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Distributed algorithmes:
a simple example
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Count the nodes!

1. Compute
BFS-Tree

2. Count
nodes in
subtrees

Runtime: Diameter
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Diameter of a network

Diameter of
this network?

e Distance between two nodes = Number of hops of shortest path

* Diameter of network = Maximum distance, between any two nodes
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Fundamental graph-problems

* Spanning Tree — Broadcasting, Aggregation, etc

* Minimum Spanning Tree — Efficient
broadcasting, etc.

* Shortest path — Routing, etc.
* Steiner tree — Multicasting, etc.
e Many other graph problems.

Thanks for slide to Danupon Nanongkai
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e Many other graph problems.

* Global problems: Q( D)
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Fundamental graph-problems

e Maximal Independent Set
* Coloring
e Matching
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Fundamental graph-problems

e Maximal Independent Set
* Coloring
e Matching

e Local problems:

runtime independent of / smaller than D
e.g. O(log n)
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 Diameter appears frequently in distributed
computing
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2.1, The model 17

measuring the distance between u and w looking at G as an unweighted graph, i.e., it is the

| minimum number of hops necessary to get from u to w.

DISTRIBUTED COMPUTING |
A Locality-Sensitive Approach 1. %nal definition?

Throughout, we denote A = [log Diam(G)].
In a weighted graph G, let Diam™"(G) denote the unweighted diameter of G, i.e., the
\ marimum unweighted distance between any two vertices of G.

| Definition 2.1.2 [Radius and center]: For a vertex v € V, let Rad(v,G) denote the
distance from v to the verter farthest away from it in the graph G:

Rad(4,G) = max{distaly,u)}.
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Networks cannot compute their
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Networks cannot compute their
diameter in sublinear time!

Pair of nodes not connected on both sides?

Now: slightly more formal
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Pair of nodes not connected on both sides?

Given :graph
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Pair of nodes not connected on both sides?

A B
|| W |
A 2-=21\3
4 : 4
O(n) edges
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Networks cannot compute their
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Pair of nodes not connected on both sides?

Same as “A and B not disjoint?”

A B
1 1
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A C [n?] B C [n?]
1 1
32 2\3
4 4
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Networks cannot compute their
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Networks cannot compute their
diameter in sublinear time!

Pair of nodes not connected on both sides?

(7 - Same as “A and B not disjoint?”
S Communication Complexity
_; - ized: ?) bi
A C [n?] randomized: Q(n ¢) bits

Q(n) time

<P

O(n) edges
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Diameter Approximation
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3/2-g approximating the diameter takes Q(n/2)

Extend
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3/2-g approximating the diameter takes Q(n/2)
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3/2-g approximating the diameter takes Q(n/2)
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Technique is general
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Alice :  Bob

g(a,b)
\7
f’(Ga,Gb)

Time(f) > ----------- G )
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Summary

\
]
J

Diameter Q(n) == 7

A
N\‘
N
-0

3/2-eps approximation
l takes Q(n*/2)

F(Ga Cr), (G, Ck))

(ﬁ) «,  general technique

ETH Zurich — Distributed Computing Group Stephan Holzer SODA 2012



Thanks!
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