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Introduction

I Moving nodes in a dynamic network with changing
connections

I Given highly dynamic network with n nodes

I But n unknown

I Needed for many basic tasks

I all-to-all dissemination
I determining median

I Counting important task by itself
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Model

I Gt = (V ,Et) with V = |n|
I Connected in every round, but no other restriction on Et

I Nodes communicate via broadcast

I Each node has unique identifier (UID)

I T -interval dynamics: ∃stable, connected subgraph for the
next T rounds at every round

I Solved by Kuhn et al. in O
(

n + n2

T

)

I Random edge fault with probability p on top
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Counting

Strong Counting An algorithm for strong counting has a runtime
bound t(n) such that each node stops with the
correct count n within t(n) steps

Weak Counting An algorithm for weak counting has a runtime
bound t(n) such that each node has the correct
count n after t(n) steps, but the execution of the
algorithm does not necessarily stop



Strong Counting with Random Edge Faults

I Assume algorithm A with runtime bound t(n)
I Consider edges e1, e2 which create segments of length n

I Always faulty during the first t(n) steps if size of the ring

T (n) ≥
(
1
p

)2t(n)
with constant probability

I Strong Counting is not possible under random edge faults
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Distributed Counting

I Guess k = 2, 4, 8, . . .

I Use T -dissemination to spread UIDs

I Count UIDs to obtain n

Disseminate(A, k)
S ← ∅
for i = 1, . . . , k

T
for r = 1, . . . , 2T

if S 6= A
b ← min (A \ S)
broadcast b
receive b1, . . . , by

A← A ∪ b1, . . . , by

S ← S ∪ b
S ← ∅
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Dissemination under T -interval Dynamics and Edge
Faults

I Adapt dissemination such that it can handle failures

Disseminate(A, l , x)
S ← ∅
for i = 1, . . . , l
for r = 1, . . . , 2Tx

if S 6= A
b ← min (A \ S)
for q = 1, . . . , x
broadcast b
receive b1, . . . , by

A← A ∪ b1, . . . , by

S ← S ∪ b
S ← ∅



Weak Counting

I Use Disseminate(A, l , x) to achieve s-dissemination.

I If p > 1
T , set s = T

2 log(T ) log
(

1
p

)
and l = 2 · 1

1−p · e ·
k
s .

I If p ≤ 1
T , set s = T

2 , and l = 2 · 1
1−p · e ·

k
s .

I Note that s = T
x

Theorem

The above procedure executes weak counting. If p > 1
T , then all

nodes output the correct count n after O

n2

T

(
log(T )

log
(

1
p

)
)2

· 1
1−p


steps. If p ≤ 1

T , they do so after O
(
n2

T

)
steps. The bounds hold

with probability at least 1− e−
n
2T .



Distributed Counting (2)

I k-Verification

I Send committee ID or ⊥ if at least two committees are known



Strong Counting

I Use upper bound N ≥ n and reuse k-verification

Theorem

If an upper bound N on the number n of nodes is known to all
nodes, then strong counting can be done. If p > 1

T , then it needs

runtime O

n2

T ·

(
log(T )

log
(

1
p

)
)2

· 1
1−p + log

(
1
p

)
· n · log N

. If

p ≤ 1
T , then runtime O

(
n2

T + log
(
1
p

)
· n · N

)
suffices. The

bounds hold with probability at least 1− n−α.



p Unknown

I If p is unknown, strong counting is not possible

I Weak counting with log n overhead

I Let k ′ = 2, 4, 8, . . . be powers of 2 (upper bound on runtime)
I Let k = 2, 4, 8, . . . be powers of 2 (estimation number of

nodes)
I Set p such that runtime bound is met
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Conclusions

I Strong counting not possible without upper bound

I Strong counting possible with upper bound on n

I Weak counting possible with small overhead

I Other connectivity models?

Questions?
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