Efficient Adaptive Collect using Randomization

Hagit Attiya', Fabian KuhA, Mirjam Wattenhofet, and Roger Wattenhofér

! Department of Computer Science, Technion
2 Department of Computer Science, ETH Zurich

Abstract. An adaptivealgorithm, whose step complexity adjusts to the number

of active processes, is attractive for distributed systems with a highly-variable
number of processes. The cornerstone of many adaptive algorithms is an adaptive
mechanism to collect up-to-date information from all participating processes. To
date, all known collect algorithms either have non-linear step complexity or they
are impractical because of unrealistic memory overhead.

This paper presents new randomized collect algorithms with asymptotically op-
timal O(k) step complexity and polynomial memory overhead only. In addition
we present a new deterministic collect algorithm which beats the best step com-
plexity for previous polynomial-memory algorithms.

1 Introduction and Related Work

To solve certain problems, processes need to collect up-to-date information about the
other participating processes. For example, in a tyfichligentconsensus algorithm [9,

10], a process needs to announce its preferred decision value and obtain the preferences
of all other processes. Other problems where processes need to collect values are in the
area of atomic snapshots [1, 4, 8], mutual exclusion [2, 3, 5, 6], and renaming [2]. A
simple way that information about other processes can be communicated is to use an
array of registers indexed by process identifiers. An active process can update infor-
mation about itself by writing into its register. A process can collect the information it
wants about other participating processes by reading the entire array of registers. This
takesO(n) steps, where is the total number of processes.

When there are only a few participating processes, it is preferable to be able to
collect the required information more quickly. Adaptivealgorithm is one whose step
complexity is a function of the number of participating processes. Specifically, if it
performs at mosf (k) steps when there afeparticipating processes, we say that it is
f-adaptive. An algorithm isvait-freeif all processes can complete their operations in a
finite number of steps, regardless of the behavior of the other processes [11].

Several adaptive, wait-free collect algorithms are known [2, 7, 8]. In particular, there
is an algorithm that features an asymptotically optit®ék)-adaptive collect, but its
memory consumption is exponential in the number of potential processes [8], which
renders the algorithm impractical. Other algorithms have polynomial (in the number
of potential processes) memory complexity, but the collect a@¢t$) steps [8, 14F

3 Moir and Anderson [14] employ a matrix structure to solve the renaming problem. The same
structure can be used to solve the collect problem, following ideas of [8].

The lower bound of Jayanti, Tan and Toueg [12] implies that the step complexity of a
collect algorithm ig2(k). This raises the question of the existence of a collect algorithm
that features an asymptotically optim@lk) step complexity and needs polynomial
memory size only.

This paper suggests that randomization can be used to make adaptive collect algo-
rithms more practical, in contrast to known deterministic algorithms with either super-
linear step complexity or unrealistic memory overhead. We present wait-free algorithms
that takeO(k) steps to store and collect, while having polynomial memory overhead
only. The algorithms are randomized, and their step complexity bounds hold “with high
probability” as well as “in expectation.” We believe that randomization may bring a
fresh approach to the design of adaptive shared-memory algorithms.

Analogously to previous approaches, both randomized algorithmsplisers as
introduced by Moir and Anderson to govern the algorithmic decisions of processes [14].
Ouir first algorithm (Section 4) usesrandomizedsplitter, and operates on a complete
binary tree of deptlelogn, for carefully chosen constamt A process traverses the
tree of random splitters as in the linear collect algorithm [8]. We prove that with high
probability the process stops at some vertex in this shallow tree; in (the low-probability)
case that a process reaches the leaves of the tree, it falls back on a detertraclgiie
structure. A binary tree of radomized splitters was previously used by Kim and Ander-
son [13] for adaptive mutual exclusion.

Our second algorithm (Section 5) uses standard, deterministic splitters [14]. The
splitters are connected in a random graph (with out-degree two), that is, the randomiza-
tion is in the topology rather than in the actual algorithm executed by the processes. A
process traverses the random graph by accessing the splitters. However, if the process
suspects that it has stayed in the graph for too long, it immediately moves to a deter-
ministic backup structure. We prove that with high probability, the graph traversed by
the processes does not contain a cycle, and the backup structure is not accessed at all.
This relies on the assumption that the adversarial scheduler is not allowed to inspect
this graph.

The crux of the step complexity analysis of both algorithms is a balls-into-bins
game, and it requires a probabilistic lemma estimating the number of balls in bins con-
taining more than one ball.

In addition, Section 3 introduces a new wait-free, deterministic algorithm that im-
proves the trade-off between collect time and memory complexity: Using polynomial
memory only, we achieve(k?) collect. The randomized algorithms fall back on this
algorithm. For any integey > 1, the algorithm provides aTorewith O(k) step com-
plexity, acoLLECT with O(k%/((y — 1)logn)) step complexity and (n?+1/((y —

1) log n)) memory complexity. Interestingly, by choosingccordingly, our determin-
istic algorithm achieves the bounds of both previously known algorithms [8, 14].

All new algorithms build on the basic collect algorithm on a binary tree [8]. To
employ this algorithm in a more versatile manner than its original design, we rely on a
new and simplified proof for the linear step complexitya@LLECT (Section 3.1).

2 Model

We assume a standard asynchronous shared-memory model of computation. A system
consists ofn processesps, .. ., p,, cOmmunicating by reading from and writing to
sharedegisters

Processes are state machines, each with a (possibly infinite) set of local states, which
includes a uniquénitial state In eachstep the process determines which operation to
perform according to its local state, and subsequently changes its local state according
to the value returned by the operation.

A register provides two operationsead returning the value of the register; and
write, changing the register value to the value of its inputdhfigurationconsists of
the states of the processes and the values of the registers. ihitthleconfiguration
every process is in the initial state and all registers_aré\ schedules a (possibly
infinite) sequence;, , p;,, - . . Of process identifiers. Aaxecutiorconsists of the initial
configuration and a schedule, representing the interleaving of steps by processes.

An implementatiorof an object of typeX provides for every operatio®P of X
a set ofn procedured, ..., F,,, one for each process. (Typically, the procedures are
the same for all processes.) To execOte on X, process; calls proceduré-;. The
worst-case number of steps performed by some prggesgecuting proceduré; is
the step complexitgf implementingOP.

An operationOP; precedesperationOP; (andOP; follows operationOP;) in an
executione, if the call to the procedure @P; appears irv after the return from the
procedure oDP;.

Let o be a finite execution. Procegs is active during « if « includes a call of
a proceduréd;. Thetotal contentionduring « is the number of all processes that are
active duringa. Let f be a non-decreasing function. An implementatiorfi-adaptive
to total contention if the step complexity of each of its procedures is bounded from
above byf (k), wherek is the total contention.

A collect algorithmprovides two operations: ATOREKVal) by proces®; setsval
to be the latest value fqgr;. A COLLECT operation returns giew, a partial functionl”
from the set of processes to a set of values, whdrg) is the latest value stored by,
for each process;. A COLLECT operationcopshould not read from the future or miss
a precedingsTORE operationsop Formally, the following validity properties hold for
every procesg;:

— If V(p;) = L, then nosTOREOperation byp; precedesop.

— If V(p;) =v # L, thenu is the value of aTOREOperationsopof p; that does not
follow cop and there is n@TORE operation byp; that followssopand precedes
cop

3 Deterministic Adaptive Collect
3.1 The Basic Binary Tree Algorithm
Associated to each vertex in the complete binary tree of depthl is asplitter [14]:

A process entering a splitter exits with eitrstop, left or right. It is guaranteed that
if a single process enters the splitter, then it obtaiep, and if two or more processes

enter the splitter, then there are two processes that obtain different values. Thus the set
of processes is “split” into smaller subsets, according to the values obtained.

To perform asTOREin the algorithm of [8], a process writes its value in its acquired
vertex. In case it has no vertex acquired yet it starts at the root of the tree and moves
down the data structure according to the values obtained in the splitters along the path:
If it receives aleft, it moves to the left child, if it receives Aght, it moves to the
right child. A process marks each vertex it accesses by raising a flag associated with
the vertex. We call a vertemarked if its flag is raised. A processacquires a vertex
v, Or stops inv, if it receives astop at v’s splitter. It then writes its id inta.id and
its value inv.value. In later invocations 06TORE process immediately writes its
value inv.value, clearly leading to a constant step complexityl). This leaves us to
determine the step complexity of the first invocatiorsdbRE

In order to perform a&COLLECT, a process traverses the part of the tree containing
marked vertices in DFS order and collects the values written in the marked vertices.

A complete binary tree of depthh — 1 has2™ — 1 vertices, implying the following
lemma.

Lemma 1. The memory complexity &(2™).

Lemma 2 ([8]). Each process writes its id in a vertex with depth at miost1 and no
other process writes its id in the same vertex.

Lemma 3. The step complexity afOLLECT at most2k — 1.

Proof. In order to perform a collect, a process traverses the marked part of the tree.
Hence, the step complexity of a collect is equivalent to the number of marked (visited)
vertices.

Let 2, be the number of marked vertices in a tree, whieqgrocesses access the
root. The splitter properties imply the following recursive equations:

T = Tj + Tp—i—1 + 1, (1>0) 1)
T =T +Tp—i + 1, (i>0) (2)
depending on whether (1) or not (2) a process stops in the splitter.

We prove the lemma by induction; note that the lemma trivially holds:fer 1.
For the induction step, assume the lemma is trug fark, that is,z; < 25 — 1. Then
we can rewrite Equation (1):

o <21+ Q2Fk—-i—-1)—-1)+1<2k—1
and Equation (2) becomes:
o < (20 —1)+ 2k —i)—1)+1<2k—1.

3.2 The Cascaded Trees Algorithm

We present a spectrum of algorithms, each providing a different trade-off between
memory complexity and step complexity. For an arbitrary consiant 1, the cas-
caded trees algorithrprovides asTorRewith O(k) step complexity, &OLLECT with
O(k?/((v — 1)logn)) step complexity an@(n”*!) memory complexity.

The Algorithm The algorithm is performed on a sequence pf(y —1)[log n]) com-
plete binary splitter trees of depthog n, denotedls, ..., T}, /((y—1)[10g n1)- EXCEPL fOr
the last tree, each leaf of tré¢ has an edge to the root of trég, ; (Figure 1).

A

iwlogn

a7zl

Fig. 1. Organization of splitters in the cascaded trees algorithm.

To perform asTORE, a process writes in its acquired vertex. If it has not acquired a
vertex yet, it starts at the root of the first tree and moves down the data structure as in
the binary treesTORE(described in the previous section). A process that does not stop
at some vertex of tre&; continues to the root of the next tree. Note that both the right
and the left child of a leaf in tre®;, 1 < i < n/((y — 1)[logn]) — 1, are the root of
the next tree.

The splitter properties guarantee that no two processes stop at the same vertex.

To perform aCOLLECT, a process traverses the part of tigecontaining marked
vertices in DFS order and collects the values written in the marked vertices. If any of
the leaves of treéare marked, the process also collects in ffeg .

Analysis We haven/((y—1) log n) trees, each of depthlog n, implying the following
lemma.

Lemma 4. The memory complexity is

Let k be the number of processes that salbrEat least once ankl; be the number
of processes that access the root of ffge

Lemma 5. At leastmin{k;, (y — 1)[logn]} processes stop in some vertex of tfge
foreveryi,1 <i <n/(y—1)logn.

Proof. Let m; be the number of marked leaves in tfEe Consider the tre&] that is
induced by all the paths from the root to the marked leavés .of

A non-leaf vertexv € 7] with one marked child iff;] corresponds to at least one
process that does not continuelta ; . If only one child ofv is visited inT;, then some
process obtainestop at v and does not continue. Otherwise, processes reactimg
split between left and right. Since only one path leads to a leaf, say, the one through the
left child, at least one process (that obtaimigtht atv) does not access the left child of
v and does not reach a leaf bf.

The number of vertices ifi! with two children is exactlyn; — 1, since at each such
node, the number of paths to the leaves increases by one.

To count the number of vertices with one child, we estimate the total number of
vertices in7; and then subtraet,; — 1.

Starting from the leaves, the number of vertices on each preceding level is at least
half the number at the current level. For the number of non-leaf ventice$tree T,
we therefore get:

> i T 1T 1 1
nz_7+7+"'+m+ + -+ 5
a1 7 [log n]—[logm;]

where the number of ones in the equation follows from the fact that thelirbast
depthylogn and after[log m;] levels the number of vertices on the next level can be
lower bounded by one. The claim follows sineg < n. ad

Lemma 6. A process writes its id in a vertex at depth at mbsty/(y — 1).

Proof. If k < (v — 1)[logn], the claim follows from Lemma 2.

If Kk =m-(y—1)[logn], for somem > 1, then we know by Lemma 5 that in each
tree, atleasty — 1)[log n] processes will stop in a vertex. Thus, at mest 1) [log n]
processes access tré€g . By Lemma 2, a process stops in a vertex with total depth at
mostylogn - (m — 1) +ylogn =k -~v/(y — 1). O

Since each splitter requires a constant number of operations, by Lemma 6, the step
complexity of the first invocation a§TOREis O(y/(y — 1)k) and all invocations there-
after requireO(1) steps.

By Lemma 3, the time to collect in tre€ is 2k; — 1. By Lemma 6, all processes
stop after at most/((y — 1) logn) trees. This implies the next lemma:

Lemma 7. The step complexity of @OLLECTis

0(@—?;0@)'

Remark: The cascaded-trees algorithm provides a spectrum of trade-offs between mem-
ory complexity and step complexity. Choositng= 1+ 1/ log n gives an algorithm with
O(k?) step complexity focoLLECT andO(n?) memory complexity; this matches the
complexities of the matrix algorithm [14]. Setting= n/logn + 1 yields a single
binary tree of height; namely, an algorithm where the step complexitafLLECTis

linear ink but the memory requirements are exponential, as in the algorithm of [8].

4 Adaptive Collect with Randomized Splitters

The next two sections present two algorithms that allowtorREandCOLLECT with

O(k) step complexity and polynomial memory complexity. For the first algorithm, we

use a new kind of randomized splitters, arranged in a binary tree of small size. The sec-

ond algorithm uses classical splitters (Section 3.1) which are interconnected at random.
For both algorithms, we need the following lemma.

Lemma 8. Assumek balls are thrown intaV bins, i.e. the bins for all balls are chosen
independently and uniformly at random. li@tdenote the number of balls ending up in
bins containing more than one ball. We have

k(k—1) k3 k(k—1)
TN o SHO s TR @
and
k2 6k>
> — | < —
Pr<0_t+N) < oy (4)

under the condition that < N2/3,
Proof. Let us first prove the bounds (3) on the expected valj(&]. The random vari-
able B,,, denotes the number of bins containing exaetlyalls. Furtherp is the num-

ber of pairg(7, j) of balls for which balk and ballj end up in the same bin. The variable
T is defined accordingly for triples. Clearly, we have

C= io: mBy,,
m=2

as well as

We get2P — 3T < C < 2P because

> m—2
2P—3T:2B2+mz::3m(m—1) (1—2>Bm
<2By+3B3 < C< Y m(m—1)B,, = 2P.

m=2

Let p;; be the probability that a pair of balisandj are in the same bin. Accordingly,
pi;1 denotes the probability that baflsj, andl are in the same bin. We hapg = 1/N
andp;;; = 1/N?2. Usingp;; andp;;;, we can compute the expected values’odind T’

as
E[P] = (I;)pl] = % and

k k3
E[T] = <3>pijl < W

Using2P — 3T < C < 2P and linearity of expectation, the bounds BfC], claimed
in (3), follow.

We prove Inequality (4) using the Chebyshev inequality. In order to do so, we need
to know an upper bound on the variariéer[C] of C. Let &; be the event that badlis
in a bin with at least two balls. Furthef;; is the event that and;j are together in the
same bin wherea; denotes the complement, i.e. the event tteatd; are in different
bins.Var[C] can be written a¥ar[C] = E[C?] — E[C]2. The expected value ¢f? can
be computed as follows:

k 2 k
E[C?] =E (ZX) =E|) X7 +2) XX,
i=1 i=1 1<i<j<k
=E[C]+2-) Pr(&NE)). (5)

1<i<j<k
We havePr(&; N E;) = Pr(&;) - Pr(&;|€:) and

PI‘(SJ|EZ) = Pr(&]\&) + PI‘(SJ' ﬂaw‘l)

- irr((%z)) + Pr(€2 N E12[é13) ©
Pr(&;;) '

< Pr(&;) +Pr<€L_J452€ 513)

_ Pr(&y) '

_ Pr(g:) +pr(Bgze> . (7)

For Equation (6), we assume that w.l.o.g., idh in the same bin as baland that ball
2 shares the bin with some balfor i = 4, ..., k. Equation (7) holds becauggs; and

&9y are independent far > 4. The probability that two ballsand; are in the same bin
is Pr(&;;) = 1/N. Using the bounds (3) oB[C] and linearity of expectation, we get
the following bounds for the probability &f;:

k—1 k2 k—1
- < < —.
N anz = P& = g ®
Therefore, we have
Pr(Eij) % 2
< - — < %)
Pr(&;) % — 2’§v2 k-1

where the second inequality of (9) holds forx N2/3 andN > 5. The second term of
Equation (7) can be bounded as

k k E_3
Pr(U 5%) <) Pr(fx) = . (10)
Combining (7), (8), (9), and (10), we get

k—1 2 k—3 2 k2
.) < . < — _—
Pr(&né;) < N <k—1+ N) +

A

Applying Equation (5), we have

and therefore

Var(C] < B2 K (k-1 K ? L AT
r —+ — - - — —+ — + = —_.
=N ' N? N 2N2) = N " NZ N3 hnezy) N

Using the bounds faE[C] andVar[C|, we can now apply Chebyshev in order to bound
the probability of the upper tail af":

k2 6k
> — < —.
Pr (C’_tJrN) S BN

This concludes the proof. O

4.1 The Algorithm

The algorithm presented in this section providg®RrEandcoLLECT with O(k) step
complexity and polynomial memory complexity. It uses a new kind of splitter that
makes a random choice in order to partition the processes to left and right. The al-
gorithm operates on a complete binary tree of depitly n (¢ > 3/2) with randomized
splitters (see Algorithm 1) in the vertices. The algorithm uses the cascaded trees struc-
ture (of Section 3.2) as well as an array of lengths deterministic backup structures.

Algorithm 1 Randomized Splitter
X =1id;
. if Y then return randomlyight or left
Y =true
if (X ==1d;)then

returnstop
else

return randomlyight or left

N~ NE

fi

The cascaded trees have heigitg(4./n) and there ard/n/log(4/n) such trees.
That is, we build the structure with the parametet 2 but only for4,/n processes.

As in the previous algorithms, a process tries to acquire a vertex by moving down
the data structure according to the values obtained from the randomized splitters. If a
process does not stop at a leaf of the tree, it enters the cascaded trees backup structure. If
a process also fails to stop at a vertex of the first backup structure (the cascaded trees), it
raises a flag, indicating that the array structure is used, and stores its value in the array at
the index corresponding to the process ID. That is, procegwes its value at position
1inthe array forl <i <n.

ThecoLLECT works analogously to the previous algorithms. The marked part (vis-
ited splitters) of the randomized splitter tree is first traversed in DFS order. Then, if
necessary, the first backup structure is traversed as described in Section 3.2. Finally, if
the flag of the array is set, the whole array is read.

4.2 Analysis

Clearly, the tree of randomized splitters ne€d°) randomized splitters and therefore
O(n°) registers. By Lemma 4, the first backup structure requirs/n)/log \/n) =
O(n®/?/logn) registers; the array takesadditional registers, implying the following
lemma.

Lemma 9. The memory complexity &(n°) for ¢ > 3/2.

Lemma 10. The probability that more that/k processes enter the first backup struc-
ture is at most; /n°.

Proof. In order to get an upper bound on the probability that at least a certain number
of processes reach a leaf of the randomized splitter tree, we can assume that whenever
at least two processes visit a splitter, none of them stops and all of them are randomly
forwarded to the left or the right child. Assume that we extend the random walk of
stopping processes until they reach a leaf. If we do this, the set of processes which
stops in the tree corresponds to the set of processes which arrive at a leaf that is not
reached by any other processes. On the other hand, all processes which are not alone
when arriving at their leaf have to enter the backup structure. Because the leaves of
the processes are chosen independently and uniformly at random, we can view it as a
‘balls-into-bins’ game and the lemma follows by applying Lemma 8 uiNth= n¢ and

t = 3vk. Note thatk < (n°)?/3, sincec > 3/2. O

Lemma 11. The number of marked nodes in the random splitter tree is at Biost
expectation and no more thdi with probability at leastl — 1/2*.

Proof. We partition the marked vertices into vertices where the processes are split (there
are processes going lefhd processes going righr some process stops at the node)
and into vertices where all processes proceed into the same direction. If we contract all
the paths of vertices which do not split the processes to single edges, we obtain a binary
tree where all vertices behave like regular splitters (not all processes go into the same
direction). Hence, by Lemma 3, there are at nist- 1 of those vertices. At most

k — 1 of them are visited by more than one process. All paths of non-splitting vertices
are preceding one of thoge- 1 splitting vertices. That is, there are at mést 1 paths

of consecutive vertices where all processes proceed in the same direction. As there are
at least two processes traversing such paths, in the worst case, the Jeragjteach

pathi is geometrically distributed with probabilifyr(Z; = ¢) < 1/2¢F!. Thus, the
distribution of the total numbek of vertices where processes are not split can be by
estimated by the distribution of the sum/of- 1 independent geometrically distributed
random variables. Lét” := Zf;ll Z;, we have

E[X] < E[Y] = (k- 1)E[Z] = k- 1.

and therefore, the total number of marked nodes is at Biost expectation. For the
tail probability, we have
Pr(X >z) <Pr(Y >ux). (11)

The random variabld@” can be seen as the number of Bernoulli trials with success
probability 1/2 until there arek — 1 successes, i.e., the distribution¥fis a negative
binomial distribution. We have

e = ())

Pr(Y =y+1) Yy 1
Pr(Y=y) y—k+2 2

Fory > 5k, we have

oo | Ut

Therefore, fory > 5k, Pr(Y > y) can be upper bounded by a geometric series and we
get

8 8(5k\ 1 _ 8 (5ek\" 1
S <8 _ < 2 < == < —.
PI‘(Y > 5k) S 3PI‘(Y 5k) =3 < k)25k -3 (25]<;) (k>2) 2k

Adding the2k — 1 vertices where processes are split completes the proof. a

Lemma 12. The step complexity of the first invocation ®foRErequiresO(k) steps
in expectation and with high probability.

Proof. A process visits at mostlog n vertices in the randomized structure. With prob-
ability 1 — k/n¢ at most4\/k processes enter the first backup structure and hence stop

there. Applying Lemma 6, we conclude that with high probability the step complexity
of the first store is linear i. For the expectation we get

4y/n
log 4v/n

k k
E[STORE < (1 - C) (clogn + 2k) + —(clogn + 2log 4y/n - +1)
n

= 0(k).
O

Lemma 13. An invocation ofcoLLECT requiresO(k) steps with high probability and
in expectation. In any case, the step complexitgof LECTis O(k? + klogn).

Proof. Let A be the event that more th&i nodes are marked in the random splitters
tree. By Lemma 11Pr(A) < 1/2*. Further, let3 be the event that more than/k
processes enter the cascaded trees backup structure. By Lemma 10 vire (ve
k/n¢ and thereforePr(A U B) < 1/2% + k/n°. Hence, with probability at leadt —
1/2F — k/n°, the step complexity of a collect is at ma@ét + (4vk)?/logn = O(k).

We compute the expected step complexity af@ LECT operation in each of the
three data structures separately. By linearity of expectation, we can sum up those results
and get the total expected step complexity. Egt S¢, and.S4 denote the number of
steps of acOLLECT operation, performed on the randomized splitter tree, the cascaded
trees, and the array, respectively. By Lemma 11, we immediatelyHEja@ < 3k. For
the cascaded trees structure we get

omin (k,4/n) .9 9
E[Sc] < (1—k> 4R +3 0(J ok)
VE

ne logn logn . (] _ \/E)2n3/2

j=avk
6k>

=Sy v)
= O<1o§n " min(j’ﬁﬁ) ' %2+ k) - oW,

where we applied Lemma 8, Lemma 10 and the fact that the number of nodes in the
cascaded trees structured$(/n)?). For the second backup structure, the linear array,
we getE[S4] < k/n¢-n = O(k//n). Summing up, we gaE[COLLECT] = O(k).

The worst-case number of vertices marked in the binary tree of randomized split-
ters isO(klogn) because each process can mark at rAgaiog n vertices. The step
complexity in the cascaded-tree structure is at mdgtlog n by Lemma 7. If the lin-
ear array is accessed, the step complexit®{s). However, this can only happen if
k > 4./n, and therefore the lemma follows. O

5 Randomized Construction for Deterministic Collect

In this section, we show that instead of having processes, which have access to a random
source, it is also possible to have a pre-computed ramdom splitter structure and keep
the processes themselves deterministic. The random structure upon whighotke

and coLLECT is performed is constructed in a pre-processing phase. It is a random
directed graph witm?3 vertices and out-degree 2 at all vertices. To each of the vertices,
there is an deterministic splitter (cf. Section 3) associated. That is, we aregiven
vertices, each of which chooses two random successors among the other vertices. The
two successors of a vertexare associated witleft andright of v’s splitter. One of the
vertices is singled out and called tramt.

The processes traverse the data structure as described in Section 3.1. Additionally,
each process counts the number of visited splitters. If this number excgbegprocess
immediately leaves the random data structure and enters the backup structure. In the
backup structure the process will then raise a flag at the root, indicating that the backup
structure has been used, and then traverse the cascaded tree structure, as described in
the Section 3.2.

To perform aCOLLECT a process traverses the part of the random data structure
containing marked vertices by simply visiting the children of a marked vertex in DFS
order. The process furthermore memorizes which vertices it has already accessed and
will not access a vertex twice. Additionally, it checks whether the flag in the backup
structure is raised and, if that is the case, collects the values in the backup structure as
described in the previous section.

To prove the correctness and complexity of the algorithm, we will proceed as in the
previous section. Let be the number of processes that calbrEat least once.

We haven? vertices in the randomized structure and™! / logn, v > 1 vertices in
the backup structure. With < 2, we get the following lemma.

Lemma 14. The memory complexity &(n?).
Lemma 15. The probability that a process enters the backup structure is atdstn).

Proof. A process traverses the data structure according to the values it is given in the
splitters and leaves the random structure if it accessed morenthartices. We want

to show that, with high probability, the marked part of the data structure is a tree (that
is, we do not have a cycle) and consequently a process stops with high probability after
at mostk < n steps (see Lemma 2). Taking into account that by Lemma 3 in a tree
at most2k — 1 vertices are being marked, this leaves us to prove that thefirst 1

visited vertices are distinct and hence do not form a cycle with high probability.

We may model the way how the data structure is traversed by the processes as a
‘balls-into-bins’ game, since the children of a vertex were chosen uniformly at random.
The number of balls i€k — 1 and the number of bins & = n3. If we let C be the
number of balls ending up in a bin containing more than one ball, by Lemma 8 the
probability thatC is at least one can be estimated as

Pr(C > 1) < m < 0(1/n).
O

Lemma 16. The step complexity of the first invocationsaforRErequires expected and
with high probabilityO (k) steps.

Proof. By the previous lemma we know that with high probability the marked subgraph

of our randomized data structure is a tree and hence, by Lemma 2, a store takes at most
k — 1 steps. Since a process makes at mosteps in the randomized structure and, by
Lemma 6, steps in the cascaded tree structure, we have:

E[STORE < <1 —~ 711) k+ % ~(n+ k) = O(k).

O

Lemma 17. With high probability and in expectation the step complexitgof LECT
is O(k). In any case, the step complexity is at mob?).

Proof. The collect time in the backup structure is at me$t logn and the processes
leave the randomized structure after at mosteps. Hence, the step complexity of the
coLLECT will never exceed(n?).

With probability (1 — %) the marked data structure is a tree and no process enters
the backup structure. Hence, we can apply Lemma 3 and the step complexity of a collect
is with high probability at mosf2k — 1). If it enters the backup structure, a collect costs
by Lemma 7 at most?/logn and furthermore at mogtn vertices are marked in the
randomized structure. Hence, for the expected step complexity we get

E[COLLECT] < (1 _ 1) 2k —1)+ (1) . (kn+ K) — O(k).

n n

6 Conclusions

We presented new deterministic and randomized adaptive collect algorithms. Table 1
compares the three algorithms presented in this paper with previous work. The algo-
rithms are adaptive to so-callédtal contention that is, to the maximum number of
processes that were ever active during the execution. There are other contention def-
initions which are more fine-grained, such as point contention. pidiet contention

Step Complexity
Algorithm COLLECT STORE|Memory Complexity
triangular matrix [14] O(k?) O(k) 0(n?) deterministi
tree [8] O(k) O(k) o(2m) deterministi¢
cascaded trees (Sec. 3.2) |0(k*/(slogn))|O(k/¢) 0(n?**) deterministi¢
randomized splitters (Sec.|4) O(k) O(k) O(n®/?) randomized
randomized graph (Sec. 5 O(k) O(k) 0(n?) randomized

Table 1.Summary of the complexities achieved by different collect algorithms. Note that the kind

of randomization used in the two randomized algorithms is inherently different. For the algorithm

of Section 4, the processes need access to a random source while the algorithm of Section 5 works
on a random graph which can be precomputed.

during an execution interval is the maximum number of processes that were simultane-
ously active at some point in time during that interval. We believe that some of our new
techniques carry over to algorithms that adapt to point contention [2, 4, 7].

Our paper shows that it is possible to perforrm@L.LECT operation inO(k) time
with polynomial memory using randomization. We believe that there is no deterministic
algorithm, using splitters, that achieves line€avLLECT and polynomial memory. To
determine the best possible step complexityfoLLECT achievable by a deterministic
algorithm with polynomial memory is an interesting open problem.

References

[1] Y. Afek and M. Merritt. Fast, wait-fre¢2k — 1)-renaming. InProceedings of the 18th
Annual ACM Symposium on Principles of Distributed Computing (POp&jes 105-112,
1999.

[2] Y. Afek, G. Strupp, and D. Touitou. Long-lived Adaptive Collect with Applications. In
Proceedings of the 40th IEEE Symposium on Foundations of Computer Science (FOCS)
pages 262-272. IEEE Computer Society Press, 1999.

[3] Y. Afek, G. Strupp, and D. Touitou. Long-lived and adaptive splitters and applications.
volume 15, pages 444-468, 2002.

[4] Y. Afek, G. Stupp, and D. Touitou. Long-lived and adaptive atomic snap-shot and immediate
snapshot. IProceedings of the 19th Annual ACM Symposium on Principles of Distributed
Computing (PODC)pages 71-80, 2000.

[5] J. Anderson, Y.-J. Kim, and T. Herman. Shared-memory mutual exclusion: Major research
trends since 198@istributed Computing16:75-110, 2003.

[6] H. Attiya and V. Bortnikov. Adaptive and efficient mutual exclusidvistributed Comput-
ing, 15(3):177-189, 2002.

[7] H. Attiya and A. Fouren. Algorithms Adaptive to Point Contenticlnurnal of the ACM
(JACM), 50(4):444-468, July 2003.

[8] H. Attiya, A. Fouren, and E. Gafni. An adaptive collect algorithm with applicatiddis-
tributed Computing15(2):87-96, 2002.

[9] R. Guerraoui. Indulgent algorithms. Rroceedings of the 19th Annual ACM Symposium
on Principles of Distributed Computing (PODG)umber 289-297, 2000.

[10] R. Guerraoui and M. Raynal. A generic framework for indulgent consens&soteedings
of the 23rd International Conference on Distributed Computing Systems (ICp@ges
88-95, 2003.

[11] M. Herlihy. Wait-free synchronizationACM Transactions on Programming Languages
and Systemd 3(1):124-149, January 1991.

[12] P.Jayanti, K. Tan, and S. Toueg. Time and space lower bounds for nonblocking implemen-
tations.SIAM Journal on Computing30(2):438—456, 2000.

[13] Y.-J.Kim and J. Anderson. A time complexity bound for adaptive mutual exclusidprdn
ceedings of the 14th International Symposium on Distributed Computing (PL8Cure
Notes in Computer Science, pages 1-15, 2001.

[14] M. Moir and J. H. Anderson. Wait-free algorithms for fast, long-lived renam8ajence of
Computer Programming5(1):1-39, October 1995.

