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Abstract—Many deep learning methods have been proposed re-
cently to learn algorithms for combinatorial problems. However,
most approaches focus on either supervised/imitation learning
(the target algorithm is known) or single agent reinforcement
learning (the input distribution is fixed). In some cases, however,
the input distribution scales combinatorially as well and cannot
easily be fully represented in a concise data set. In this paper,
we propose a self-play approach to learn a distributed directory
protocol to coordinate concurrent requests to a shared mobile
resource among a network of nodes. The self-play is between two
agents — a request agent, which finds worst case request inputs —
and a route agent, which finds an algorithm that works well on
the proposed worst case inputs (and consequently, works well on
most queries). We show that our self-play approach is successful
in learning an algorithm that works well across diverse request
sequences. The empirical performance of the learnt algorithms
is within the best known theoretical bounds, and sometimes
significantly better than the best known upper bounds.

I. INTRODUCTION

A basic building block of computer science are algorithms.
Given a problem, can we find an algorithm with low cost?
Typically, algorithm designers play an elaborate game with
themselves: First they create an algorithm. Then they try
to find an input where their algorithm performs poorly. If
they find such an input, they improve their algorithm. This
process is repeated, until they eventually have an algorithm
that performs well with every input. We seek to automate this
process by modeling this interplay as an asymmetric competi-
tive two player game between two reinforcement learning (RL)
agents. The algorithm agent tries to improve the quality of the
algorithm, while the input agent tries to find an input where
the algorithm performs poorly. While this RL approach cannot
give formal guarantees, it provides a template for automated
creation of algorithms with good empirical performance. Also,
an algorithm designer may learn the structure of hard inputs
from the input agent, and the techniques to deal with these
inputs from the algorithm agent. In general, the two RL agents
may help the algorithm designer to gain deeper insights.

In this paper, we demonstrate this general approach on
the distributed directory problem, a fundamental problem
in distributed computing. As the backbone of concurrent
computation, distributed directories are vital for the efficient
management of shared resources. Studying the problem on
an abstract level can thereby have efficiency implications in
applications as diverse as multi-processor design and satellite
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communication. While asymptotically optimal protocols exist
for a few network topologies [1], many settings remain an
open problem with no known best solution. We show that
our approach performs on par with optimal protocols where
such protocols exist and even empirically improves upon well
known protocols by a large margin otherwise.

Further, we show that alternative learning approaches lead
to sub-optimal protocols that can be exploited, while our self-
play approach is robust against adversarial attacks.

II. DISTRIBUTED DIRECTORY PROBLEM

The distributed directory problem is a fundamental dis-
tributed computing problem. The problem asks to coordinate
access to an exclusive resource that is shared among the nodes
of a network. Formally, let G = (V,E) be a network of
nodes V that are connected by reliable communication links
L. Initially, a single shared resource — called the token — is
at some node v € V. A simple solution to coordinate access
to the token is to make v the “home” node and let every
requesting node ask v for the token and return it to v after
using it. However, this is very inefficient when a node that is
“far from home” wants to repeatedly access the token. Hence,
a better protocol is needed.

Arrow and Ivy are simple and classic protocols to solve the
problem [2]-[4]. Their performance has been extensively stud-
ied, e.g., [5]-[8]. While distributed directory protocols beyond
Arrow and Ivy do exist [9]-[11], Arrow and Ivy are simpler
and practically more appealing. Recently, the Arvy family of
distributed directory protocols has been proposed [1]. In every
step, Arvy can choose from a number of options, including
as special cases Arrow or Ivy. Due to its flexibility, in some
families of networks Arvy will outperform all known protocols
[1]. While the Arvy framework is generally applicable, the
only known optimal Arvy protocol to date is limited to cyclic
networks. In this paper we aim to search for efficient Arvy
protocols on other network topologies.

Arrow, Ivy and Arvy solve the distributed directory problem
by keeping the token mobile and hopefully closer to the
(unknown) next request. Concretely, each node v € V holds
a parent pointer p(v) to either itself or another node. If
the node points to itself, the node either holds the token
or is already waiting for it. Otherwise, the parent pointers
recursively point towards a node holding the token (or already
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Fig. 1: Example for Arvy. Only directory edges are shown, not the underlying graph. Red edges are messages in transit, labeled
with all possible new parents. (a) The initial directory T". (b) Node d makes a request, and sends a find message to its parent
c. (b),(c) Nodes ¢ and b forward the request message along with the possible new parent options. Both choose node d as their
new parent in this example. (d) Request arrived at node a, which chooses b as its new parent in this example. The token is
moved and now the directory is a tree pointing towards the new root d. (f) Pseudo Code of the agent-environment interaction.

waiting for it). Whenever there are no active requests, the
directory is a directed tree T rooted at the token node. A
distributed directory protocol orders concurrent requests and
enables each node to locate the token. Each node manages
its parent locally. A node s requests the token by sending a
message to its parent. The request is forwarded (following the
parent pointers) on a path s,...,u,v,...,t until it reaches a
node ¢ with a self-loop. Other than forwarding, the protocol
must choose a new parent for each node v along the path.
In Arrow [2], [3], this is the previous node wu, effectively
flipping the pointer. In Ivy [4], the new parent is s, the
requesting node. In Arvy [1], the authors show that the new
parent may be any node on the subpath s, ..., u. Specifically,
they prove that any Arvy choice ensures that every requesting
node eventually receives the token, even if these requests are
concurrent, and communication is asynchronous. Figure 1 (a)-
(e) shows an example execution for a single request. Note that
choosing a new parent is notoriously hard as future requests
are unknown at the time of decision and every request changes
the surrounding directory structure. Further, to be applicable
in a distributed setup, the decision has to be based solely on
locally aggregated information.

To evaluate a directory protocol we study its multiplicative
overhead. We consider a sequential setting, where a new
request is issued only after the previous request has finished.
Note that this does not limit the learned protocols from
operating in a setting with concurrent requests, but simplifies
evaluating the performance and formulating our optimization
objective. The cost of one request from node s is the cost
of finding the token node t by sending messages along the
unique path in the directory tree 7. In case an edge (u,v)
on this unique path is not part of the underlying graph G,
the message is sent along the shortest path in G with cost
dg(u,v). The cost of the request is then the distance dr (s, t)
between s and ¢ on the directory tree 7', the summed cost of
sending messages along the path. Any protocol, and therefore
also any optimal protocol, costs at least the shortest distance
dg(s,t) to find the token at ¢ from s. Given a sequence

of requests o = [v1,vs,...,vy] with initial token location
vo and directorzf Tb, the cost of a protocol A is defined as
costa(o) = Zi:_ol dr,(vit1,v;), where T; is the updated tree
after request v;. The cost of any protocol is lower bounded by:
costa(o) > Zfz_ol da(vig1,vi) = costop (o). The overhead
ratio for a specific request sequence o is then defined as
p(o, A) = % Finally, the competitive ratio is the worst
overhead over all possible request sequences: max, p(c, A).

On cycles of n nodes, both Arrow and Ivy are Q(n)-
competitive, that is, their worst performance scales linearly
with the network size. In contrast, there exists an Arvy
protocol that is 5-competitive on cycles [1]. We aim for similar
protocols with constant competitive ratio for other topologies.

III. LEARNING THE PROTOCOL

We seek to show how learning can be used to find efficient
Arvy protocols. We therefore formulate learning a competitive
Arvy protocol as a multi-agent problem with two agents: The
algorithm agent represents the core of the directory protocol
and is hereafter referred to as route agent w4. The input
agent challenges the learned algorithm. In the Arvy setup
this corresponds to generating the next request of the request
sequence o. We therefore refer to it as request agent m,.

The interaction between the agents is given in the pseudo
code in Figure 1f and is roughly described as follows: We
initialize the token location ¢ and directory 7" such that the first
request does not yield any overhead. We then query the request
agent 7, for a first request. This request is then iteratively
solved by following the pointers in the directory. For all visited
notes c, the route agent 74 is queried to choose a suitable new
parent from the nodes on the search path P so far. Finally,
when the token is found, we move the token to the requesting
node and the request agent is queried for a new request. This
interaction is repeated until a predefined number L of requests
have been issued and resolved. Note that in contrast to classical
two player games like chess, our agents do not take alternating
turns. Rather, the request agent makes a move (a new request)
followed by several moves of the route agent (choosing new



parents for every node on the path). Only then the request
agent is asked for a new request.

This formulation reflects the general Arvy framework.
Specifically, it allows us to plug in a known, hardcoded
protocol or a trainable policy for either the request and/or
the route agent. As an example, it allows us to evaluate
how Arrow — w4 (P, c) := get_last(P) — performs against
random requests — 7, (T, (V, E),t) := random_choice(V).
However, it also allows us to train a request and/or route
agent. That is, we can train a protocol optimized for a specific
request sequence, e.g., if we know a-priori that the resource
will be requested by the nodes in a specific order. Or we can
train a request agent to find worst case sequences for known
protocols. Putting it all together, our setup also allows to train
both, a route and a request agent in a competitive, zero-sum
self-play game — effectively generating a curriculum where
the route agent gets more robust against all possible request
sequences while the request agent gets better at exploiting the
weaknesses of the route agent.

A. Objective

In our setup, learning a directory protocol and request
sequence can be formulated as a multi-agent game. Here, each
agent is represented by a stochastic policy 7 that maps its
observations to a probability distribution over possible actions,
where we consider other agents as part of the stochastic, par-
tially observable environment. The action space of the request
agent consists of all nodes that can start the next request.
The action space of the route agent consists of all possible
next parents - where to route a future request. The policies
learn to maximize their cumulative rewards R = Zle r; with
proximal policy optimization [12] in a self-play setup [13].

Consider as objective the competitive ratio max, p(c, A) for
some Arvy protocol A. In our environment we can evaluate
the overhead p for the sampled sequence of L requests and
give it as a reward to the request agent at the end of the
episode. Training the agent with reinforcement learning should
then give an incentive to maximize this overhead, effectively
seeking out sequences that exploit the weaknesses of the
countering protocol 74. Note however that this overhead
is tied to the sequence length L and does not reflect the
competitive ratio max, p(c, A), as a worst case sequence o
might be longer or shorter. As we consider a ratio, we do not
expect it to be significantly different on longer sequences for
a sufficiently large L. We therefore opt to optimize

Egor, | max p(o., A)llen(o) =L

i€[1..L]
as a proxy, where o.; denotes the sub-sequence of the first
1 requests in o. This formulation effectively moves the max-
imum into the expectation and removes the requirement to
sample shorter sequences in order to optimize the overhead on
them. We achieve this objective as follows: During an episode
we track the overhead ratio p'(c, A) = max;eqi ) (04, A)
to account for sequences stopping after [ requests. We re-
fer with r; to the reward received after request [. We set

p%(0, A) = 0 and define the reward for the request agent as
r? = max(p(0., A) — p'~1(c, A),0) For an episode with L
requests the sum of all rewards for the request agent is then
given by pl'(o, A) = Zlel r{ = max;e..z) p(0.i, A) exactly
the objective we seek to optimize. Note that this reward design
also gives early feedback, rather than at the episode’s end.

The route agent has the objective of minimizing p* (o, A),
so we set rlA = —r{ after every completed request. (While
solving a request the agent receives no reward.) For both
agents, this setup automatically gives 0 reward after the worst
stopping point of a sequence.

B. Architecture

We allow the request agent 7, to have access to the full
distributed directory tree 7', the underlying network structure
G as well as the current token position ¢. In contrast, the route
agent 74 only has access to the information from the nodes on
the search path P so far as well as the current search location
c. This restriction is done such that the learned protocol can be
deployed in a distributed setting: We can expect the protocol
to pass on information with the search request, however, the
global state of the directory is hidden from the route agent.
Note that the request agent does not need such a restriction,
as we normally assume privileged information to find a lower
bound of an algorithm. Note that our setup is different from
most RL setups: The observation of the route agent (nodes on
the search path P so far) as well as the action space (possible
new parents for the current node — which are all nodes in P)
grow as the search progresses. Similarly, we want our request
agent architecture to be independent of the number of nodes
n in the underlying graph G. We therefore opted to embed
the inputs into per-node features and applied bidirectional
LSTMs [14] over these features.

IV. EXPERIMENTS

In all experiments, we set the number of requests to L =
100 and estimate the average return p over 50 episodes.

To see how learning compares to handwritten protocols, we
compare in the following against several baseline protocols,
given some predefined request sequences. As directory proto-
col baselines we take Arrow and Ivy. Further Arvy Bridge [1] is
the Arvy policy achieving constant competitive ratio on cycles.
Note that Arvy Bridge is not defined for other graphs, we can
therefore only compare against it on cycles. Lastly, Random
74 gives a baseline which selects parents uniformly at random
from P and represents an untrained route agent.

The baseline request sequences for evaluation are Random
Ty, Roundrobin and Greedy. Random m, selects the next
request uniformly at random from all nodes other than the
node with the token. Roundrobin, a simple request sequence on
cycles, issues requests along the cycle, starting with a neighbor
to the initial token. Note that this request sequence can be
particularly bad for a distributed directory, as the directory
tree cannot cover the full cycle. As a final strong baseline, the
Greedy sequence selects the next request after a sequence o is
solved with protocol A as arg max,.., p([o,req|, A). Ties are
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Fig. 2: Left: Trained request agents on cycles of varying size n
(x-axis) against protocols Arrow, Ivy, Arvy and using self-play.
We evaluate return p for each agent against their respective
directory protocol. Right: Learned route agents on cycles of
varying size, trained against the request sequences Random,
Greedy, Roundrobin and using self-play. The return p for each
agent against their respective request sequence is plotted. Note
the scale difference in the y-axix.

broken first with the furthest node in the current directory and
then randomly. This greedily maximizes the competitive ratio
and is in many cases close to the worst-case sequence.

A. Scaling for Cycles

On cycles, both Arrow and Ivy have linear competitive
ratio while the Arvy Bridge heuristic achieves a constant
ratio of 5 [1]. First, we test if a learned request agent can
attain these overheads. Then we train route agents to minimize
the expected competitive ratio against the baseline request
sequences to see their effectiveness in adapting to a given
setup. In both cases, the performance is compared to a self-
play approach. We test with different sizes n from 16 to 100
nodes in order to see scaling behavior.

Request sequences: Results for trained request agents are
shown in Figure 2 (left). Shown is the return p of the trained
agents against the different baseline directory protocols and the
self-play approach, where the directory algorithm is learned
simultaneously. Request agents trained against Arrow and Ivy
scale linearly as desired. Also against a protocol that randomly
chooses the next parents we find request sequences that yield
an approximately linear increase in competitive ratio. Against
Arvy Bridge a sequence is learned that, by inspection, attains
the competitive ratio of 5 for n tending to infinity. The
self-play request agent reaches an almost equivalent return,
indicating the learned directory protocol is empirically as
competitive as Arvy Bridge, which is optimal here. These
results show that the learned request agents can exploit the
weaknesses of known protocols while the route agent in the
self-play approach efficiently fixes these weaknesses.

Directory Algorithms: Results for directory algorithms
trained against baseline request sequences are shown in Fig-
ure 2 (right). For independent, random requests the competitive
ratio of Arrow is bounded by 2 when the directory is the
Minimum Communication Spanning tree on any graph [8].
Given uniform requests, the shortest-path initial directory
matches. So we can expect a learned policy vs. Random 7, to
attain an expected competitive ratio below 2. The Roundrobin
sequence achieves linear overhead for Ivy, but Arrow again has

TABLE I: Average return p testing robustness. Lower is better.

Evaluation
Training | Random  Roundr. Greedy Self-Play ~ Adversary
Random 2.0 7.3 8.3 6.5 9.8
Roundr. 1.9 3.0 53 5.7 5.8
Greedy 1.8 4.6 4.1 53 6.0
Self-Play 1.9 39 4.0 4.7 4.9

constant expected competitive ratio. In fact, given our directory
initialization on a cycle of n = 2m + 1 nodes, the first m
requests each cost 1 and the next is across the missing edge
costing 2m. The requests are always next to the token for an
optimal cost of m + 1. So stopping the sequence after m + 1
requests already reaches overhead % < 3. This is a lower
bound for any Arvy protocol, as the possible directory changes
during request m + 1 affect only future requests. Our learned
protocol reaches this lower bound and achieves a competitive
ratio against Roundrobin of approximately 3. The third, the
Greedy baseline sequence is a worst-case sequence against
Arrow and also attains a linear overhead against Ivy (not
shown here). The route agent learns a protocol with overhead
around 4 and sometimes as low as 3. In the latter case, the
directory is set up such that only 3 neighboring nodes are
active: 2 neighbors alternate requests, but are connected in the
directory through the third node. The remaining nodes all have
overhead less than 3 such that they are not requested by the
greedy sequence. This result shows that our route agent can
adapt to specific setups, exploiting the structure of requests.
Lastly, the protocol trained with self-play is evaluated against
the simultaneously trained request agent. It shows the highest
p, but optimizes the worst-case competitive ratio and thus
should be robust to any possible sequence of requests.

B. Robustness

The motivation for self-play is to be robust to any possible
sequence of requests. However, the self-play setup on its own
does not guarantee robustness [15]. We therefore additionally
evaluate robustness to adversarial attacks as in [15], where an
adversary has control over one agent in a multi-agent setup
and learns a policy to exploit the other, already trained agent.
In our setting a separate Adversary request agent is trained
from scratch against an already trained route agent.

Table I shows results for agents trained on a cycle with
n = 36 nodes. Route agents trained against a fixed sequence
effectively minimize their objective, but evaluating a different
sequence reveals a lack of generalization. Interestingly, both
agents trained vs. Random 7, and vs. Roundrobin do not learn
Arrow even though it would be an optimal solution. This can
be seen in that the adversary attains a lower overhead than
the request agent vs. Arrow in Section IV-A. The self-play
directory protocol shows good robustness as it performs well
against the baseline request sequences and is robust to the
adversary, suffering only a slight performance degradation.

C. Treewidth Dependence

The treewidth is a measure of how treelike a graph G is.
Arrow is optimal on trees which all have treewidth 1. The Arvy
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Fig. 3: Learning approach for random k-trees with 36 nodes
for various treewidths k. Arrow, Ivy and learned directory
protocol evaluated against Greedy requests. Lower is better.

Bridge heuristic has constant competitive ratio for cycles [1],
which have treewidth 2. Note that Arrow and Ivy have linear
overhead Q(n) here as discussed earlier. Further, m x m grids
have treewidth m, where Arrow and Ivy can be shown to be
Q(m) competitive. On fully connected graphs, i.e. graphs that
are maximally non-treelike with treewidth n — 1, Arrow again
has a constant competitive ratio of 2. Given the existence of
Arvy Bridge, we conjecture that there might be other Arvy
protocols with constant competitive ratio on graphs of low
tree width. To investigate this, we test self-play learning on
random k-trees [16], a class of graphs with treewidth k. We test
the self-play approach on graphs with n = 36 nodes, varying
treewidth & from 1, which are regular trees, to 35, which gives
a fully connected graph. At the beginning of each episode a
new k-tree is sampled as underlying graph G. Therefore, a
directory and request agent is learned which optimizes return
p in expectation over the random k-tree graphs.

Figure 3 shows the corresponding results for 3 separate
training runs. The learned protocol is evaluated against greedy
requests and compared to Arrow and Ivy. For Arrow, we see a
linear trend, improving with increasing k for this distribution
of k-trees. Ivy has overall worse performance for all graphs
here. The trained agent is able to improve on Arrow for
treewidth 2 to 6 (= +/n) with a significant improvement
for lower treewidths, supporting our conjecture. For larger
treewidths the learning approach cannot improve on Arrow.
This indicates that Arrow might be the optimal solution here.

V. CONCLUSION

We propose to use self-play as a tool to guide the process of
algorithm design. While many approaches have been proposed
to learn algorithms, most require either an input-output dataset,
which might not cover all cases, or synthetic execution traces,
which limit the algorithmic flexibility. While approaches based
on reinforcement learning overcome some of these limitations,
they still can overfit to the input distribution. In constrast,
the input agent in the self-play approach effectively seeks
out inputs on which the current algorithm design performs
poorly, thereby forcing the algorithm agent to come up with
algorithms that generalize.

We demonstrate the approach by learning distributed direc-
tory protocols from the Arvy family — protocols which keep

track of the location of a shared resource in a network of
resource requesting nodes. Here, we model the input agent as
a request agent 7, that finds challenging request sequences
for the algorithm agent, a route agent w4 that updates the
distributed directory locally while solving a request. The
interplay resembles algorithm prototyping in theoretical com-
puter science: The request agent searches for a worst (high)
competitive ratio of an Arvy protocol while the route agent
tries to find the best (low) competitive Arvy protocol given the
distribution of request sequences. Using a self-play approach,
both can be trained simultaneously and we demonstrate that
the learned Arvy protocols are robust to adversarial request
sequences. Given that our approach can be applied to any
connected graph, we learn novel Arvy algorithms that improve
upon the Arrow and Ivy protocols, especially in graphs with
low treewidth. We hope that our work serves as an inspiration
for algorithm designers, specifically in areas where no tight
performance bounds are known yet.
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