Distributed Computing in Fault-Prone
Dynamic Networks

.

Philipp Brandes, Friedhelm Meyer auf der Heide

ETH Zurich — Distributed Computing Group — www.disco.ethz.ch

Introduction

» Moving nodes in a dynamic network with changing
connections

Introduction

v

Moving nodes in a dynamic network with changing
connections

v

Given highly dynamic network with n nodes

But n unknown

v

v

Needed for many basic tasks

> all-to-all dissemination
» determining median

v

Counting important task by itself

Overview

Introduction
Model

Impossibility of strong counting

v

v

v

v

Weak counting

v

Strong counting with upper bound N

Model

Gy = (V, E¢) with V = |n

Connected in every round, but no other restriction on E;
Nodes communicate via broadcast

Each node has unique identifier (UID)

T-interval dynamics: dstable, connected subgraph for the
next T rounds at every round

Solved by Kuhn et al. in O <n+ ”—TQ)

Model

Gy = (V, E¢) with V = |n

Connected in every round, but no other restriction on E;
Nodes communicate via broadcast

Each node has unique identifier (UID)

T-interval dynamics: dstable, connected subgraph for the
next T rounds at every round

Solved by Kuhn et al. in O <n+ ”—TQ)

Random edge fault with probability p on top

Counting

Strong Counting An algorithm for strong counting has a runtime
bound t(n) such that each node stops with the
correct count n within t(n) steps

Weak Counting An algorithm for weak counting has a runtime
bound t(n) such that each node has the correct
count n after t(n) steps, but the execution of the
algorithm does not necessarily stop

Strong Counting with Random Edge Faults

» Assume algorithm A with runtime bound t(n)
» Consider edges e1, e which create segments of length n

Strong Counting with Random Edge Faults

» Assume algorithm A with runtime bound t(n)
» Consider edges e1, e which create segments of length n

» Always faulty during the first t(n) steps if size of the ring
2t(n)
T(n) > (%) with constant probability

Strong Counting with Random Edge Faults

v

Assume algorithm A with runtime bound t(n)
Consider edges e1, e which create segments of length n

v

v

Always faulty during the first t(n) steps if size of the ring
2t(n)
T(n) > (%) with constant probability

v

Strong Counting is not possible under random edge faults

Distributed Counting

> Guess k =2,4,8,...
» Use T-dissemination to spread UlDs
» Count UIDs to obtain n

Disseminate(A, k)
S« 10
for izzlr..,é
for r=1,...,2T
if S#£A
b+ min(A\S)
broadcast b
receive by,..., b,
A< AUby,...,b,
S+ Sub
S« 10

Distributed Counting

> Guess k =2,4,8,...
» Use T-dissemination to spread UlDs
» Count UIDs to obtain n

Disseminate(A, k)
S« 10
for izzlp..,é
for r=1,...,2T
if S#£A
b+ min(A\S)
broadcast b
receive by,..., b,
A< AUby,...,b,
S+ Sub
S« 10

Distributed Counting

> Guess k =2,4,8,...
» Use T-dissemination to spread UlDs
» Count UIDs to obtain n

Disseminate(A, k)

S« 10
.\\ for izzlp..,é

for r=1,...,2T
if S#£A

b+ min(A\S)
broadcast b
receive by,..., b,
A< AUby,...,b,
S+ Sub

S«

Distributed Counting

> Guess k =2,4,8,...
» Use T-dissemination to spread UlDs
» Count UIDs to obtain n

Disseminate(A, k)

S« 10
'\\ for izzlr..,é

for r=1,...,2T
if S#£A

b+ min(A\S)
broadcast b
receive by,..., b,
A< AUby,...,b,
S+ Sub

S«

Distributed Counting

> Guess k =2,4,8,...
» Use T-dissemination to spread UlDs
» Count UIDs to obtain n

Disseminate(A, k)

S« 10
.\ forizl,...,#

for r=1,...,2T
if S#£A
b+ min(A\S)
broadcast b
.\ receive by,..., b,

A< AUby,...,b,
S+ Sub

S«

Distributed Counting

> Guess k =2,4,8,...
» Use T-dissemination to spread UlDs
» Count UIDs to obtain n

Disseminate(A, k)

S« 10
.\ forizl,...,#

for r=1,...,2T
if S#£A
b+ min(A\S)
broadcast b
receive by,..., b,
o— 9 A< AUby,...,b,

S+ Sub

S«

Dissemination under T-interval Dynamics and Edge
Faults

» Adapt dissemination such that it can handle failures

Disseminate(A,/, x)
S«

for i=1,...,/

for r=1,...,

if S#£A

b+ min(A\S)

for g=1,...,x

broadcast b

2T

X

receive by,..., b,
A< AUby,...,b,
S+ Sub

S« 10

Weak Counting

» Use Disseminate(A, /, x) to achieve s-dissemination.

> |fp>%yset5:w7—(7_)|og(%) and/:2.1i -e-

> prgi,setS:g,and/:2~ﬁ'e~§.

k
p s
» Note that s = %

Theorem

The above procedure executes weak counting. If p > % then all

2
nodes output the correct count n after O | = (Iog(T)) .

steps. If p < L, they do so after © (”—;) steps. The bounds hold

ans

with probability at least 1 — e™ 2T.

Distributed Counting (2)

» k-Verification

» Send committee ID or L if at least two committees are known

Strong Counting

» Use upper bound N > n and reuse k-verification

Theorem

If an upper bound N on the number n of nodes is known to all
nodes, then strong counting can be done. If p > % then it needs

2
runtime O ”—T2 : (IZ’EER) : ﬁ + log (%) -n-logN |. If
P

p < L, then runtime © (”—; + log (%) -n- N) suffices. The
bounds hold with probability at least 1 — n™¢.

p Unknown

» If p is unknown, strong counting is not possible

p Unknown

» If p is unknown, strong counting is not possible

> Weak counting with log n overhead
» Let k' =2,4,8,... be powers of 2 (upper bound on runtime)
» Let k=2,4,8,... be powers of 2 (estimation number of

nodes)
» Set p such that runtime bound is met

Conclusions

» Strong counting not possible without upper bound
» Strong counting possible with upper bound on n

> Weak counting possible with small overhead

Conclusions

» Strong counting not possible without upper bound

» Strong counting possible with upper bound on n

v

Weak counting possible with small overhead

v

Other connectivity models?

Conclusions

» Strong counting not possible without upper bound

» Strong counting possible with upper bound on n

v

Weak counting possible with small overhead

v

Other connectivity models?

Questions?

