Lower Bounds for the Capture Time: Linear, Quadratic, and Beyond

The game of Cops and Robbers

How to catch a robber on a graph?

The rules of the game

The Cop is placed first

The Robber may then choose a placement

Next, they alternate in moves

Next, they alternate in moves

Next, they alternate in moves

Next, they alternate in moves

The Cop won!

The Cop won!

Graphs G where 1 cop wins have a cop number of $c(G)=1$

How many moves does the cop need?

- For graphs with $c(G)=1$:
- $\mathrm{n} \geq 7$ nodes: $\boldsymbol{n} \mathbf{- 4}$ moves always suffice
- \exists graphs where $\boldsymbol{n}-\mathbf{4}$ moves are needed

(Gavenčiak, 2010)

Catch multiple?

(C) \rightarrow R B

n moves suffice for paths

Upper bound to catch ℓ robbers

1. $n-4$ moves for the first robber
2. Every further robber:

- Cop moves to start in at most diameter D moves
- $n-4$ moves for the next robber
$\rightarrow \quad O(\ell * n)$ moves in total

Lower bound to catch ℓ robbers

Summary so far

- 1 cop and $\ell \in O(n)$ robbers (in $c(G)=1$ graphs)
- $O(\ell * n)$ moves always suffice
- $\Omega(\ell * n)$ needed in some graphs

What about multiple cops and one robber?

- k cops and 1 robber (in $c(G)=k$ graphs)
- Best known upper bound: n^{k+1} (Berarducci and Intrigila, 1993)
- Lower bound?

Let's start with two cops and one robber

Let's start with two cops and one robber

Let's start with two cops and one robber

$\Omega(n)$ moves are needed

Beyond two cops?

How large can $c(G)$ be compared to n ?

Beyond two cops?

- Aigner and Fromme 1984: 3 for planar graphs
- Meyniel's conjecture (1985): $\forall G: c(G) \in O(\sqrt{n})$
- Known upper bound: $0\left(\frac{n}{\log n}\right)$ (Chiniforooshan 2008)
- Improved to $O\left(n /\left(2^{(1-o(1) \sqrt{\log n}}\right)\right)$
(Frieze, Krivelevich, and Loh 2012; Lu and Peng 2012; Scott and Sudakov 2011)
- Pralat (2010): $\exists G^{\prime}: c\left(G^{\prime}\right) \in \Omega(\sqrt{n})$

Multiple cops and one robber

Note that $c\left(G^{\prime}\right)=k+1$ may hold!

Robber chooses side with less than $0.5 * c(G)$ cops
Construction has $n \in O\left(k^{2}\right)$ nodes
$\Omega(n)$ moves are needed

Summary so far

- 1 cop and $\ell \in O(n)$ robbers $($ in $c(G)=1$ graphs $)$
- $O(\ell * n)$ moves always suffice
- $\Omega(\ell * n)$ needed in some graphs

- $\quad k \in O(\sqrt{n})$ cops and 1 robber (inc $(G)=k$ graphs)
- Best known upper bound: n^{k+1}
- $\Omega(n)$ moves with $n \in O\left(k^{2}\right)$ nodes

What about multiple cops and multiple robbers?

- $\quad k$ cops and ℓ robbers $($ in $c(G)=k$ graphs $)$
- ?

Multiple cops and multiple robbers

Are we done?

Multiple cops and multiple robbers

Problem: $c(G)=k+\mathbb{1}$?

Multiple cops and multiple robbers

Problem: $c(G)=k+1$?

How to deal with cop $k+1$?

- Multiple paths do not help much:
- Cop $k+1$ „emulates" robbers
- Catches fraction each crossing

How to deal with cop $k+1$?

- Multiple paths do not help much:
- Cop $k+1$ „emulates" robbers

- Better idea:
- Use a ring

How to deal with cop $k+1$?

- Multiple paths do not help much:
- Cop $k+1$ „emulates" robbers
- Catches fraction each crossing
- Better idea:
- Use a ring

How to deal with cop $k+1$?

- Multiple paths do not help much:
- Cop $k+1$ „emulates" robbers
- Catches fraction each crossing
- Better idea:
- Use a ring

How to deal with cop $k+1$?

- Multiple paths do not help much:
- Cop $k+1$ „emulates" robbers
- Catches fraction each crossing
- Better idea:
- Use a ring

Construction of the ring

Robber placement

Robbers choose side with less cops

Robber strategy

k cops needed to catch 1 robber in gadget graph If $c(G)=k$, then all other robbers escape "down"

Robber strategy

k cops needed to catch 1 robber in gadget graph If $c(G)=k$, then all other robbers escape "down"

$$
\text { But if } c(G)=k+1 \text { ? }
$$

Robber strategy

k cops needed to catch 1 robber in gadget graph If $c(G)=k$, then all other robbers escape "down"

$$
\text { But if } c(G)=k+1 \text { ? }
$$

Robber strategy

Robber strategy

Robber strategy

Robber strategy

Cops need $\Omega(n)$ moves to catch 2 robbers $\Omega(\ell * n)$ moves to catch all robbers

Summary

- 1 cop and $\ell \in O(n)$ robbers $($ in $c(G)=1$ graphs $)$
- $O(\ell * n)$ moves always suffice
- $\Omega(\ell * n)$ needed in some graphs

- $\quad k \in O(\sqrt{n})$ cops and 1 robber (inc $(G)=k$ graphs
- Best known upper bound: n^{k+1}
- $\Omega(n)$ moves with $n \in O\left(k^{2}\right)$ nodes
- $\quad k$ cops and ℓ robbers (in $c(G)=k$ graphs $)$
- $\Omega(\ell * n)$ moves with
$-k \in O(\sqrt{n / \ell})$
- $\ell \in O(\sqrt{n / k})$

- More than n robbers?

- $\Omega\left(n^{2} \log (\ell / n)\right)$

Lower Bounds for the Capture Time: Linear, Quadratic, and Beyond

