
Overcoming Obstacles with Ants

Barbara Keller, Tobias Langner, Jara Uitto, Roger Wattenhofer

ETH Zürich, Switzerland

Abstract

Consider a group of mobile �nite automata, referred to as agents, located in the origin of
an in�nite grid. The grid is occupied by obstacles, i.e., sets of cells that can not be entered by
the agents. In every step, an agent can sense the states of the co-located agents and is allowed
to move to any neighboring cell of the grid not blocked by an obstacle. We assume that the
circumference of each obstacle is �nite but allow the number of obstacles to be unbounded.
The task of the agents is to cooperatively �nd a treasure, hidden in the grid by an adversary.

In this work, we show how the agents can utilize their simple means of communication
and their constant memory to systematically explore the grid and to locate the treasure in
�nite time. As integral part of the agents' behavior, we present a method that allows a group
of six agents to follow a straight line, even if the line is partially obscured by obstacles, and
to discover all cells along this line. In total, our search protocol requires nine agents.

1



1 Introduction

How do ants �nd that crumb of chocolate dropped on the kitchen �oor? And how do they navigate
through that huge Lego castle built by the children to get to the crumb? General knowledge is
that this amazing achievement can be explained by so-called pheromones, a chemical factor used
by ants to mark the terrain. However, as it turns out, many ant species do not use pheromones
at all, and instead communicate with their antennae when bumping into each other [20]. So how
do they do it � are ants pretty intelligent after all?

In this paper, we model a single ant with a mobile version of a �nite state machine. If two ants
meet, they can in�uence their states, no other form of communication is allowed. We show that
a small group of nine of our ants will collaboratively be able to �nd a treasure in an arbitrarily
obstructed environment. Our ants use only a constant amount of memory, independent of the
distance from the nest to the treasure, and the number and size of the obstacles.

Related Work. Recently, scientists in biology and computing have been �irting with each
other. Distributed computing in particular seems to be a valuable tool towards understanding
biological phenomena, as both often deal with networks of simple nodes, collaborating by means
of minimal communication. Please see the recent survey from Navlahka and Bar-Joseph for more
details [18].

Ants in particular have been a focus of interest in the Computer Science community. As an
example, Feinerman et. al. modeled the foraging behavior of ants as an exploration problem,
where n agents are collaboratively searching the plane and the goal is to �nd an adversarially
hidden treasure [13,14]. Our model is a variant of their model, where the agents are controlled by
�nite state machines instead of Turing machines. Without obstacles, it was shown that asymp-
totically there is no penalty when ants are restricted to �nite state machines [12]. In the case
of an in�nite grid without obstacles, it was discovered by Emek et al. that two deterministic
�nite state machines cannot discover every cell [34]. In the same work, it was also shown that a
randomized �nite state machine requires in�nite time in expectation and that 4 (deterministic)
�nite state machines are always enough to discover the treasure. Since the unobstructed in�nite
grid is a special case of our setting, the same lower bounds hold for our problem. However, it
seems that introducing obstacles fundamentally changes the picture. In this paper we show that
it is still possible to discover the treasure in this more challenging setting and we derive an upper
bound for the number of ants required for it.

Our work also has connections to graph exploration, as the problem we are studying is a
variant of it. In the general graph exploration setting, the goal is to visit all the nodes or all the
edges of a graph starting from any node. In our work the unobstructed cells can be interpreted
as nodes and their connections to their neighbors as edges. The task of the ants is to discover
all unobstructed cells. Graph exploration has been extensively studied in the literature and the
studies can be divided into two settings. One of the settings is to assume that the graphs are
directed, i.e., an edge can only be traversed to one direction, not vice versa [1,3,7]. In the other,
the edges can be traversed to both directions [2, 8, 10]. Our work belongs to the second setting,
as the ants can move back and forth between neighboring cells.

1



Furthermore, there are two main types of performance measures regarding graph exploration.
The �rst measure is the time complexity, i.e., how long does it take for the agent(s) to �nish the
exploration task [19]. The other one is to measure the bit complexity, i.e., how many bits of mem-
ory does the agent(s) require to solve the exploration task [15]. Furthermore, the aforementioned
graph exploration tasks can be considered with return, stop, or perpetual properties, i.e., whether
the agent is required to return to the starting cell, stop the search after �nishing, or if the agent
is not required to terminate [8, 16]. Note that even though in [16] a �nite automaton explores a
graph, this automaton is equipped with a memory linear in size of the diameter of the graph. In
our work we show that our �nite automata only need constant memory to solve the task.

Since we are restricting our underlying graph to Z2 and the obstacles in our domain essentially
block the agents from entering speci�c cells, our graphs correspond to a concept widely studied
in literature called labyrinths [4, 9]. Exploration of a labyrinth corresponds to the task of getting
as far from the starting point as possible, for any starting point. It was shown by Budach that a
single automaton cannot explore every �nite labyrinth, where a �nite labyrinth has only a �nite
amount of blocked cells [6]. On the positive side, it is known that every �nite labyrinth can be
explored by a �nite automaton using 4 pebbles and that all co-�nite (number of non-blocked cells
is �nite) labyrinths can be explored with a �nite state machine using 2 pebbles [5]. A pebble can
be seen as a marker, which can be put down/picked up and moved by the automaton. Finally,
Ho�man showed that the problem cannot be solved in neither �nite nor co-�nite labyrinths by
using only 1 pebble [17]. Note that our goal di�ers from the one of labyrinth exploration, i.e., our
goal is to visit all non-blocked cells.

2 Model

We consider the asynchronous version of the ANTS problem variant described in [12], where a set
of mobile agents search the in�nite grid for an adversarially hidden treasure. The agents are con-
trolled by asynchronous �nite state machines with a common sense of direction and communicate
only with agents sharing the same grid cell.

More formally, we consider a set A of mobile agents that explore Z2. In the beginning of
the execution, all agents are positioned in a designated grid cell referred to as the origin; the
cell with coordinates (0, 0) ∈ Z2. We denote the cells with either x- or y-coordinate being 0
as north/east/south/west-axis, depending on their location. The distance between two grid cells
(x, y), (x′, y′) ∈ Z2 is de�ned with respect to the `1 norm (a.k.a. Manhattan distance), that is,
|x− x′|+ |y − y′|. Two cells are called neighbors if the distance between them is 1.

The set of cells B ⊂ Z2 represents the blocked cells, which cannot be entered by an agent.
All other cells are called free. For simplicity, we assume that B neither contains the origin nor
any of the cells within distance at most 3 from the origin. We note that assuming the origin free
is necessary and that our protocols can easily be modi�ed to work in an environment without
assuming that the nearby cells around the origin are free. This assumption merely allows for a
cleaner and more reader friendly initialization of our protocol.

To make the exploration of the grid feasible, we require that the cells in B do not fully enclose

2



any free cell, i.e., that any free cell is reachable from any other free cell by a path of neighboring
free cells. The set B induces a set O of obstacles. An obstacle O ∈ O is a maximal set of connected
cells, where two cells are connected if both their x- and y-coordinates each di�er by at most one
(diagonally adjacent cells are connected!). We require each obstacle to be of �nite size.

All agents are controlled by the same asynchronous �nite automaton (FA). This means that
the individual agent has a constant memory and thus, in general, can not store coordinates in Z2.
Since we design a protocol for a constant number of agents, we allow each agent to run a di�erent
individual protocol. This is modeled by assigning to each agent an individual initial state in the
shared automaton An agent a positioned in cell z ∈ Z2 can communicate with all other agents
positioned in cell z at the same time. This communication is quite limited though: agent a merely
senses for each state q of the �nite state machine, whether there exists at least one agent a′ 6= a in
cell z whose current state is q. In each step of the execution, agent a positioned in cell (x, y) ∈ Z2

can either move to one of the four neighboring cells (x, y + 1), (x, y − 1), (x+ 1, y), (x− 1, y), or
stay put in cell (x, y). The former four position transitions are denoted by the corresponding
cardinal directions N,E, S,W, whereas the latter (stationary) position transition is denoted by
P. For convenience, we also identify the four directions N,E, S,W with the unit vectors in the
corresponding directions and, e.g., z = (x, y) +N = (x, y+ 1). We point out that the agents have
a common sense of orientation, i.e., the cardinal directions are aligned with the corresponding
grid axes for every agent in every cell.

The agents operate in an asynchronous environment. Each agent's execution progresses in
discrete (asynchronous) steps indexed by the non-negative integers and we denote the time at
which agent a completed step i > 0 by ta(i) > 0. Following the common practice, we assume that
the time stamps ta(i) are determined by the policy ψ of an adversary that knows the protocol
whereas the agents do not have any sense of time.

Formally, the agents' protocol is captured by the 3-tuple Π = 〈Q, sa0, δ〉, where Q is the �nite
set of states; sa0 ∈ Q is the initial state of agent a; and

δ : Q× 2Q × {>,⊥}4 → 2Q×{N,E,S,W,P}

is the transition function. At time 0, all agents are positioned at the origin and their FAs are in
the respective initial states. Suppose that at time ta(i), agent a is in state q ∈ Q and positioned in
cell z ∈ Z2. Then, the state q′ ∈ Q of a at time ta(i+ 1) and its corresponding position transition
τ ∈ {N,E, S,W,P} are determined by the transition function δ(q,Qa, b) = (q′, τ), where Qa ⊆ Q
contains state p ∈ Q if and only if there exists some (at least one) agent a′ 6= a such that a′ is in
state p and positioned in cell z at time ta(i), and b is a 4-tuple indicating which of the neighboring
cells N/E/S/W are blocked (>) or free (⊥). If the transition function dictates that an agent enters
a blocked cell, the agent stays put instead. For simplicity, we assume that while the state subset
Qa (input to δ) is determined based on the status of cell z at time ta(i), the actual application of
the transition function δ occurs instantaneously at the end of the step, i.e., agent a is considered
to be in state q and positioned in cell z throughout the time interval [ta(i), ta(i+ 1)).

The goal is to locate an adversarially hidden treasure, i.e., to bring at least one agent to the free
cell in which the treasure is positioned. The distance to the treasure from the origin is denoted
by D.

3



(0,0)

NE

NW

SESW

Figure 1: The �lled black dots represent the corner agents (N,E, S,W), marking the next spot, where
the exploring group should turn counter-clockwise in order to walk a square. The hollow dots represent
where the corner agents were in earlier stages. The arrows present the way the exploring group was taking
so far.

3 Basic Idea

In order to �nd the treasure, the agents have to visit every free cell. The high level idea is that
the agents walk in growing squares counter-clockwise around the origin. To this end, each agent is
given a speci�c task. An explorer explores the plane by walking along squares of increasing sizes,
whereas four other agents, called guides, mark the four corners of the square that the explorer
should walk along. We identify the four guides by the cardinal direction of their respective corner
NE,NW, SW, SE. Upon entering a cell with a guide, the explorer accompanies the guide to the
correct position for the next square before continuing the search. After updating the position of
the last guide, the explorer starts a new search along the next bigger square. We de�ne square(d)
as the square given by the four corner cells (d, d), (d,−d), (−d,−d), (−d, d).

In the presence of obstacles, the subroutines get more involved. Obstacles can obstruct the
path of the explorer or hinder a guide to mark the cell it is supposed to. To solve the former of
the aforementioned problems we provide a subroutine that essentially allows the explorer to walk
�through� the obstacle. For the second problem we change the conditions for the guides. Instead
of marking the corner of the square, a guide has to either mark the correct y-coordinate or the
correct x-coordinate, depending on the guide. The NE- and SW-guides mark the y-coordinates of
the corners of the square whereas the NW- and SE-guides mark the x-coordinates of said corners
(see Figure 2).

Let us describe the new condition for the NE-guide. Consider the NE-guide that is supposed
to mark the cell z = (d, d) for some value of d and assume further that z is blocked. Then, the
surrogate cell for the cell z is given by z′ = (x′, d) where x′ = min{x | x ≥ d ∧ (x, d) 6∈ B}.
Informally, z′ is the �rst free cell with the same y-coordinate as z further away from the origin.
As the obstacles are of �nite size we can guarantee that such a cell always exists. With this
condition, we make sure that the guide is either on the corner (if it is free) or outside of the
square on which the explorer is walking.

4



ZNE(d)

ZNW(d)

ZSE(d) = (d,−d)ZSW(d) = (−d,−d)

(d, d)

(−d, d)

origin

O1

O2

Figure 2: The grey area describes the obstacles O1, O2 and the red dots indicate where the NE- and
NW-guide would be if there was no obstacle. The black dots indicate the cells, that the guides actually
mark. The dashed lines indicate the side of the square that the respective guide is marking and altogether
mark the square that the explorer is supposed to walk along.

The condition for the other three guides is analogous. Consider square(d) and a guide respon-
sible for the corner x ∈ {NE,NW, SW, SE} of said square. Then, we denote by Zx(d) the cell
where this guide will be positioned during the exploration of the square.

ZNE(d) = (x′, d) where x′ = min{x′′ | x′′ ≥ d ∧ (x′′, d) 6∈ B},
ZNW(d) = (−d, y′) where y′ = min{y′′ | y′′ ≥ d ∧ (−d, y′′) 6∈ B},
ZSW(d) = (x′,−d) where x′ = max{x′′ | x′′ ≤ −d ∧ (x′′,−d) 6∈ B},
ZSE(d) = (d, y′) where y′ = max{y′′ | y′′ ≤ −d ∧ (d, y′′) 6∈ B}

4 Basic Capabilities

Our protocol requires the agents and in particular the explorer to be able to perform various
advanced maneuvers. They have to be able to walk along the boundary of an obstacle, memorize
their o�sets from other cells, be able to �nd back to a cell they previously occupied, update
the position of a guide to the next square, and, most importantly, to virtually walk through an
obstacle. In this section we present the basic routines which are then combined in Section 5 to
obtain the more complex ones.

4.1 Walking Around an Obstacle

Consider an agent a that currently walks into direction h where h can be N/E/S/W and is called
the heading of a. We say that a turns right or left as shorthand for a changing its heading to an

5



a

d

z1z2z3

O

z

Figure 3: Agent a wants to �walk through� an obstacle in a straight line in direction d, which is accom-
plished by tracing the boundary of the obstacle along the path p to locate the cell where the straight line
exists the obstacle and then continue walking straight.

adjacent cardinal direction. Now suppose that agent a is in cell z = (x, y) and the cell z + h is
blocked by the obstacle O that a intends to walk around. In the very �rst step, a turns right so
that the obstacle is on its left side � an invariant that will be maintained during the process of
walking around the obstacle. Then, in every following step, a �rst checks if the cell on the left
side with respect to the current heading is blocked. If this is the case, a walks once towards its
heading, if possible. In case the cell towards the heading is also blocked, a turns right. In the
case that the cell on the left is free, a turns left and walks once towards the new heading. We can
verify that this case only occurs if in the previous step, a moved towards its current heading and
therefore, the cell on the left was blocked. Therefore, the obstacle will again be on the left side
of a in the next step. The details of the method StepCounterClockwise for a single step are
given in Procedure 1,the method assumes that agent a is positioned in a cell along the border
of the obstacle O and the cell left of a (with respect to h) is blocked by the obstacle O. As the
procedure ensures the aforementioned invariant, agent a can execute it repeatedly to traverse the
complete boundary of the obstacle.

4.2 Bounded O�set Counter

In this section we explain how the agents can simulate a bounded counter. As the agents have
only a constant number of states, they can not remember arbitrarily large numbers, such as
how many steps north they went along an obstacle. In order to circumvent this lack of mem-
ory, the ants collaboratively implement one or more o�set counters. The counter is suitable to

6



Procedure 1: StepCounterClockwise()

Agent a is located in (x, y) and has heading h
if cell on left is free then

turn left
else if (x, y) + h is blocked then

while (x, y) + h is blocked do
turn right

move once towards h
return h

memorize o�sets to cells while moving along the boundary of an obstacle. The counter provides
the basic operations On, Off, IsNull, IsPositive, IsNegative, Increment, and Decre-

ment, which activate/deactivate the counter, allow the agent to determine whether the o�set is
zero/positive/negative, or to increment/decrement it, respectively. It is important to note that
our implementation of the o�set counter is only available while the agent is adjacent to an ob-
stacle and while this obstacle stays the same. As soon as the agent moves to a cell that is not
adjacent to the obstacle anymore, the value of the counter becomes invalid. Hence, our protocols
ensure that the counter is always turned o� before leaving an obstacle. Moreover, the value of the
counter only works correctly as long as its value is bounded by the circumference of the obstacle.
This does not pose a problem, however, as all o�sets that the agents need to store in our protocol
are bounded appropriately.

We �rst give an informal description of our implementation and then specify how the basic
operations can be implemented. Consider an agent a located in a cell (x, y) adjacent to an
obstacle O. Agent a is equipped with the counter c represented by the auxiliary agents ac, ab,
and am called count agent, base agent, and messenger agent, respectively. When the counter is
turned o�, the auxiliary agents are in the follow mode, which implies that they simply follow agent
a and do not perform any speci�c task. When the counter is turned on, the auxiliary agents enter
the counter mode and perform special tasks. The job of ab is to mark the cell where the counter
has been turned on the last time. Agent ac's task is to store an o�set value v by residing in the
cell that is reached when starting in the cell containing ab and walking |v| cells clockwise along
the boundary of the obstacle O. In order to distinguish positive and negative o�sets, ac encodes
the sign of v in its states. Agent am generally resides in the same cell as agent a and moves to
ac and ab when the counter is to be changed or read. Either of the basic operations can only be
executed when the previous operation has been completed, which is the case when am is in the
same cell as a.

For the purpose of argumentation, we denote the value represented by counter c as val(c). We
remark, however, that this value is not directly accessible to any of the agents.

Operation On(c). When a activates the counter, it signals this to the auxiliary agents using a
special state, upon which they enter their respective counter mode states.

Operation Off(c). Agent am moves clockwise around the obstacle, instructs ac and ab to move

7



along the obstacle to the cell containing a, and �nally does the same. The auxiliary agents then
enter the follow mode.

Operation IsNull(c). Agent am walks clockwise until it locates the cell containing agent ab.
It checks whether agent ac occupies the same cell and reports this information to agent a.

Operation IsPositive/IsNegative(c). Agent am walks clockwise until it locates the cell
containing the agent ac. If the cell also contains agent ab � the value of the counter is zero �
agent am reports false to a . Otherwise, am senses the sign of c through the state of ac and
reports the result to a accordingly.

Operation Increment/Decrement(c). Agent am walks clockwise until it locates the cell
containing agent ac. It then instructs ac to increment/decrement and returns to agent a. De-
pending on whether the state of ac corresponds to a positive or negative sign, ac moves one cell
clockwise or counter-clockwise along the obstacle. If ac resides in the same cell as ab, it also needs
to change its sign state accordingly.

These operations complete the speci�cation of the counter functionality. Please note that all these
operations make only use of a constant number of states.

4.3 Combining O�set Counters

The agents in our protocol sometimes employ a constant number of o�set counters c1 to ck on the
same obstacle, where the respective counters are activated in the same cell. This functionality
can be provided by having one base agent ab and one messenger agent am and k count agents for
the di�erent counters. To ensure that the messenger interacts with the correct count agent, they
encode an index in their states such that the messenger agent can distinguish them. Correspond-
ingly, the messenger agent encodes the index of the counter that it is operating on in its state.
As only a constant number of o�sets are used, this is possible with a constant �nite automaton.
We distinguish the count agents of di�erent counters by their index as superscript, i.e., aic is the
count agent of the counter ci.

When an agent uses several counters, it has access to two additional operations. Operation
LessThan(ci, cj) compares the value of two counters and returns a boolean indicating whether
val(ci) < val(cj). The operation Set(ci, cj) sets the value of counter ci to val(cj).

Operation LessThan(ci, cj). Agent am moves clockwise around the obstacle until it locates
the cell containing ab. Then, am walks further clockwise around the obstacle until having located
both aic and ajc. Based on the signs encoded in the states of aic and ajc and the order in which
these agents were located, am infers the result of the comparison, then returns to a and signals
it.

Operation Set(ci, cj). Agent am walks along the obstacle to the cell containing aic and instructs

aic to walk to the cell containing ajc, while am accompanies aic on its way. When aic enters the cell
containing ajc, agent aic updates its sign to the sign of ajc and agent am returns to a to �nish the
operation.

8



5 Advanced Procedures

In this section, we combine the basic functionalities described in the previous section into the com-
plex procedures, that eventually constitute our search protocol. The most important functionality
is the ability to virtually walk through an obstacle following a horizontal or vertical straight line.
The agents do this by locating the closest cell that lies on the straight line through the obstacle
and then continue the walk from there. This functionality is realized by the procedures Shift
and Probe that will be described next.

5.1 Shifting the Position Along an Obstacle

The procedure Shift(cx, cy) allows an agent a positioned in cell z = (x, y) next to the obstacle O
and equipped with two counters cx and cy to move to the cell z′ = (x + val(cx), y + val(cy)),
where z′ must be also next to O. During the process, agent a continuously updates the counters
to re�ect the new o�sets, so that when a has reached cell z′, the values of both counters cx and
cy are zero. Consequently, both counters are then turned o�. Procedure 2 gives a pseudo-code
description.

Procedure 2: Shift(cx, cy)

while ¬IsNull(cx) ∨ ¬IsNull(cy) do
h← StepCounterClockwise()
Increment(cx) / Decrement(cx) according to h
Increment(cy) / Decrement(cy) according to h

Off(cx); Off(cy)

5.2 Probing Target Cells

While the procedure StepCounterClockwise allows the agent a to walk around an obstacle O,
it still needs to �gure out which of the cells visited along the walk is the next free cell t along the
straight path through O. There are two main di�culties that we face when trying to identify t.
First, the circumference of O can be arbitrarily large and therefore, a single agent cannot keep
track of its relative location with respect to its starting cell z = (xb, yb). Second, there might be
many possible cells along the edges of O that are hit by the straight line through O. We refer to
all these cells along the border of O as potential target cells (cf. Figure 4).

The procedure Probe allows an agent a located at cell z to locate the closest potential target
cell z∗ in direction of its initial heading h and returns a counter representing the distance of z∗

relative to z. The exact formulation of Probe depends on the heading h of a. Procedure 3 gives
a pseudo-code description for the case of h = W . The other cases are analogous.

The idea is that agent a employs three counters cx, cy and cmin while walking along the
boundary of O. The counters cx and cy track the o�set of a from the initial cell (xb, yb). Whenever
cy is zero, a has located a cell with the same y-coordinate and the value of cx is stored in cmin if it

9



a

d

z1z2z3

O

z

Figure 4: Agent a wants to walk west but the direct path (dashed arrow) is obstructed by an obstacle O.
Thus, a walks counter-clockwise around the boundary of O (continuous arrow) and uses o�set counters to
detect the potential target cells z1, z2, and z3.

is smaller than the previous cmin. This process is iterated until the agent returns to the starting
position (it meets agent ab again). Then it turns o� counters cx and cy and returns cmin.

Procedure 3: ProbeW ()

On(cx);On(cy);On(cmin);
repeat

h← StepCounterClockwise()
Increment(cx) / Decrement(cx) according to h
Increment(cy) / Decrement(cy) according to h
if IsNull(cy) ∧ (IsNull(cmin) ∨ LessThan(cx, cmin)) then

Set(cmin, cx)

until a meets ab;
Off(cx);Off(cy);
return cmin

5.3 Procedure Scan

A detail that we have to be careful with is, when traveling from one guide to another, that each
cell along the current square gets discovered and that we eventually reach the guide. To this end,
the explorer visits each cell on the boundary of an obstacle that it meets using the procedure
Scan.

When an agent a executes Scan, it �rst activates two counters cx and cy. Then, it walks once
around the obstacle by repeatedly invoking StepCounterClockwise and updating cx and cy
according to its actual movements. If a meets the next guide along the way, it does not update
the counters anymore. When a returns to the cell containing the base agent ab of its counter,
the walk is �nished. If both cx and cy equal 0, no guide was not found during Scan. Otherwise,

10



the values of the counters represent the o�set to the guide and the procedure �returns� the two
counters cx and cy. Since a might meet di�erent guides, it stores the index of the next guide that
it is supposed to meet according to the protocol in its state, thereby allowing it to ignore all other
guides.

5.4 Procedure Update

As the last building block of our algorithm, we establish the procedure Update(M) that updates
the location ZM (d) of some guide M to ZM (d+ 1) for any d > 0.

Lemma 1. The procedure Update(M) enables the the explorer to move from cell ZM (d) to cell
ZM (d+ 1) and back to cell ZM (d), for any d ≥ 1.

5.5 Procedure Update(M, c)

In this section, we establish the procedure Update that allows the explorer to �nd the cell
ZM (d + 1) starting from the cell ZM (d) of some guide M for any d > 0. Consider Update
in the case of the NW-guide currently occupying cell ZNW(d) = (−d, y∗). We assume that the
explorer has access to a counter cy, denoting the y-o�set to the line y = d. To initialize the
update, the explorer leaves another agent to mark ZNW(d) and instructs the NW-guide to follow
the explorer. A lengthy pseudo-code representation of the Update for the NW-guide can be
found in Procedure 4, where the UpdateNW(c) stands for the special case of the NW-guide. To
locate the cell ZNW(d+ 1), our �rst task is to �nd a cell z ∈ L, where L is the set of cells whose
x-coordinate equals to −(d+ 1) and whose y-coordinate is at least as large as d+ 1, i.e.,

L = {(i, j) ∈ Z2 | (i = −(d+ 1)) ∧ (j ≥ d+ 1))} .

We divide our description of Update into several cases. First, we consider the case that the cell
zw = (−(d + 1), y∗) west to ZNW(d) is blocked by obstacle O. This induces that ZNW(d) and
ZNW(d+ 1) are on the border of the same obstacle O. Refer to Figure 5b for an illustration. The
explorer turns on the cx counter. Then, it increments its value by 1 to correspond to the o�set
from ZNW(d+1). Also the cy counter is decremented by 1, to mark the next desired y-coordinate.

To reach a cell z ∈ L, the explorer now simply turns its heading to north to initialize a walk
counter-clockwise around O. Now since O is �nite, it has to be the case that there is at least one
cell from L on the boundary of O. The explorer successively executes StepCounterClockwise,
updates counters cx and cy accordingly, and always checks if cx = 0 and if cy is positive. If the
check returns true, the explorer has reached a cell z ∈ L.

To now �nd the cell ZNW(d+ 1), the explorer �rst turns its heading towards south and then
successively executes Shift(0, Probe()), and updates cy accordingly during every Shift, until
Probe returns a value greater than the current cy. If the next cell found by Probe is further
away than cy we know that we are in the cell ZNW(d + 1) at the moment. As the last step of
this case, the explorer instructs the NW-guide to remain in this cell, and walks counter-clockwise
around O until it �nds the agent denoting cell ZNW(d).

11



Procedure 4: UpdateNW(cy)

Agent a is located in ZNW(d) = (−d, y∗), zw = (−(d+ 1), y∗), zn = (−(d+ 1), d+ 1)
Mark ZNW(d) with an agent amark

if zw ∈ O then
. zw ∈ O ⇒ ZNW(d) and ZNW(d+1) are next to the same obstacle

. Figure 5b represents this case

h← N; On(cx); Increment(cx); Decrement(cy);
. store offsets to the coordinate (-(d+1),d+1) instead to (-d,d)

repeat
h← StepCounterClockwise;
Increment(cx) / Decrement(cx) according to h;
Increment(cy) / Decrement(cy) according to h:

until IsNull(cx) ∧ IsPositive(cy);
. We found the cell z, cell ZNW(d+1) is south to us

h← S; Off(cx); On(c0);
repeat

cy′ ← Probe();
Shift(c0, cy′) while updating cy;

until LessThan(cy, cy′);
turn o� all counters; leave the NW-guide in this cell; follow the obstacle back to cmark;

else
h←W; move once towards h; . zw is free, walk one step west

if IsPositive(cy) then
. (-d/d) is blocked and ZNW(d) is further north

. ZNW(d) and ZNW(d+1) are next to the same obstacle

Decrementcy;
if ¬IsNull(cy) then

. We are further north than needed for ZNW(d+ 1)

. Figure 5a represents this case

h← S; Off(cx); On(c0), cy′ ← Probe()
while LessThan(cy, cy′) do

cy′ ← Probe()
Shift(c0, cy′) while updating cy

turn o� all counters; leave the NW-guide in this cell, follow the obstacle back to
cmark

else
Off(cx); Off(cy); On(cy); Decrement(cy);
h← N
if zn ∈ O then

. (−d, d) is free, zn is blocked, see Figure 5c

On(c0); cy′ ← Probe()
Shift(c0, cy′)
turn o� all counters; leave the NW-guide in this cell; reverse the movements to
go back to cmark

else
. (−d, d) and (−(d+ 1), d+ 1) are both free

move once towards h, leave the NW-guide in this cell
turn o� all the counters; move once south and once east to go back to cmark

12



ZNW(d+ 1)

ZNW(d)

y = d

x = d

zw

(a) The explorer is located in cell ZNW(d) and
executes Update(NW). Initially, val(cy) =
4 > 0 and since zw is free, the explorer
moves directly to zw and decrements cy so that
val(cy) = 3. Then it performs Probe() (h =
S) that returns a counter with value 2. Thus,
the explorer performs Shift(0, 2) and updates
cy accordingly so that val(cy) = 1 once the
explorer reaches ZNW(d + 1). The following
Probe() returns a counter with value 2 > 1 =
val(cy) and therefore, the explorer knows that
it currently occupies cell ZNW(d+ 1).

ZNW(d)

ZNW(d+ 1)

︸
︷︷

︸

y = d

cy = 3
︸

︷︷
︸

cy = 6

z ∈ L

︸
︷︷

︸
cy = 4

zw

x = d

(b) Initially, there is an o�set of 3 from the
north side of the square(d) (stored in the
cy counter), then cy is decremented to 2.
As a next step, the explorer locates cell z
and then executes Probe and Shift until
ZNW(d + 1) is located. When ZNW(d + 1)
is reached, the value of cy is 0 and there-
fore smaller than the value of the counter
returned by Probe.

ZNW(d+ 1)

ZNW(d)
y = d

x = d

zn

zw

(c) The �rst cell to the west from ZNW(d) is
free, cy equals 0, and ZNW(d+1) is located by
moving once west and then executing Probe
and Shift with heading N.

Figure 5: Special cases of Update.
13



Then, consider the case that cell zw is not blocked. We further split into two cases and we �rst
consider the case that cy > 0, which can be asserted by the explorer by checking if IsPositive(cy)
returns true. Then, it has to be the case that all cells (−d, y∗ − i), for i ≤ y∗ − d, are blocked by
some obstacle O due to the invariant that ZNW(d) has the smallest y-coordinate among free cells
(−d, y ≥ d). See Figure 5a for an illustration. Thus, the explorer can move to zw and the counter
cy is still valid. Furthermore, cell ZNW(d+ 1) has to be on the boundary of O.

Next, the explorer decrements cy by 1. If cy = 0, then we have reached cell ZNW(d + 1).
Otherwise, similarly to the previous case, the explorer now turns its heading towards south and
executes Shift(0,Probe()) until Probe returns a value greater than cy. When Probe returns
a value greater than cy, the explorer has reached cell ZNW(d+ 1). Similarly to the previous case,
the explorer instructs the NW-guide to mark this cell and travels back to ZNW(d) by walking
around obstacle O.

Consider now the case where zw is not blocked and cy ≤ 0. Note that due to the invariant
that ZNW(d) has the smallest y-coordinate among free cells (−d, y ≥ d), we get that cy = 0.
Therefore, the explorer can turn o� both counters cx and cy without losing any information.
Then, the explorer along with the other agents, moves to cell zw. After reaching zw, the explorer
turns its heading towards north and if (−(d+1), d+1) is not blocked, it moves once north reaching
the cell ZNW(d + 1). After instructing NW to mark ZNW(d + 1), the explorer can �nd back to
ZNW(d) simply by reversing its movements.

If (−(d+1), d+1) is blocked, the explorer executes Shift(0,Probe()) once, so that it reaches
the free cell with the smallest y-coordinate at least d+1, i.e., the cell ZNW(d+1). Refer to Figure 5c
for an illustration The explorer again instructs the NW-guide to remain in ZNW(d+1) and travels
back to ZNW(d) by turning its heading south, executing Shift(0,Probe) once, and moving once
east.

In all of the above cases, the guide was left in a cell ZNW(d + 1) yielding the correctness of
the update procedure for the NW-guide and the explorer found its way back to the cell ZNW(d).
This concludes the description of Update for the NW-guide. The procedure Update works
analogously for other guides. Note that when updating the NE-guide, the explorer does not
return back to cell ZNE(d) and therefore does not leave an agent in that cell either. Thus,
Lemma 1 follows.

6 Searching the Plane

When executing the search protocol SquareWalk, the agents begin the search by four agents
moving into the cells (1, 1), (−1, 1), (−1,−1), and (1,−1), corresponding to ZNE(1), ZNW(1), ZSW(1),
and ZSE(1). Recall that these agents, the guides, essentially mark the corners of the square that
the explorer will explore next and that we identify each guide with the cardinal direction of its
corner (NE, NW, SW, SE). The explorer e, equipped with a set of counters in follow mode, moves
to the NE-guide in the cell ZNE(1). It then starts to explore square(1) by moving west until it
meets the NW-guide in cell ZNW(1) and, together with the NW-guide, moves to cell ZNW(2).
Then the explorer returns to ZNW(1) and moves south towards the SW-guide. It proceeds analo-

14



gously with the other guides and eventually returns to the NE-guide. After moving the NE-guide
to cell ZNE(2), the explorer does not return to ZNE(1) but instead starts to explore square(2)

Starting from the next iterations, things get more involved as obstacles might be in the way
of the explorer or of the guides. Consider the situation that the next square to be searched by
the explorer is square(d), every guideM is in the corresponding cell ZM (d), and the explorer is in
cell ZNE(d). We explain how e can walk from the NE-guide to the NW-guide and thereby explore
the north side of square(d); the three other sides of the square are analogous. Procedure 5 gives
a pseudo-code description in which ze = (xe, ye) denotes the current cell of the explorer while an
explanation follows below.

Procedure 5: ExploreNorthSide

h←W . set heading

repeat
if (ze + h) /∈ B then

move(h) . next cell is free

else
cprobe ← Probe()
(cx, cy)← Scan()
if (IsNull(cx) ∧ IsNull(cy)) ∨ LessThan(cprobe, cx) then

Off(cy);On(cy); Off(cx) . reset cy to zero and turn off cx
Shift(cprobe, cy) . move to next free cell

else
Off(cprobe); On(cupdate) . re-use agents from the cprobe counter

Set(cupdate, cx)
Shift(cx, cy) . move to NW-guide

until e meets NW ;
Update(NW, cupdate)

The explorer e sets its heading towards west and, as long as the cell in front is free, moves
forward. If e senses an obstacle in front in cell z, e executes Probe to �nd the next free cell z′

in the direction of its heading, resulting in the counter cprobe representing the distance between
ze and z′. Then e scans the obstacle using Scan yielding the counters cx and cy. If Scan was
not successful, i.e., the NW-guide was not located along the obstacle, the counters cx and cy are
both zero. Now, e moves to z′ using Shift(cprobe, 0) (cy is reset and used as second parameter) if

(i) Scan was not successful, i.e., the NW-guide was not located along the obstacle (correspond-
ing to (IsNull(cx) ∧ IsNull(cy) = true) or

(ii) Scan found the next guide but it is further west than the next target cell (corresponding
to LessThan(cprobe, cx) = true)

15



and repeats the above. If val(cprobe) ≥ val(cx) corresponding to LessThan(cprobe, cx) = false,
the explorer executes Shift(cx, cy) to move to ZNW to meet the NW-guide.

Finally, e uses Update to update the position of the NW-guide from ZNW(d) to ZNW(d+ 1)
and returns to ZNW(d). Then, it sets its heading to south, turns o� all counters and starts the
analogous procedure ExploreWestSide, this time walking south towards the SW-guide.

The above procedure is repeated for all four sides of the square until the explorer arrives back
at the NE-guide and updates its position to ZNE(d + 1). Now e does not return to ZNE(d) but
instead starts a search of square(d+ 1) using ExploreNorthSide.

Correctness. In this section, we establish the correctness of the protocol SquareWalk, i.e.,
that it guarantees that the explorer eventually visits all free cells of the grid. We de�ne the
concept of a con�guration C : A 7→ Z2 as an assignment of a cell to each agent. A con�guration
is a snapshot of the positions of the agents at a given time. The start con�guration for distance
d, denoted by Z(d), is the con�guration where each guide M is in its corresponding cell ZM (d)
and the explorer and the auxiliary agents are in cell ZNE(d) with the NE-guide. We furthermore
de�ne the set

Fi = {(x, y) /∈ B | (|x| = i ∧ |y| ≤ i) ∨ (|y| = i ∧ |x| ≤ i)}
as the free cells of square(i) for some i ≥ 1. We are now ready to prove the following theorem
which establishes the correctness of SquareWalk.

Theorem 1. The protocol SquareWalk guarantees that every cell z ∈ Z2 is visited by the
explorer within �nite time.

Proof. We show by induction over d that for any d, there is a time such that the explorer has
visited all cells in Fd =

⋃
i≤d Fi and the agents are in Z(d+ 1).

The induction base holds by design of the protocol as the agents start the search in con�gu-
ration Z(1) and the cells in distance 2 from the origin are free. Hence, the explorer visits all cells
and afterwards the agents are in Z(2).

For the inductive step, assume that the agents are in con�guration Z(d) and all cells in Fd−1
have been explored. We consider the walk along the north side of square(d). Let V N

d = 〈z0 =
ZNE(d), z1 = (x1, d), . . . , zk = (xk, d), zk+1 = ZNW(d)〉 be the sequence of free cells of the north
side of square(d) excluding the corners {(−d, d), (d, d)} extended by the cells z0 = ZNE(d) and
zk+1 = ZNW(d), ordered by descending x-coordinates. Initially, the explorer is located in z0 and
we show that for any i < k, the explorer moves to zi+1 in �nite time.

Consider the case of i ≤ k− 1 and thus zi+1 6= ZNW(d). If zi+1 is neighbor to zi, the explorer
moves to zi+1. If the cell west of zi is blocked, then Probe �nds zi+1 and the explorer moves
there.

Now consider the case of i = k and thus zi+1 = ZNW(d). If (−d, d) = ZNW(d) and thus a
free cell, the explorer moves there either directly or through Probe/Shift. If (−d, d) is blocked,
ZNW(d) is located along the boundary of the obstacle that blocks the cell (−d, d) by de�nition.
As the explorer explores the boundary of said obstacle using Scan, the explorer is guaranteed to
arrive at ZNW(d). Consequently, all cells in V N

d are visited by the explorer and by Lemma 1, we

16



ZNE(d)

ZNW(d)

y = d z3z4 zz2

Figure 6: Even though agent e encounters the NW-guide already when it scans in cell c there are many
more cells to be visited, even another obstacle has to be circumvented, before e turns south with the help
of the guide.

know that the explorer can execute Update in cell ZNW(d) to move the NW-guide to ZNW(d+1)
and then return to ZNW(d).

The argumentation for the three other sides of the square is analogous and thus the explorer
visits all cells in Fd and then has visited all cells in Fd. After moving the NE-guide to ZNE(d+1),
the explorer stays put. Hence, the agents are in con�guration Z(d + 1), which concludes the
inductive step.

The design of our protocol ensures that the agents cannot enter an in�nite loop and thus,
in every time unit, at least one agent � and thus the execution of the protocol � progresses.
Consequently, the explorer visits every cell in �nite time.

7 Conclusion

We presented the protocol SquareWalk that allows a group of �nite state machines (with a
constant number of states) to locate an adversarially hidden treasure in a plane obstructed by
arbitrary obstacles of �nite circumference. Our search protocol employs the weak communication
capabilities of the agents to simulate a su�cient amount of memory to ensure progress in the
search.

Our search protocol requires ten agents in total, where one of the agents acts as an explorer,
who performs the searching. The protocol uses three o�set counters, requiring �ve agents. The
other four agents mark the sides of a square around the origin that bounds the area discovered
so far. We remark that we can reduce the agent count to nine by using the triangle approach
from [11]. But as this makes the speci�cation of our protocol considerable more involved, we
presented the simpler version employing the square approach.

17



References

[1] Susanne Albers and Monika Henzinger. Exploring Unknown Environments. SIAM Journal
on Computing, 29:1164�1188, 2000.

[2] Baruch Awerbuch and Margrit Betke. Piecemeal Graph Exploration by a Mobile Robot.
Information and Computation, 1999.

[3] Michael Bender, Antonio Fernandez, Dana Ron, Amit Sahai, and Salil Vadhan. The Power
of a Pebble: Exploring and Mapping Directed Graphs. In Proceedings of the 30th annual
ACM Symposium on Theory of Computing (STOC), 1998.

[4] Manuel Blum and Dexter Kozen. On the Power of the Compass (or, Why Mazes Are Easier
to Search Than Graphs). In Proceedings of the 19th Annual Symposium on Foundations of
Computer Science (FOCS), pages 132�142, 1978.

[5] Manuel Blum and William J. Sakoda. On the Capability of Finite Automata in 2 and
3 Dimensional Space. In Proceedings of the 18th Annual Symposium on Foundations of
Computer Science (FOCS), pages 147�161, 1977.

[6] Lothar Budach. Automata and Labyrinths. Mathematische Nachrichten, pages 195�282,
1978.

[7] Xiaotie Deng and Christos Papadimitriou. Exploring an Unknown Graph. Journal of Graph
Theory, 32:265�297, 1999.

[8] Krzysztof Diks, Pierre Fraigniaud, Evangelos Kranakis, and Andrzej Pelc. Tree Exploration
with Little Memory. Journal of Algorithms, 51:38�63, 2004.

[9] Klemens Döpp. Automaten in Labyrinthen. Elektronische Informationsverarbeitung und
Kybernetik, 7(2):79�94, 1971.

[10] Christian A. Duncan, Stephen G. Kobourov, and V. S. Anil Kumar. Optimal Constrained
Graph Exploration. ACM Transactions on Algorithms (TALG), 2(3):380�402, 2006.

[11] Yuval Emek, Tobias Langner, David Stolz, Jara Uitto, and Roger Wattenhofer. How Many
Ants Does it Take to Find the Food? In 21th International Colloquium on Structural Infor-
mation and Communication Complexity (SIROCCO), pages 263�278, 2014.

[12] Yuval Emek, Tobias Langner, Jara Uitto, and Roger Wattenhofer. Solving the ANTS Prob-
lem with Asynchronous Finite State Machines. In Proceedings of the 41st International
Colloquium on Automata, Languages, and Programming (ICALP), pages 471�482, 2014.

[13] Ofer Feinerman and Amos Korman. Memory Lower Bounds for Randomized Collaborative
Search and Implications for Biology. In Proceedings of the 26th International Conference on
Distributed Computing (DISC), pages 61�75, Berlin, Heidelberg, 2012. Springer-Verlag.

18



[14] Ofer Feinerman, Amos Korman, Zvi Lotker, and Jean-Sebastien Sereni. Collaborative Search
on the Plane Without Communication. In Proceedings of the 31st ACM Symposium on
Principles of Distributed Computing (PODC), pages 77�86, 2012.

[15] Pierre Fraigniaud and David Ilcinkas. Digraphs Exploration with Little Memory. In 21st
Symposium on Theoretical Aspects of Computer Science (STACS), pages 246�257, 2004.

[16] Pierre Fraigniaud, David Ilcinkas, Guy Peer, Andrzej Pelc, and David Peleg. Graph Explo-
ration by a Finite Automaton. Theoretical Computer Science, 345(2-3):331�344, 2005.

[17] Frank Ho�mann. One Pebble Does Not Su�ce to Search Plane Labyrinths. In Fundamentals
of Computation Theory, pages 433�444. Springer Berlin Heidelberg, 1981.

[18] Saket Navlakha and Ziv Bar-Joseph. Distributed Information Processing in Biological and
Computational Systems. Communications of the ACM, 58(1):94�102, 2014.

[19] Petri³or Panaite and Andrzej Pelc. Exploring Unknown Undirected Graphs. In Proceedings
of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 316�322,
1998.

[20] Noa Pinter-Wollman, Ashwin Bala, Andrew Merrell, Jovel Queirolo, Martin C Stumpe, Susan
Holmes, and Deborah M Gordon. Harvester Ants Use Interactions to Regulate Forager
Activation and Availability. Animal behaviour, 86(1):197�207, 2013.

19


