiency of DL-ICA. In addition, further research could be
conducted to determine the optimal number of initial bundle-value
pairs required to achieve the desired level of efficiency. It may also
be worthwhile to consider how the proposed modification to the
iterative phase of the elicitation algorithm could be further refined
or combined with other techniques to improve performance.
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