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Abstract. While several important problems in the field of sensor networks
have already been tackled, there is still a wide range of challenging, open
problems that merit further attention. We present five theoretical problems
that we believe to be essential to understanding sensor networks. The goal of
this work is both to summarize the current state of research and, by calling
attention to these fundamental problems, to spark interest in the networking
community to attend to these and related problems in sensor networks.

Introduction

Algorithmic sensor network research has been around for almost a decade
now,1 and it has meanwhile reached a semi-mature state: Many essential
questions have been studied; some exemplary ones such as, e.g., min-energy
[1,2] and min-time [3,4,5] broadcasting or geo-routing [6,7,8] are understood
to a pleasing degree, belying those who accuse the sensor networking com-
munity of not producing any rigid results.

However, sensor networks continue to puzzle as many fundamental as-
pects are not well understood; in this paper we present five brainteasers
in the sensor network domain, covering various areas such as scheduling,
topology control, clustering, positioning, and time synchronization. The five
open problems have in common that they all pertain to data gathering, an
important task in sensor networking. As it is often essential to know when
and where data has been collected, the data needs to be enriched with time
(Section 5) and position (Section 4) information. Additionally, the structure
of the network has to be tuned in order to gather data in an energy-efficient
manner. In Section 3 we save energy by turning off unneeded nodes, in Sec-
tion 2 by reducing interference. Finally, in Section 1 we study the capacity
of sensor networks, i.e., the achievable throughput of scheduling algorithms.

The five problems have in common that they all allow for a precise “zero
parameters” definition. This is probably rare in a research area that still
mostly revolves around the question which questions to ask. In that sense,
these five problems are prototypical for an algorithmic approach to network-
ing. However, primarily they have in common that the authors of this article
are familiar with them. Our five open problems are by no means the most
important problems that remain to be solved in the sensor network domain.
1 Alas, there is no clear date of birth of this research area; however, some of the first

workshops such as, e.g., DialM or MobiHoc were started about a decade ago.
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We are sure that three other authors would come up with a completely
different set of open problems, at least equally worthy of being studied.
Nevertheless, we do believe that advancing the state of the art of any of the
problems discussed in this paper will not only advance sensor networks but
also networking and distributed computing in general.

1 Scheduling

Spatial reuse is fundamental in wireless networking. Due to channel inter-
ference, concurrent transmissions may hinder a successful reception at the
intended destinations. Thus, it is vital to coordinate channel access in or-
der to prevent collisions and to increase network throughput. The task of
a scheduling algorithm is to order a given set of transmission requests such
that the correct reception of messages is not prevented due to interference
caused by concurrent transmissions. Apart from timing message transmis-
sions, scheduling algorithms have another degree of freedom to optimize
their schedule: They can adjust the transmission power for each message
individually to fully benefit from spatial reuse in order to minimize the total
time needed to successfully complete all requests. This is important since a
successful message reception depends on the ratio between received signal
strength on the one hand and interference and ambient noise on the other
hand (also known as SINR).2

More formally, consider the network nodes X = {x1, . . . , xn}. Further-
more, let Pr be the signal power received by a node xr and let Ir denote the
amount of interference generated by other nodes. Finally, let N be the am-
bient noise power level. Then, a node xr receives a transmission if and only
if Pr

N+Ir
≥ β, where β denotes the minimum signal-to-noise-plus-interference

ratio that is required for a message to be successfully received.
In wireless networks, the value of received signal power Pr is a decreasing

function of the distance d(xs, xr) between transmitter node xs and receiver
node xr. More specifically, given the distance d(xs, xr) between sender and
receiver, the decay of the signal power is proportional to d(xs, xr)−α. The
so-called path-loss exponent α is a constant between 2 and 6 and depends
on external conditions of the medium, as well as the exact sender-receiver
distance [9]. Let Pi be the power level assigned to node xi. A message trans-
mitted from a node xs ∈ X is successfully received by a node xr if

Ps
d(xs,xr)α

N +
∑

xi∈X\{xs}
Pi

d(xi,xr)α

≥ β.

In [10,11] the scheduling complexity of basic network structures, namely
strongly connected networks, is studied. It is shown that adjusting the trans-
mission power gives an exponential advantage over uniform or linear power

2 The communication model adopting this notion of signal-to-noise-plus-interference ratio
is also known as the physical model [9].



assignment schemes. This gives an interesting complement to the more pes-
simistic bounds for the capacity in wireless networks [9]. The authors of [12]
define a measure called disturbance that comprises the intrinsic difficulty of
finding a short schedule for a problem instance. Furthermore, they propose
an algorithm that achieves provably efficient performance in any network
and request setting that exhibits a low disturbance. For the special case of
many-to-one communication with data aggregation in relaying nodes, [13]
derives a scaling law describing the achievable rate in arbitrarily deployed
sensor networks. It is show that for a large number of aggregation functions
a sustainable rate of 1/ log2 n can be achieved.

In the context of routing, [14] studies the problem of constructing end-
to-end schedules for a given set of routing requests such that the delay is
minimized. That is, each node is assigned a distinct power level, the paths
for all requests are determined, and all message transmissions are scheduled
to guarantee successful reception in the SINR model. In this setting, [14]
presents a polynomial-time algorithm with provable worst-case performance
for the problem.

Despite all the work discussed in this section considering transmission
scheduling problems with specific constraints, the basic problem is still not
fully understood.

Problem 1 A communication request consists of a source and a destination,
which are arbitrary points in the Euclidean plane. Given n communication
requests, assign a color (time slot) to each request. For all requests sharing
the same color specify power levels such that each request can be handled
correctly, i.e., the SINR condition is met at all destinations. The goal is to
minimize the number of colors.

While uniform power assignment is understood well [15], it is unknown
how difficult the problem is if nodes can adapt their transmission power. This
is indisputably a most fundamental problem in the field of sensor networks.
A deeper understanding of scheduling will potentially shed new light also on
other advanced open problems.

2 Topology Control

Energy is a scarce resource in wireless sensor networks. In a very general way,
topology control can be considered as the task of, given a network communi-
cation graph, constructing a subgraph with certain desired properties while
minimizing energy consumption. The subgraph needs to meet some require-
ments, the minimum requirement being to maintain connectivity. However,
sometimes one has stronger demands, e.g., the subgraph should not only be
connected but a spanner of the original graph. At the same time the sub-
graph should be sparse as low node degrees allow for simpler neighborhood
management at the nodes; additionally, symmetric links are desired as they
permit simpler higher-layer protocols, and, if the constructed graph is pla-
nar, geo-routing protocols can be used. The most important goal however
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is energy-efficiency. Energy is saved by several means, the simplest being
to eliminate distant neighbors, and thereby energy-inefficient connections,
since the energy consumption of a transmission is believed to grow at least
quadratically with distance.3 Almost as a side effect, this reduction also
results in less interference. Confining interference additionally lowers the
power consumption by reducing the number of collisions and consequently
the number of packet retransmissions on the media access layer.

Early work focused on topology control algorithms emphasizing locality
while exhibiting more and more desirable properties [16,17,18,19], sometimes
presenting distributed algorithms that optimize various design goals concur-
rently. All these approaches have in common, however, that they address
interference reduction only implicitly. The intuition was that a low (con-
stant) node degree at all nodes would solve the interference issue automat-
ically. This intuition was proved wrong in [20], starting a new thread that
explicitly studies interference reduction in the context of topology control
[21,22,23]. The interference model introduced in [24] in the context of data-
gathering structures, which is generalized in [25], proposes a natural way to
define interference in sensor networks. The general question is: How can one
connect the nodes such that as few nodes as possible disturb each other? In
the following, we discuss the network and interference model presented in
[25].

The wireless network is modeled as a geometric graph. The graph con-
sists of a set of nodes represented by points in the Euclidean plane; we want
to connect these nodes by choosing a set of edges. In order to prevent already
basic communication between neighboring nodes from becoming unaccept-
ably cumbersome [26], it is required that a message sent over a link can
be acknowledged by sending a corresponding message over the same link in
the opposite direction. In other words, only undirected edges are considered.
A node is able to adjust its transmission power to any value between zero
and its maximum power level to reach other nodes. An edge exists if and
only if the maximum transmission range of both incident nodes mutually
include their counterpart. The minimum requirement of a topology control
algorithm reducing transmission power levels is then to compute a subgraph
of the given network graph that preserves connectivity. The interference of
a node v is then defined as the number of other nodes that potentially affect
message reception at node v.4 The maximum interference of a graph is then
defined as the maximum node interference.

So far, not many results have been published in the context of explicit
interference minimization. For networks restricted to one dimension the
authors in [25] present a 4

√
n-approximation of the optimal connectivity-

preserving topology that minimizes the maximum interference. For the two

3 In sensor networks, one has to be careful about this model, as generally transmission
distances are short, and the base transmission or even reception energy washes this
quadratic behavior out.

4 In practice, the shape of a node’s interference region is not restricted to be circular. In
particular, it depends on the antenna in use; the interference range is typically larger
than the reception range.



dimensional case, the authors in [27] propose an algorithm that bounds the
maximum interference to O(

√
n). If average interference of a graph is con-

sidered, there is an asymptotically optimal algorithm achieving an approxi-
mation ratio of O(log n) [28]. This leads us to the open problem:

Problem 2 Given n nodes in the plane. Connect the nodes by a spanning
tree. For each node v we construct a disk centering at v with radius equal to
the distance to v’s furthest neighbor in the spanning tree. The interference
of a node v is then defined as the number of disks that include node v. Find
a spanning tree that minimizes the maximum interference.

This problem is still not understood well. We do not know the complexity of
the problem (solvable optimally in polynomial time, or NP-complete), and
it is unknown whether efficient approximation algorithms exist. Once we
understand interference, we can try to combine it with other optimization
goals such as planarity or constant node degree. And once we understand
these, we can start looking for distributed (or even local) algorithms for the
problem. Furthermore, we can abandon the strict geometric representation
of interference and think about more general interference models [28].

Clearly, there is a relation between Problem 2 and the scheduling problem
studied in Section 1 [10], as in both problems the goal is to increase spatial
reuse by understanding interference. However, we do not believe that solving
one problem would help solving the other, as the scheduling problem allows
for a more general power control approach. It was shown in [11] that there
is an exponential difference between these two models. The next section is
related to this one as well: The goal is also to reduce energy consumption,
however with a different approach.

3 Dominating Set

An alternative method to ensure an efficient operation in dense graphs is
to completely “shut down” a large fraction of all nodes and delegate their
responsibilities to a few neighboring nodes. This is in stark contrast to the
approach taken in topology control algorithms where all nodes continue to
handle messages themselves. Naturally, it must be guaranteed that every
node has a neighbor that is in the position to take over its tasks. Ideally,
this set of nodes that remain awake and handle all tasks is as small as possible
in order to minimize energy consumption. New sets of nodes that must stay
awake can be constructed periodically in order to even out the burden of
communication among all nodes in the network.

More formally, we again model the network as a graph where edges be-
tween nodes indicate that these nodes can communicate directly. A set of
nodes S for which it holds that every node that is not in S has a direct
neighbor in S has to be found. Such a set is commonly referred to as a
dominating set. The goal of the minimum dominating set (MDS) problem
is to find the dominating set of minimum size. For certain applications, it
is mandatory or at least beneficial if the nodes in the dominating set are
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connected. Thus, a variation of the MDS problem is the problem of finding
a minimum connected dominating set.

Computing a minimum dominating set is a hard problem. It has been
shown that the MDS problem is NP-complete not only for arbitrary graphs
[29], but also for special topologies such as unit disk graphs (UDGs) [30,31].
Moreover, dominating sets cannot be approximated in polynomial time to
within a factor of (1 − o(1)) lnn [32] unless NP has quasi-polynomial time
algorithms. However, this bound only holds for general graphs, and in vari-
ous special cases, constant approximations can be computed efficiently. For
example, there is a simple constant approximation algorithm for dominating
sets in UDGs [33]. Note that a DS can trivially be extended to a connected
dominating set by means of a spanning tree with only a constant overhead.
This result has been generalized in [34], where it is shown that a constant-
factor approximation is even possible if all nodes are weighted, and the goal
is to find a (connected) dominating set that minimizes the sum of the weight
of all nodes in the dominating set. In the unweighted case, there is a PTAS
for the minimum dominating set problem in unit disk graphs [35].

Distributed algorithms for the MDS problem have also been studied ex-
tensively. The algorithms in the following papers belong to the class of local
algorithms in which all nodes are allowed to communicate k times, for a
particular value k, with their neighboring nodes. In this model, nodes can
basically gather information about nodes in their k-neighborhood and can
thus base their decisions on this information only. Similarly to the central-
ized case, it has also been shown that once a dominating set has been built,
this set can be used to construct a connected dominating set in a distributed
fashion [36].

In general graphs, a maximum independent set (MIS) can be constructed
using a randomized algorithm in O(log n) time [37]. Naturally, a MIS is
also a dominating set, but the constructed MIS does not guarantee any
bounds on the approximation ratio. The algorithm presented in [38] com-
putes an O(log ∆)-approximation in O(log n log ∆) rounds with high prob-
ability, where ∆ denotes the maximum node degree. The first constant-
time distributed algorithm achieving a non-trivial approximation ratio is
presented in [39]: An O(k∆2/k log ∆)-approximation is computed in O(k2)
rounds for an arbitrary (constant) k. By setting k = Θ(log ∆), the algo-
rithm achieves an approximation ratio of O(log2 ∆) in O(log2 ∆) rounds.
This result was later improved to an O(log ∆)-approximation algorithm also
requiring O(log2 ∆) rounds [40].

There has also been a lot of work on computing dominating or maximum
independent sets in unit disk graphs. Note that in unit disk graphs a max-
imum independent set is a good approximation of the optimal dominating
set, thus the two problems are basically equivalent. A PTAS for UDGs is
also achievable by means of a local algorithm [41]. If the nodes know the dis-
tance to all other nodes, a MIS can be constructed in O(log∗ n) time in unit
disk graphs and also in a large class of bounded independence graphs [42],
which matches a MIS lower bound of Ω(log∗ n) [43]. The fastest deterministic



algorithm for the MIS problem in unit disk graphs—in fact, in any growth-
bounded graph—requires O(log ∆ log∗ n) time [44] to construct a MIS. A
MIS can be constructed faster using a randomized algorithm whose running
time is only O(log log n log∗ n) with high probability [45].

It is, however, still unclear if a dominating set that is only a constant
factor larger than the smallest possible dominating set can be constructed
very quickly in unit disk graphs.

Problem 3 Let each node in a unit disk graph know its k-neighborhood
for a constant k, i.e., each node knows all nodes up to distance k including
their interconnections. Given this information, each node must decide locally
without any further communication whether it joins the dominating set or
not. Is it possible to construct a valid dominating set that is only a constant
factor larger than the optimal dominating set?

While there are lower bounds to find a MIS or a coloring, there is no
lower bound for the MDS problem. It is unclear if a constant-time algorithm
can compute a dominating set in UDGs, and conversely if a constant-factor
approximation requires ω(1) time. There are many related open problems
such as the problem of finding a MIS or a coloring with a small approximation
ratio as quickly as possible.

4 Embedding

Many envisioned application scenarios in the field of wireless sensor networks
rely on positioning information: sensing the environment is only useful if one
knows where the data has actually been measured. Knowledge of location
information can also improve the performance of routing algorithms because
it allows the use of geo-routing techniques [6,7]. Equipping all sensor nodes
with specific hardware such as GPS receivers would be one option to gain
position information at the nodes. However, GPS reception might be ob-
structed by climatic conditions or in-door environments. Another solution is
to provide only a few nodes (so-called anchor or landmark nodes) with GPS
and have the rest of the nodes compute their position by using the known
coordinates of the anchor nodes [46,47]. One characteristic inherent to all
these approaches is that the solution quality is determined by the anchor
density and their actual placement.

Obviously, in the absence of anchors, nodes are clueless about their real
coordinates. However, recent work has pointed out that for many appli-
cations it is not necessary to have real coordinates but it suffices to have
virtual coordinates—two nodes having similar coordinates implies that they
are physically close together. Moreover, a deeper understanding of anchor-
less positioning would likely advance the state of the art of anchor-based
positioning algorithms. A mapping of all the nodes to virtual coordinates,
in this case coordinates in the Euclidean plane, is called an embedding.

Sensor networks are typically modelled as unit disk graphs in which there
is an edge between two nodes if and only if the Euclidean distance between
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them is less or equal to 1. It has been shown that the problem of deciding
whether a given graph is a unit disk graph is NP-hard [48]. A more general
model for sensor networks is given by d-quasi unit disk graphs. A graph is
called a d-quasi unit disk graph (d-QUDG, d ≤ 1) if there is an embedding
that respects the following two rules: If two nodes are connected, the distance
between their respective coordinates must be at most 1, and if there is not
edge between two nodes, the distance between their coordinates must exceed
d. Note that a 1-QUDG corresponds to a UDG graph and that the definition
of a d-QUDG does not specify whether there is an edge between two nodes
at a distance in the range (d, 1] for d < 1. In that sense, a d-QUDG is a
relaxed version of a UDG. A QUDG can generally be regarded as a more
realistic model for sensor networks since nodes at a critical distance may or
may not be able to communicate. The quality q(e) of an embedding e in this
model is defined as

q(e) =
max{u,v}∈E dist(u, v)
min{u,v}/∈Edist(u, v)

.

A good embedding has a small value for its quality. It has been shown
that it is also NP-hard to find an embedding such that q(e) <

√
3/2 [49].

In the same work, it has further been proven that it is NP-hard to de-
cide whether a graph can be realized as a d-quasi unit disk graph with
d ≥ 1/

√
2. Surprisingly, the problem remains hard even if additional infor-

mation is available. For example, each node might know the exact distance
to each of its neighbors. Given this distance information, it is still NP-hard
to decide whether the graph is a UDG or not [50]. Instead of having distance
information, the nodes might be aware of the angle between itself and any
two of its neighbors. The problem remains NP-hard also in this context [51].

In [52], the first approximation algorithm for this problem is presented,
which heavily borrows techniques introduced by Vempala [53], claiming an
O(log2.5 n

√
log log n)-quality embedding in polynomial running time.5 The

currently best known algorithm for this problem is due to Pemmaraju and
Pirwani [54], which computes a O(log2.5 n)-quality embedding of a given unit
disk graph.

In practice, many heuristics are used to compute embeddings efficiently.
Various approaches based on, e.g., distance measurements [55], using eigen-
vectors [56] or linear programming [51] etc. have been shown to produce
acceptable results. Still, in theory the problem is not well understood.

Problem 4 Given the adjacency matrix of a unit disk graph, find positions
for all nodes in the Euclidean plane such that the ratio between the maximum
distance between any two adjacent nodes and the minimum distance between
any two non-adjacent nodes is as small as possible.

Apparently, there is a large gap between the best known lower bound,
which is a constant, and the polylogarithmic upper bound. It is a challenging
5 A subsequent paper [54] corrects the bound on the quality to O(log3.5 n

√
log log n).



task to either come up with a better approximation algorithm or prove a
stronger lower bound.

5 Time Synchronization

Many protocols require that the participants be closely synchronized in order
to guarantee an efficient and successful execution. It is therefore mandatory
to provide a distributed clock synchronization algorithm whose objective is
to ensure that the nodes are able to acquire a common notion of time. As
the state of the system is distributed, the participating nodes can synchro-
nize their clocks by exchanging messages with their neighboring nodes and
thereby learn about the current state of other nodes.

We consider distributed clock synchronization algorithms in the following
setting. Given an arbitrary graph G = (V,E) in which nodes can commu-
nicate directly with all other node to which they are directly connected in
G. The nodes that are directly connected to a node v are referred to as
the neighboring nodes of v. The communication between neighboring nodes
is assumed to be reliable, but all messages can have variable delays in the
range [0, 1]. The distance between nodes i and j is defined as the length of
the shortest path between i and j, and the diameter D of G is the maximum
distance between any two nodes.

We assume that each node is equipped with a hardware clock H(·) whose
value at time t is H(t) :=

∫ t
0 h(τ) dτ , where h(τ) is the hardware clock rate at

time τ . Furthermore, we make the assumption that the hardware clocks have
bounded drift, i.e., there is a constant 0 ≤ ε < 1 such that 1−ε ≤ h(t) ≤ 1+ε
at all times t.

In addition to the hardware clock, each node i is further equipped with a
second, so-called logical clock L(·). The logical clock also increases steadily,
just like the hardware clock, but potentially at a different rate. However,
the deviation between the hardware and the logical clock rate is lower and
upper bounded by specific constants, e.g., the logical clock rate has to be
at least half and at most twice the hardware clock rate at any given time.
This restriction ensures that the logical clock can neither be slowed down
nor sped up arbitrarily, which would trivialize the problem and destroy the
relation between the hardware and the logical clock.

Due to different clock rates the hardware clocks of different nodes might
drift apart. As the hardware clocks cannot be manipulated, the goal is there-
fore to minimize the clock skew of the logical clocks. At any point in time,
a node may inform its neighboring nodes about its current logical time. A
node receiving such an update can decide to increase its own logical clock in
order to counterbalance the skew between the clocks. However, the logical
clock is not allowed to run backwards.

A desirable goal is to guarantee that the clock skew between any two
nodes in the network is as small as possible. The bound achievable for this
goal is denoted the global property of the clock synchronization algorithm.
It can be shown that the skew between two nodes at distance d cannot



be synchronized better than Ω(d) by using simple indistinguishability type
arguments. Srikanth and Toueg [57] presented a clock synchronization al-
gorithm, which is asymptotically optimal in the sense that it guarantees a
clock skew of at most O(D) between any two nodes in a network of diameter
D. However, there are executions of this algorithm causing a clock skew of
Θ(D) even between neighboring nodes.

For several distributed applications, such as, e.g., media access control
or event detection, it is mandatory that the clocks between any node and
particularly all nodes in its vicinity are closely synchronized. This is known
as the gradient property of the algorithm that requires a minimal clock skew
between all neighboring nodes. This property was introduced in [58] where a
surprising lower bound on the worst-case clock skew of Ω( log D

log log D ) between
neighboring nodes is proven. If the logical clocks are allowed to remain con-
stant for a certain period of time, the clock skew between neighboring nodes
can in fact be kept constant [59]. In general, the best known clock syn-
chronization algorithm with a non-trivial gradient property guarantees that
the worst-case skew between any two neighbors at distance d is at most
O(d+

√
D) [60]. Obviously, the gap between the lower and the upper bound

is still fairly large and the goal is to close this gap.

Problem 5 Nodes in an arbitrary graph are equipped with an unmodifiable
hardware clock and a modifiable logical clock. The logical clock must make
progress roughly at the rate of the hardware clock, i.e., the clock rates may
differ by a small constant. Messages sent over the edges of the graph have
delivery times in the range [0, 1]. Given a bounded, variable drift on the
hardware clocks, design a message-passing algorithm that ensures that the
logical clock skew of adjacent nodes is as small as possible at all times.

The algorithm that guarantees a skew of O(
√

D) [60] between neighbor-
ing nodes requires that a large amount of messages are sent. Another natural
question is whether a good gradient property can also be ensured if bounds
on the message complexity are imposed. Further future work might include
faulty or even byzantine nodes which deliberately try to hinder the correct
nodes from synchronizing their clocks.

6 Conclusions

In this paper, we presented five open problems in the field of sensor networks,
all with an algorithmic flavor. Craving for progress, we offer a bag of Swiss
chocolate to anybody who solves one of our problems. As stated before, our
selection is rather random, and other authors for sure would promote other
problems at least equally worthy of being studied. Actually, we would also
be quite keen to learn about these other problems and encourage you to
tell us about them. An official repository of open problems could ignite a
fresh way of organizing research in this area—a way that actually uses the
Internet—and could help keeping track of progress.
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