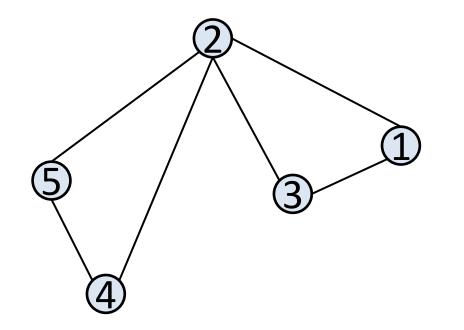
Networks Cannot Compute Their Diameter in Sublinear Time

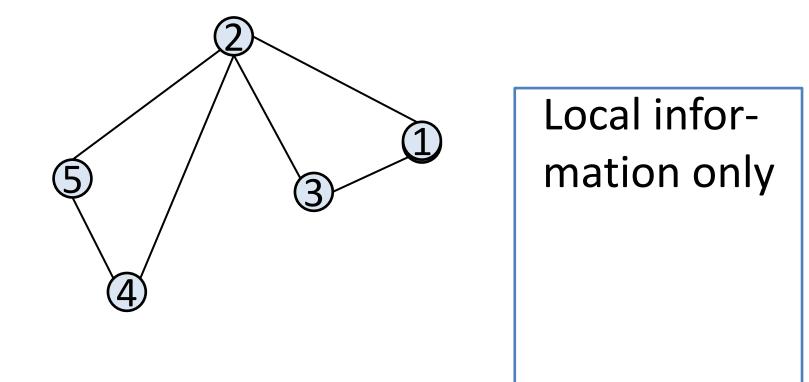
Stephan Holzer

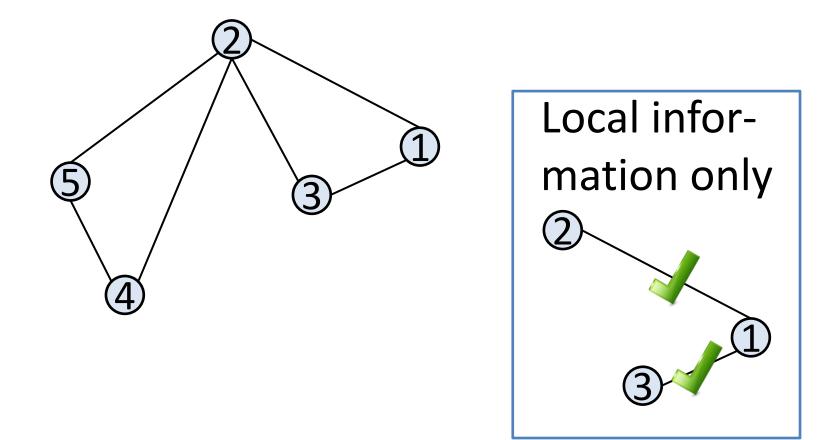
Silvio Frischknecht

Roger Wattenhofer

ETH Zurich – Distributed Computing Group

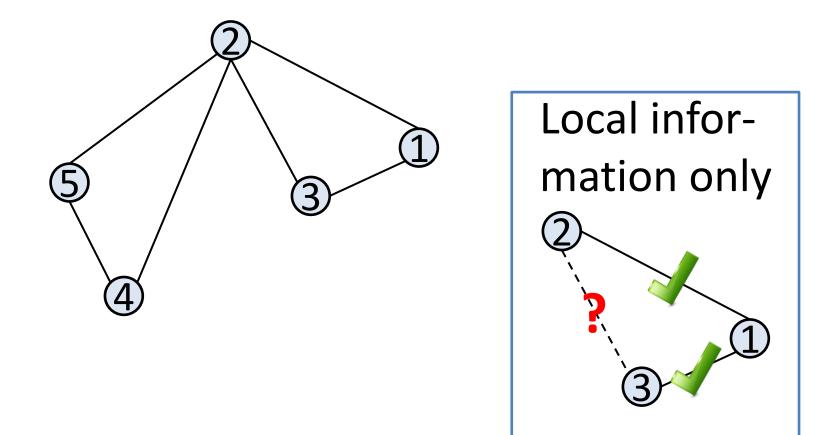


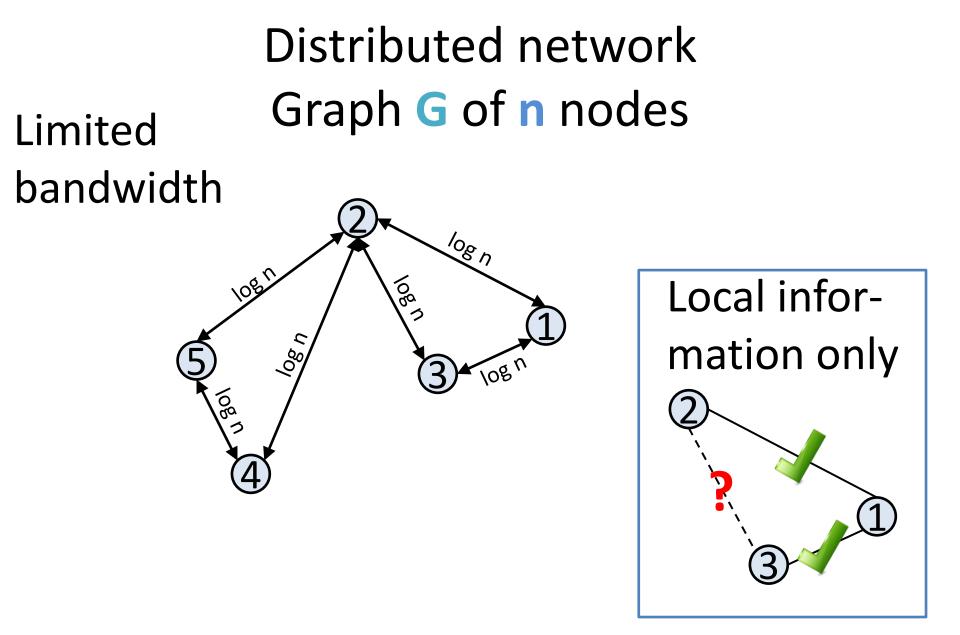


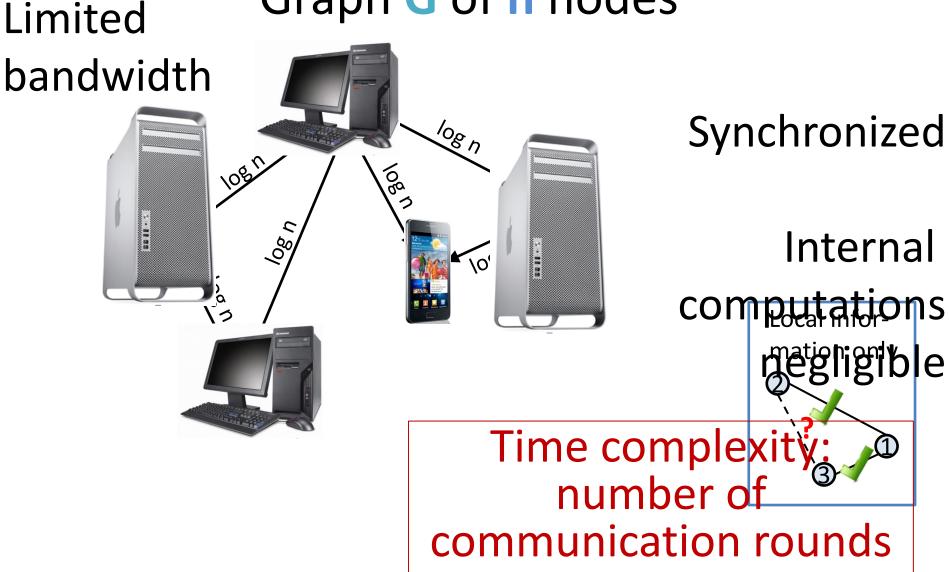


Slide inspired by Danupon Nanongkai

ETH Zurich – Distributed Computing Group

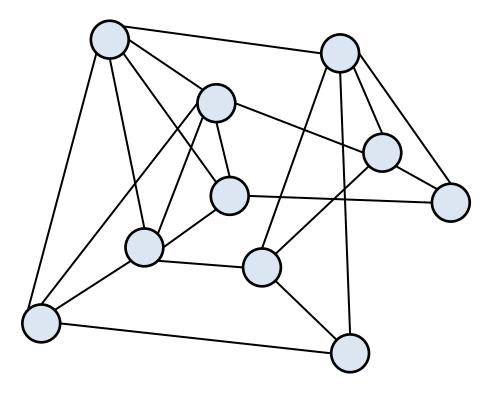




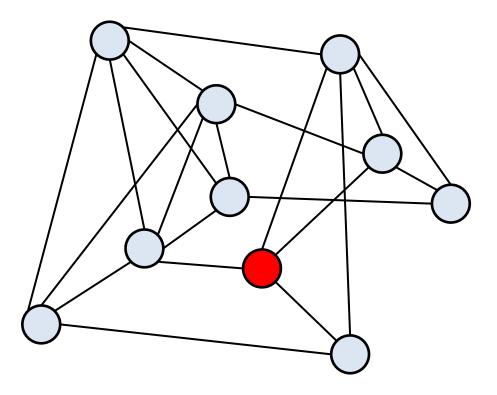


Stephan Holzer

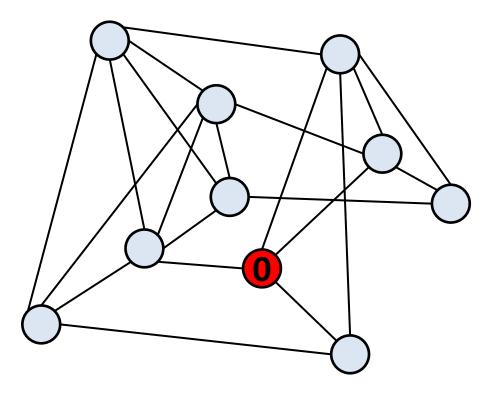
Distributed algorithms: a simple example



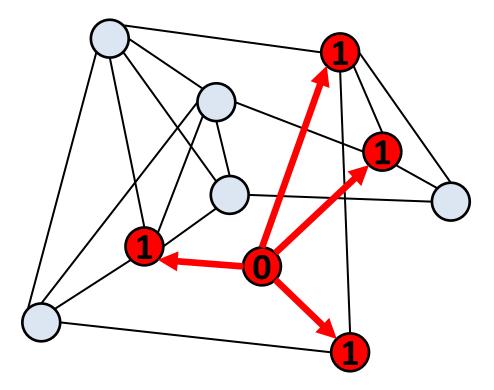
1. Compute BFS-Tree

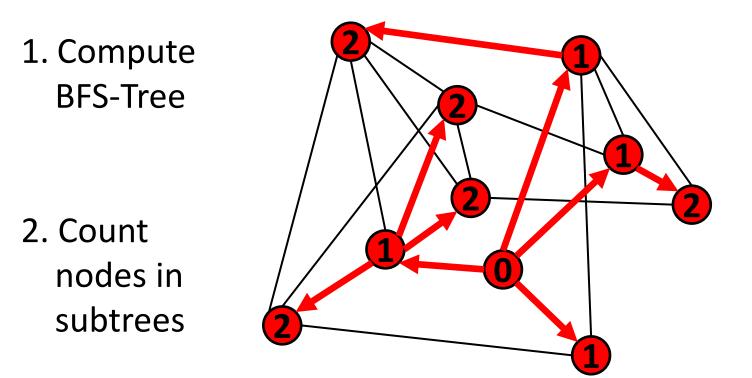


1. Compute BFS-Tree

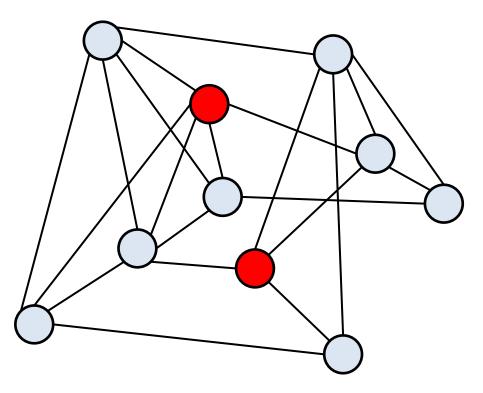


1. Compute BFS-Tree

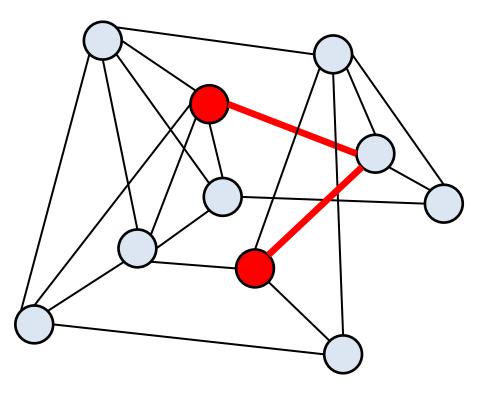




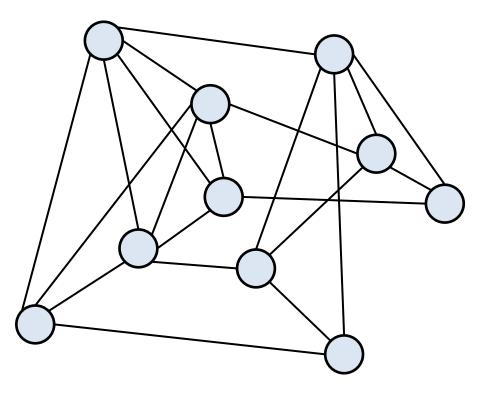
Runtime: Diameter



• **Distance** between two nodes = Number of hops of shortest path

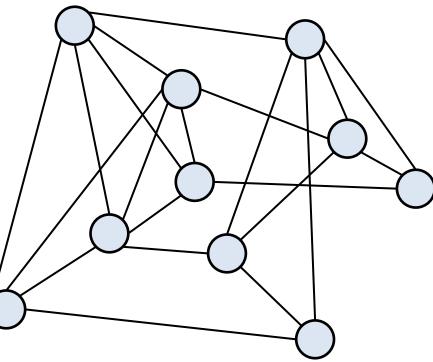


• **Distance** between two nodes = Number of hops of shortest path



- Distance between two nodes = Number of hops of shortest path
- **Diameter** of network = Maximum distance, between any two nodes

Diameter of this network?



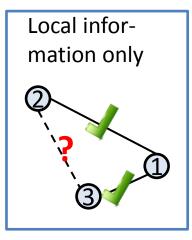
- Distance between two nodes = Number of hops of shortest path
- **Diameter** of network = Maximum distance, between any two nodes

- Spanning Tree Broadcasting, Aggregation, etc
- Minimum Spanning Tree Efficient broadcasting, etc.
- Shortest path Routing, etc.
- Steiner tree Multicasting, etc.
- Many other graph problems.

Thanks for slide to Danupon Nanongkai

- Spanning Tree Broadcasting, Aggregation, etc
- Minimum Spanning Tree Efficient broadcasting, etc.
- Shortest path Routing, etc.
- Steiner tree Multicasting, etc.
- Many other graph problems.

Global problems: Ω(D)



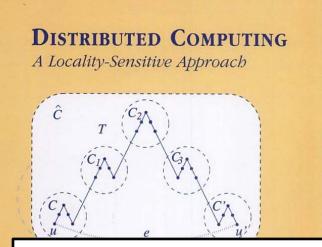
- Maximal Independent Set
- Coloring
- Matching

- Maximal Independent Set
- Coloring
- Matching

• Local problems:

runtime independent of / smaller than D e.g. O(log n)

• Diameter appears frequently in distributed computing



measuring the distance between u and w looking at G as an unweighted graph, i.e., it is the minimum number of hops necessary to get from u to w.

17

Throughout, we denote $\Lambda = \lceil \log Diam(G) \rceil$.

In a weighted graph G, let $Diam^{un}(G)$ denote the unweighted diameter of G, i.e., the maximum unweighted distance between any two vertices of G.

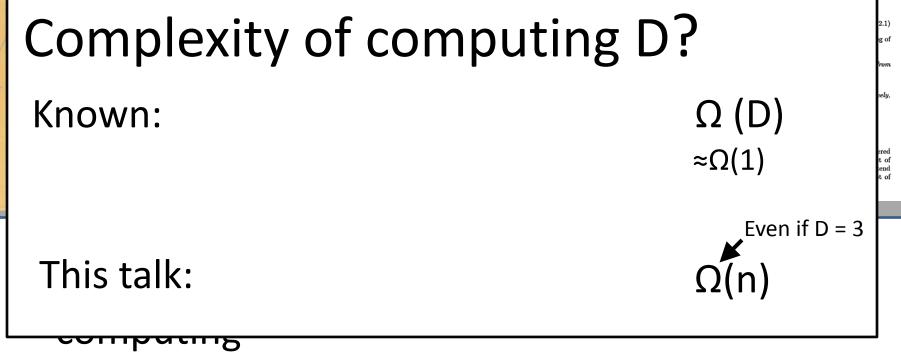
Definition 2.1.2 [Radius and center]: For a vertex $v \in V$, let Rad(v, G) denote the distance from v to the vertex farthest away from it in the graph G:

 $Rad(v, G) = \max_{w \in V} \{dist_G(v, w)\}.$

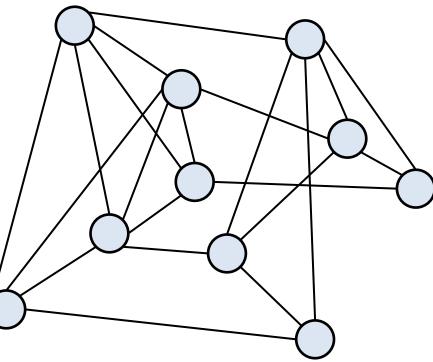
Let Rad(G) denote the radius of the network, i.e.,

 $Rad(G) = \min_{v \in V} \{Rad(v, G)\}.$

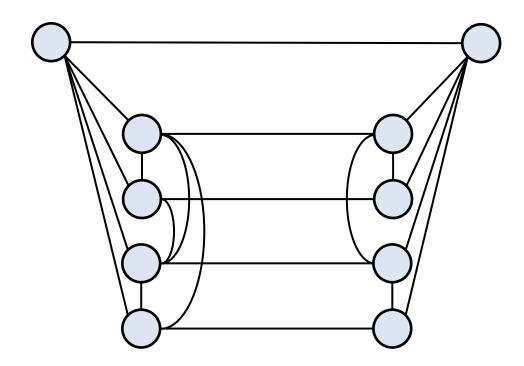
A center of G is any vertex v realizing the radius of G (i.e., such that Rad(v, G) = Rad(G)). In order to simplify some of the following definitions, we avoid problems arising from 0diameter or 0-radius graphs, by defining Rad(G) = Diam(G) = 1 for the single-vertex

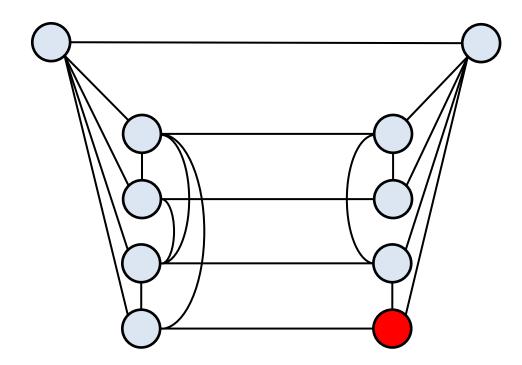


Diameter of this network?



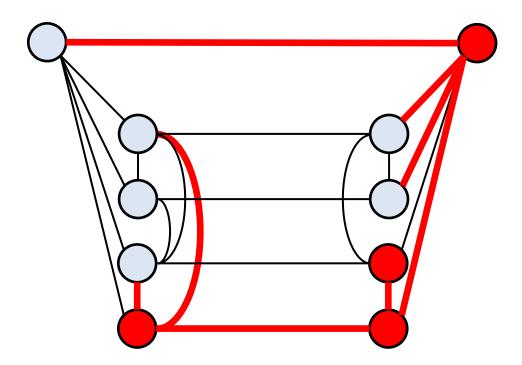
- Distance between two nodes = Number of hops of shortest path
- **Diameter** of network = Maximum distance, between any two nodes





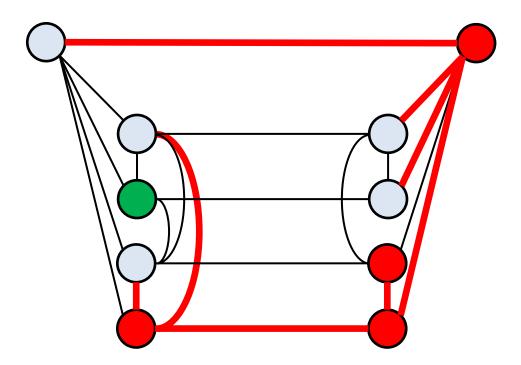
ETH Zurich – Distributed Computing Group

Stephan Holzer

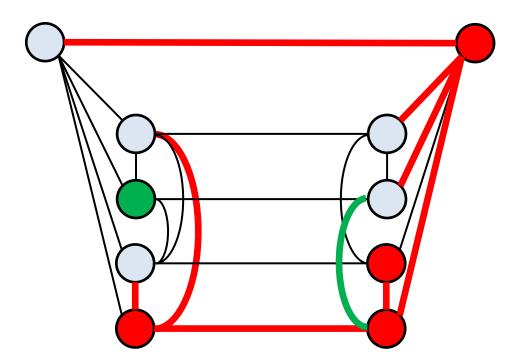


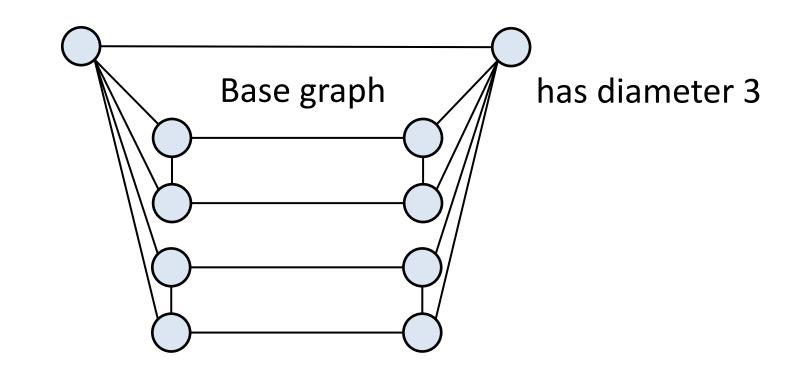
ETH Zurich – Distributed Computing Group

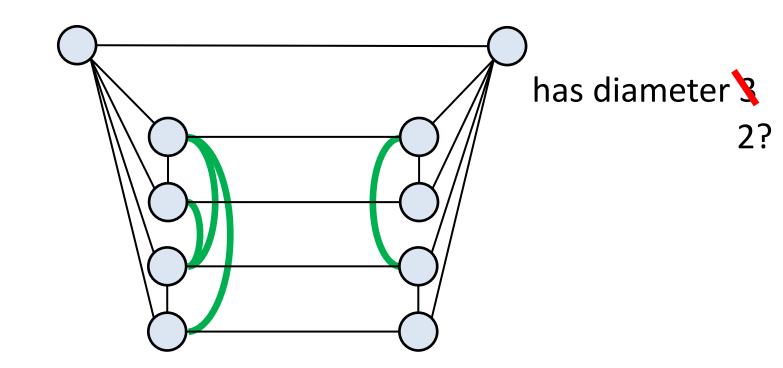
Stephan Holzer



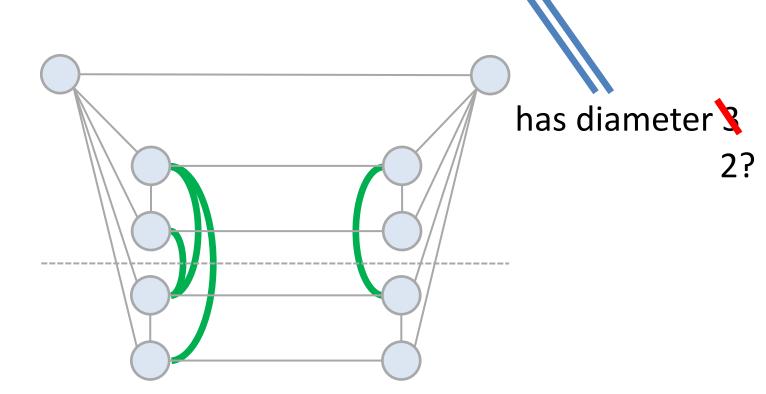
ETH Zurich – Distributed Computing Group



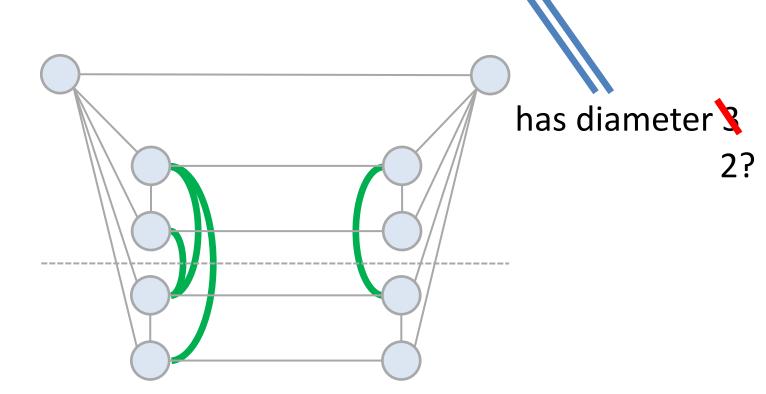




Pair of nodes not connected on both sides?

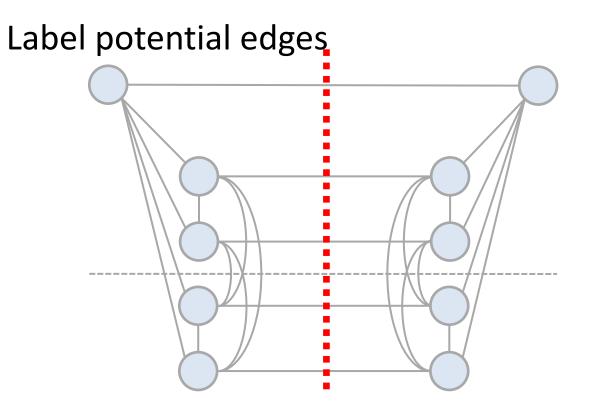


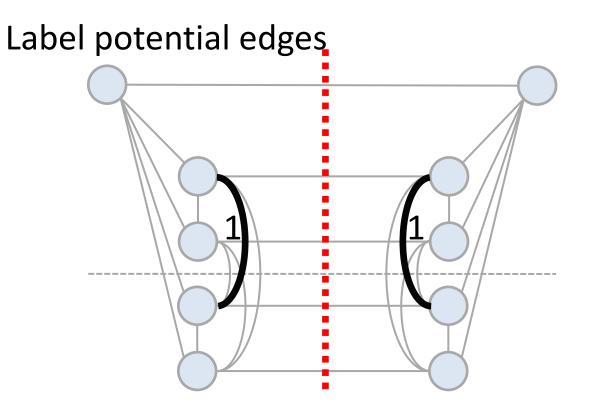
Pair of nodes not connected on both sides?

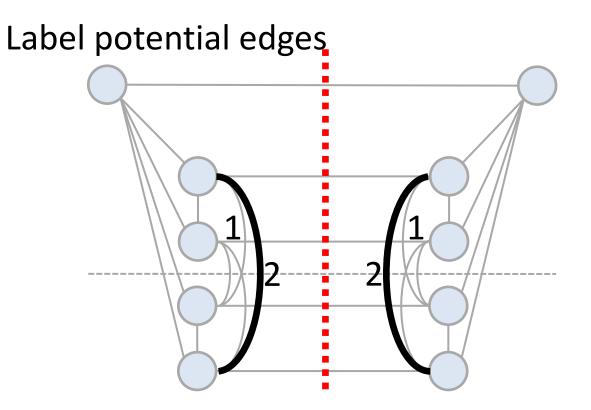


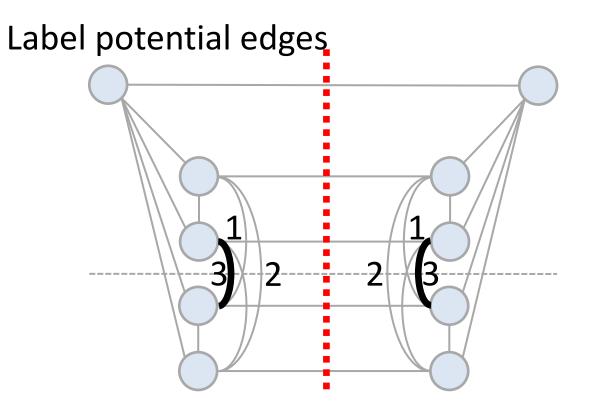
Pair of nodes not connected on both sides?

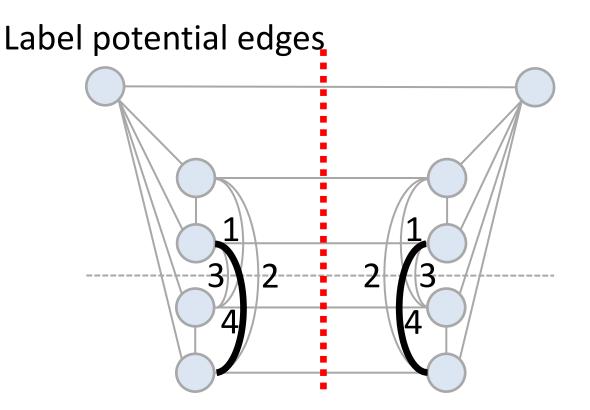
Now: slightly more formal

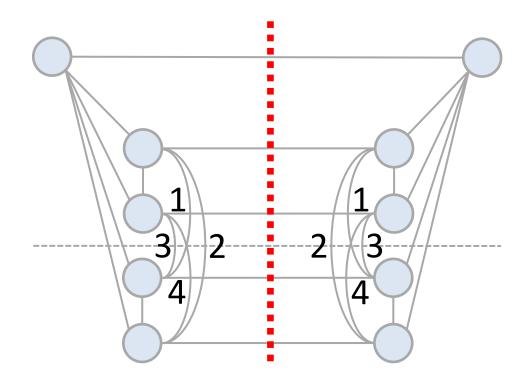


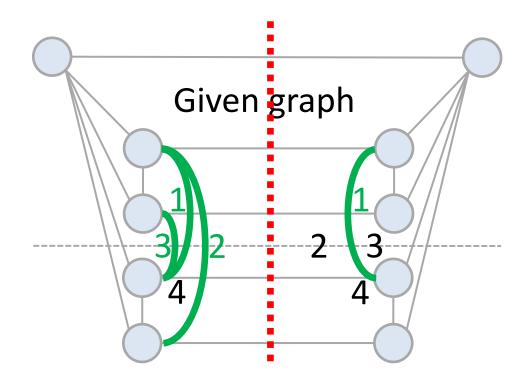




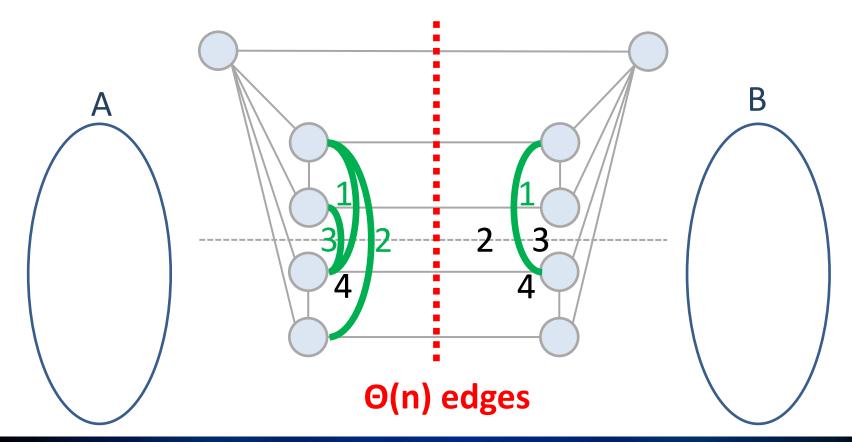




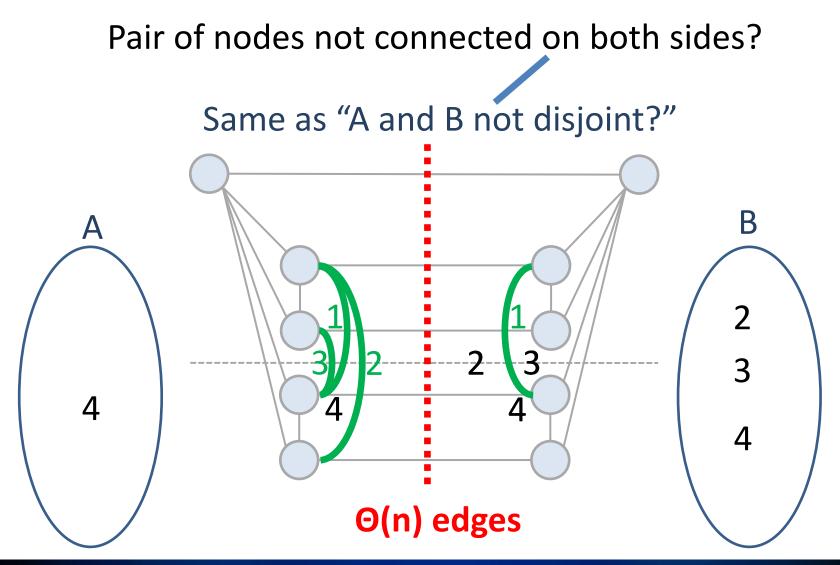




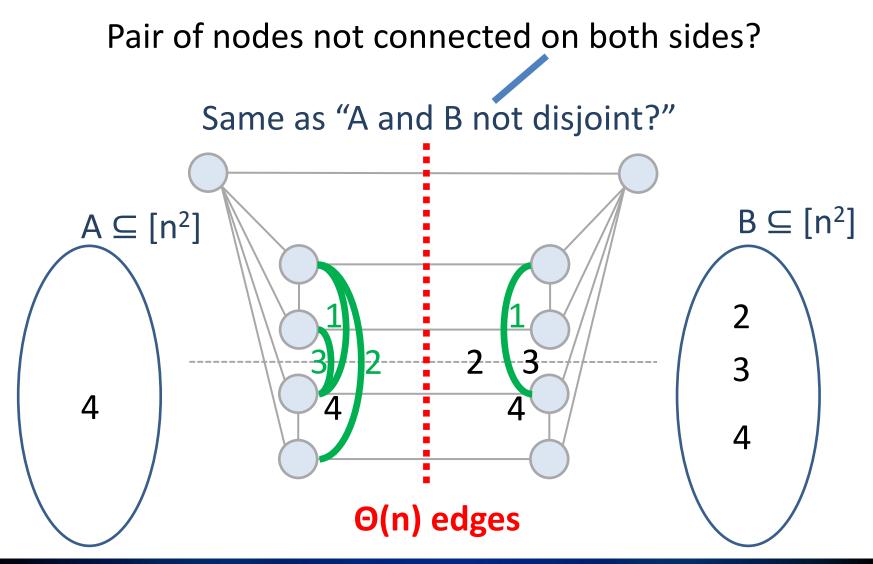
Pair of nodes not connected on both sides?



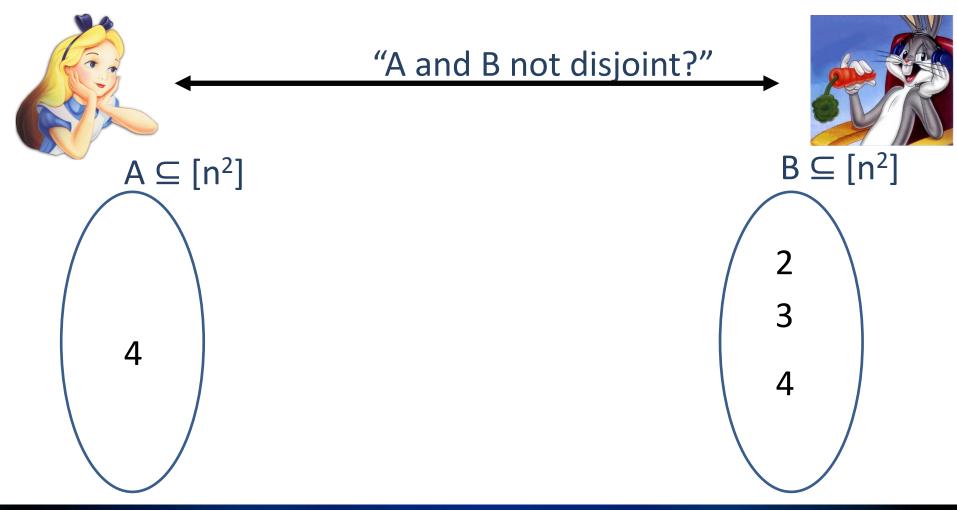
ETH Zurich – Distributed Computing Group



ETH Zurich – Distributed Computing Group



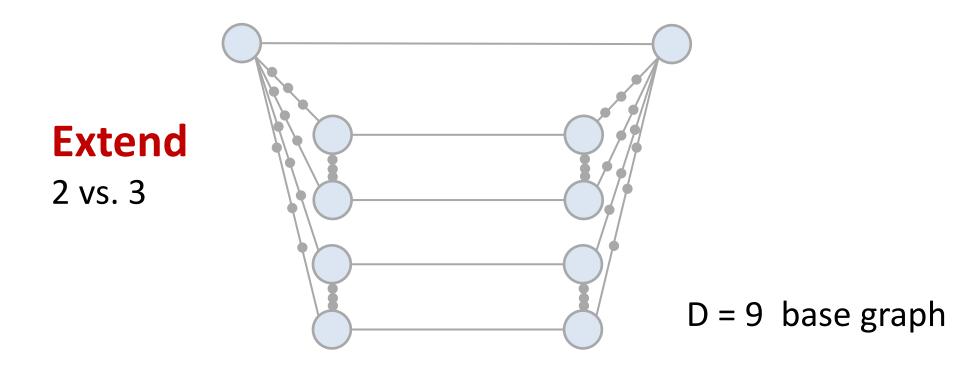
ETH Zurich – Distributed Computing Group

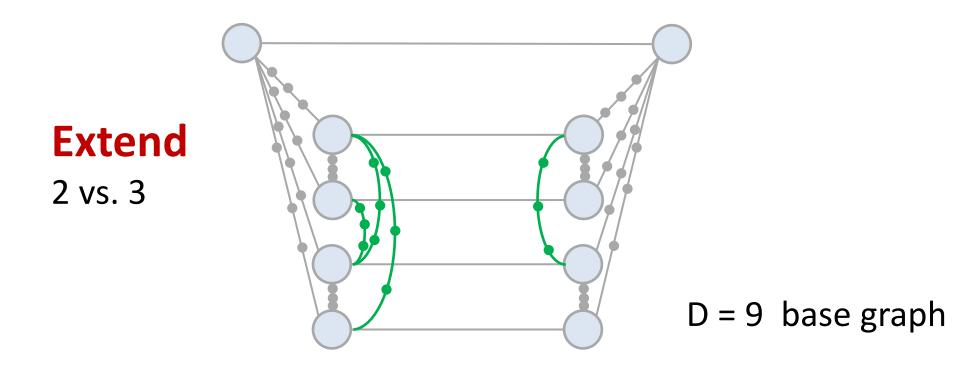


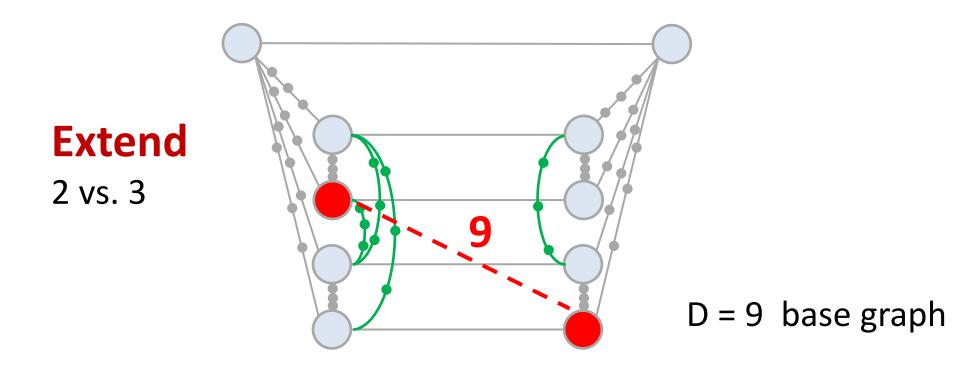
ETH Zurich – Distributed Computing Group

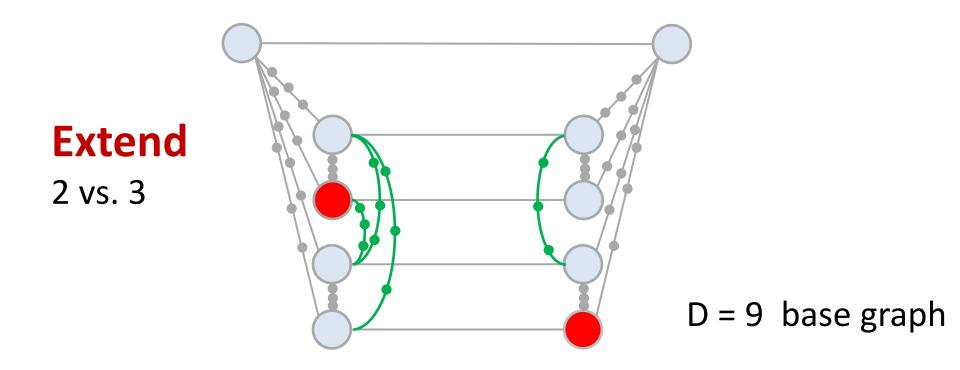


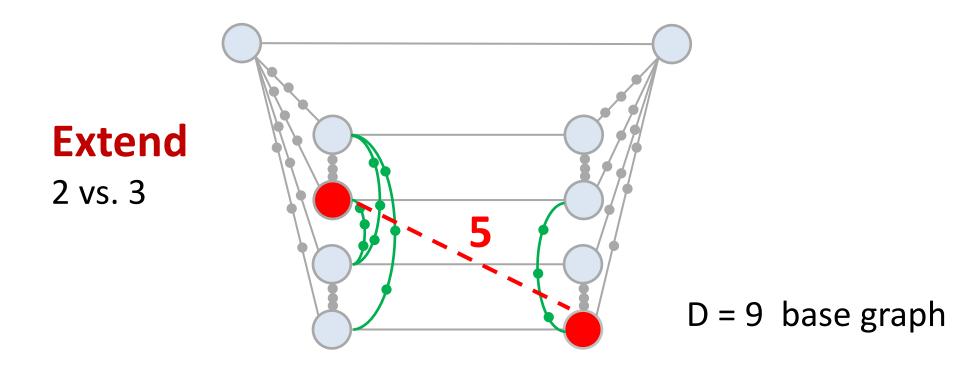
Diameter Approximation

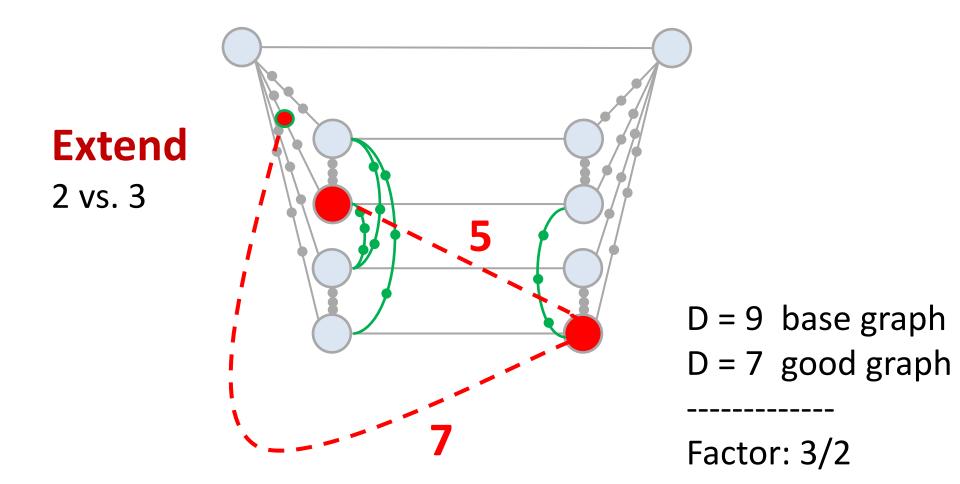


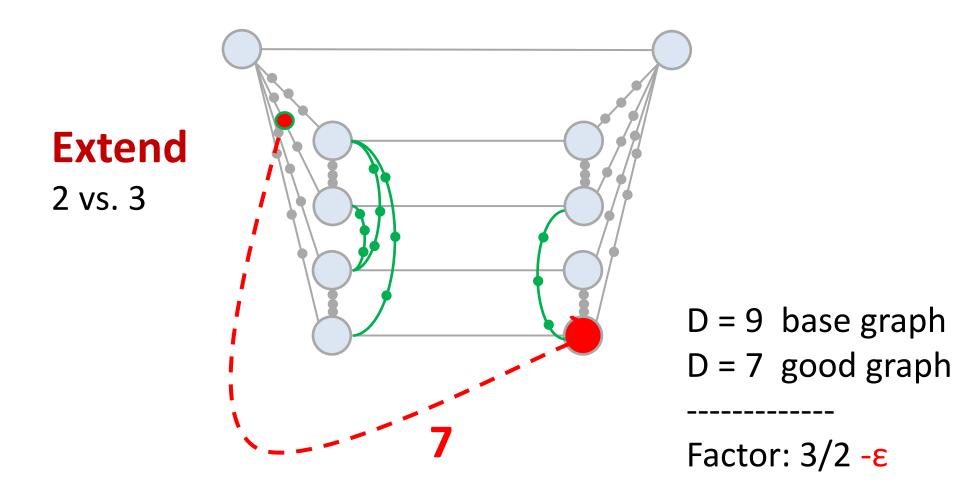




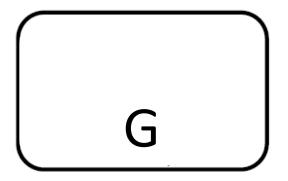




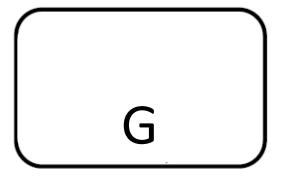




ETH Zurich – Distributed Computing Group



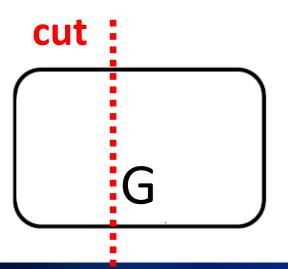
ETH Zurich – Distributed Computing Group



 $f(G_{\perp})$

ETH Zurich – Distributed Computing Group

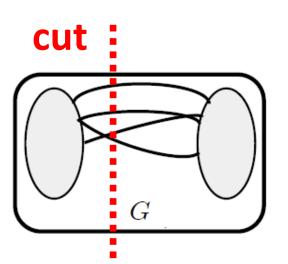
Stephan Holzer



 $f(G_{\perp})$

ETH Zurich – Distributed Computing Group

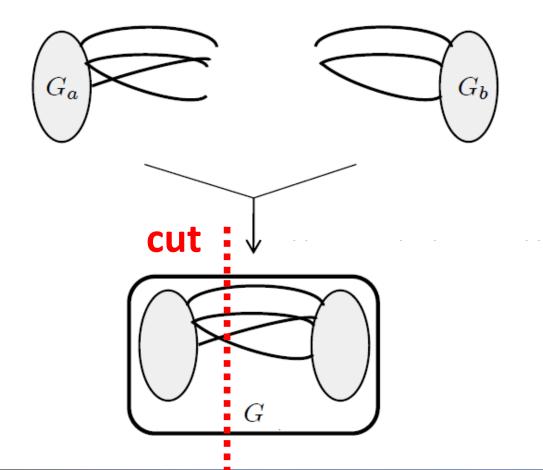
Stephan Holzer



 $f(G_{\perp})$

ETH Zurich – Distributed Computing Group

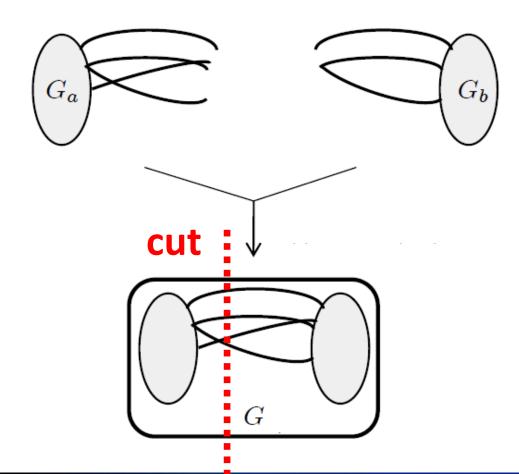
Stephan Holzer



 $f(G_{\perp})$

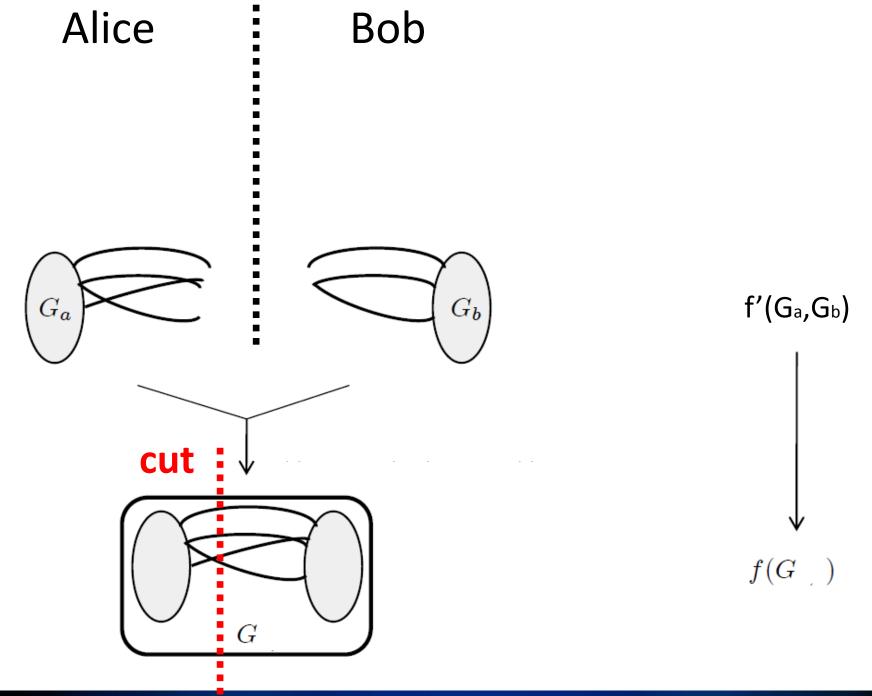
ETH Zurich – Distributed Computing Group

Stephan Holzer

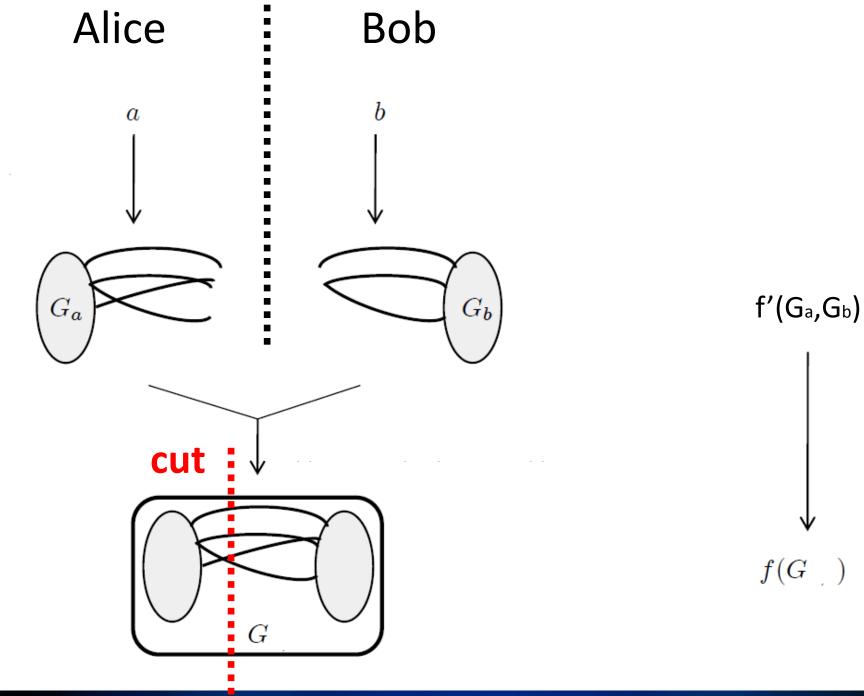


 $f'(G_a,G_b)$

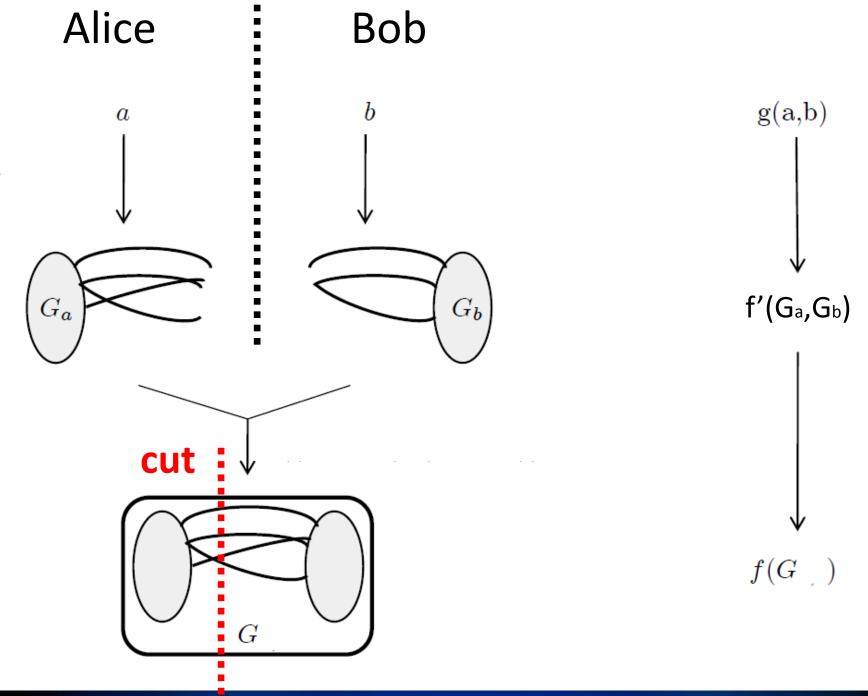
ETH Zurich – Distributed Computing Group

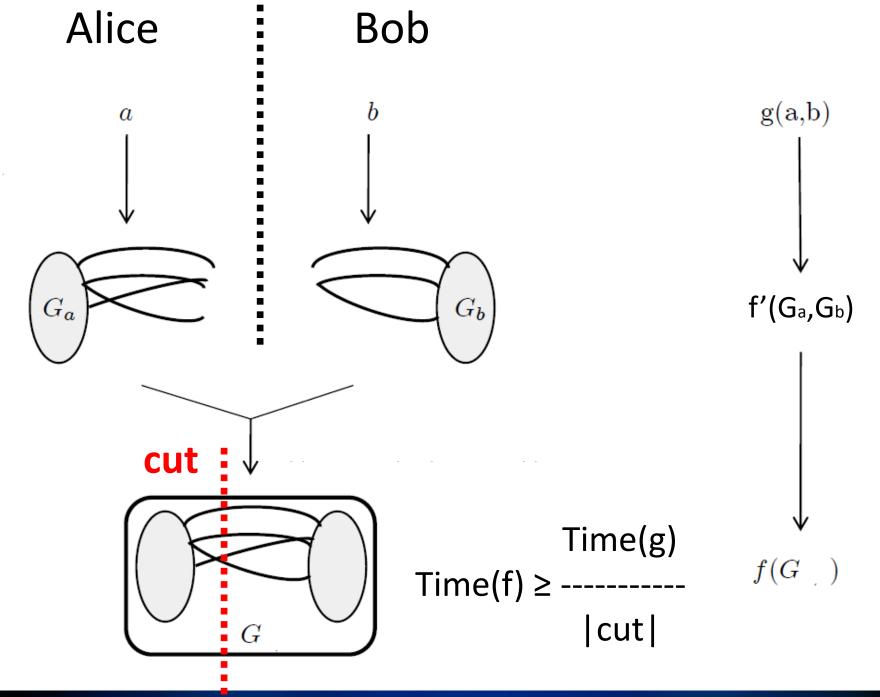


Stephan Holzer

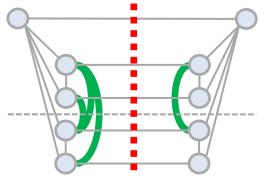


Stephan Holzer

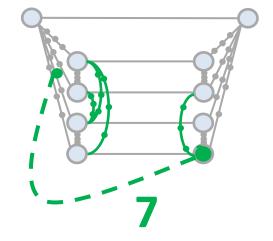




Summary



Diameter $\Omega(n)$



3/2-eps approximation takes $\Omega(n^{1/2})$

general technique

Thanks!