Bounds On Contention Management Algorithms

Johannes Schneider!, Roger Wattenhofer!

Computer Engineering and Networks Laboratory, ETH Zurich, 8092 Zurich,
Switzerland

Abstract

We present two new algorithms for contention management in transactional
memory, the deterministic algorithm CommitRounds and the randomized algo-
rithm RandomizedRounds. Our randomized algorithm is efficient: in some noto-
rious problem instances (e.g., dining philosophers) it is exponentially faster than
prior work from a worst case perspective. Both algorithms are (i) local and (ii)
starvation-free. Our algorithms are local because they do not use global synchro-
nization data structures (e.g., a shared counter), hence they do not introduce
additional resource conflicts which eventually might limit scalability. Our algo-
rithms are starvation-free because each transaction is guaranteed to complete.
Prior work sometimes features either (i) or (ii), but not both. To analyze our
algorithms (from a worst case perspective) we introduce a new measure of com-
plexity that depends on the number of actual conflicts only. In addition, we show
that even a non-constant approximation of the length of an optimal (shortest)
schedule of a set of transactions is NP-hard — even if all transactions are known
in advance and do not alter their resource requirements. Furthermore, in case the
needed resources of a transaction varies over time, such that for a transaction the
number of conflicting transactions increases by a factor k , the competitive ratio
of any contention manager is 2(k) for k < \/m, where m denotes the number of
cores.

1 Introduction

Designing and implementing concurrent programs is one of the biggest challenges
a programmer can face. Transactional memory promises to resolve a couple of the
difficulties by ensuring correctness and fast progress of computation at the same
time. Transactions have been in use for database systems for a long time. They
share several similarities with transactional memory. For instance, in case of a
conflict (i.e. one transaction demanding a resource held by another) a transaction
might get aborted and all the work done so far is lost, i.e. the values of all accessed
variables will be restored (to the ones prior to the execution of the transaction).

The difficulty lies in making the right decision when conflicts arise. This
task is done by so-called contention managers. They operate in a distributed
fashion, that is to say, a separate instance of a contention manager is available
for every thread, operating independently. If a transaction A stumbles upon a

desired resource, held by another transaction B, it asks its contention manager
for advice. We consider three choices for transaction A: (i) A might wait or help
B, (ii) A might abort B or (iii) abort itself. An abort wastes all computation of a
transaction and might happen right before its completion. A waiting transaction
blocks all other transactions trying to access any resource owned by it.

Our contributions are as follows: First, we show that even coarsely approxi-
mating the makespan of a schedule is a difficult task. (Informally, the makespan
is the total time it takes to complete a set of transactions.) This holds even in
the absence of an adversary. However, in case an adversary is able to modify
resource requirements such that the number of conflicting transactions increases
by a factor of k, the length of the schedule increases by a factor proportional to
k. Second, we propose a complexity measure allowing more precise statements
about the complexity of a contention management algorithm. Existing bounds
on the makespan, for example, do not guarantee to be better than a sequential
execution. However, we argue that since the complexity measure only depends on
the number of (shared) resources overall, it does not capture the (local) nature
of the problem well enough. In practice, the total number of (shared) resources
may be large, though each single transaction might conflict with only a few other
transactions. In other words, a lot of transactions can run in parallel, whereas
the current measure only guarantees that one transaction runs at a time until
commit. Third, we point out weaknesses of widely used contention managers.
For instance, some algorithms schedule certain sets of transactions badly, while
others require all transactions — also those facing no conflicts — to modify a
global counter or access a global clock. Thus the amount of parallelism declines
more and more with a growing number of cores. Fourth, we state and analyze
two algorithms. Both refrain from using globally shared data. From a worst-case
perspective, the randomized algorithm RandomizedRounds improves on existing
contention managers drastically (exponentially) if for each transaction the num-
ber of conflicting transactions is small. In an extended version of this paper [14]
we also show that to achieve a short makespan (from a worst case perspective)
it is necessary to detect and handle all conflicts early, i.e. for every conflict a
contention manager must have the possibility to abort any of the conflicting
transactions.

2 Related Work

Transactional memory was introduced in the nineties [8, 16]. In 2003 the FSTM
system was proposed [6] and also the Dynamic STM (DSTM)[7] for dynamic
data structures was described, which suggests the use of a contention manager
as an independent module. After these milestones, a lot of systems have been
proposed. An overview of design issues from a practical point of view can be
found in [3].

Most proposed contention managers have been assessed by specific bench-
marks only, and not analytically. A comparison of contention managers based
on benchmarks can be found in [12, 10]. The experiments yield best performance
for randomized algorithms, which all leave a (small) chance for arbitrary large
completion time. Apart from that, the choice of the best contention manager

varies with the considered benchmark. Still, an algorithm called Polka [12] ex-
hibits good overall performance for a variety of benchmarks and has been used
successfully in various systems, e.g. [2,10]. In [10] an algorithm called SizeMat-
ters is introduced, which gives higher priority to the transaction that has mod-
ified more (shared) memory. In an enhanced version of this paper [14] we show
that from a worst-case perspective Polka and SizeMatters may perform expo-
nentially worse than RandomizedRounds. In [4] the effects of selfishness among
programmers on the makespan is investigated for various contention managers
from a game theoretic perspective.

The first analysis of a contention manager named Greedy was given in [5],
using time stamps to decide in favor of older transactions. Variants of time-
stamping algorithms had been known previously (also in the field of STM [12]).
However, [5] guaranteed that a transaction commits within bounded time and
that the competitive ratio (i.e. the ratio of the makespan of the schedule defined
by an online scheduler and by an optimal offline scheduler, knowing all trans-
actions in advance) is O(s?), where s is the number of (shared) resources of all
transactions together. The analysis was improved to O(s) in [1]. In contrast to
our contribution, access to a global clock or logical counter is needed for every
transaction which clearly limits the possible parallelism with a growing number
of cores. In [11] a scalable replacement for a global clock was presented using syn-
chronized clocks. Unfortunately, these days most systems come without multiple
clocks. Additionally, there are problems due to the drift of physical clocks.

Also in [1] a matching lower bound of {2(s) for the competitive ratio of any
(also randomized) algorithm is proven, where the adversary can alter resource re-
quests of waiting transactions. We show that, more generally, if an adversary can
reduce the possible parallelism (i.e., the number of concurrently running trans-
actions) by a factor k, the competitive ratio is £2(k) for deterministic algorithms
and for randomized algorithms the expected ratio is £2(min{k, /m}), where m is
the number of cores. In the analysis of [1] an adversary can change the required
resources such that instead of 2(s) transactions only O(1) can run in parallel,
i.e. all of a sudden 2(s) transactions write to the same resource. Though, in-
deed the needed resources of transactions do vary over time, we believe that
the reduction in parallelism is rarely that high. Dynamic data structure such as
(balanced) trees and lists usually do not vary from one extreme to the other.
Therefore our lower bound directly incorporates the power of the adversary.

Furthermore, the complexity measure is not really satisfying, since the num-
ber of (shared) resources in total is not correlated well to the actual conflicting
transactions an individual transaction potentially encounters. As a concrete ex-
ample, consider the classical dining philosophers problem, where there are n
unit length transactions sharing n resources, such that transaction 7T; demands
resource R; as well as R(;11) mod n exclusively. An optimal schedule finishes in
constant time O(1) by first executing all even transactions and afterwards all odd
transactions. The best achievable bound by any scheduling algorithm using the
number of shared resources as complexity measure is only O(n). Furthermore,
with our more local complexity measure, we prove that for a wide variety of
scheduling tasks, the guarantee for algorithm Greedy is linearly worse, whereas
our randomized algorithm RandomizedRounds is only a factor logn off the op-
timal, with high probability.

We relate the problem of contention management to coloring, where a large
amount of distributed algorithms are available in different models of commu-
nication and for different graphs [9,13,15]. Our algorithm RandomizedRounds
essentially computes a O(max{A,logn}) coloring for a graph with maximum
degree A.

For further related work in respect to online scheduling, transactional mem-
ory systems and coloring, see [14].

3 Model

A set of transactions St := {Ti,...,T,} sharing up to s resources (such as
memory cells) are executed on m processors Py, ..., P,,.} For simplicity of the
analysis we assume that a single processor runs one thread only, i.e., in total at
most m threads are running concurrently. If a thread running on processor P;
creates transactions TOP ‘ Tlp ‘, T2P ¢ ... one after the other, all of them are executed
sequentially on the same processor, i.e., transaction TJP ‘ is executed as soon as

Tfi 1 has completed, i.e. committed.

The duration of transaction T is denoted by t7 and refers to the time T
executes until commit without contention (or equivalently, without interruption).
The length of the longest transaction of a set S of transactions is denoted by
18 .= maxges ti. If an adversary can modify the duration of a transaction
arbitrarily during the execution of the algorithm, the competitive ratio of any
online algorithm is unbounded: Assume two transactions Ty and T face a conflict
and an algorithm decides to let Ty wait (or abort). The adversary could make
the opposite decision and let Ty proceed such that it commits at time ty. Then it
sets the execution time Tj to infinity, i.e., t1;, = oo after ¢y. Since in the schedule
produced by the online algorithm, transaction T commits after ¢y its execution
time is unbounded. Therefore, in the analysis we assume that t7 is fixed for all
transactions 7.2 We consider an oblivious adversary that knows the (contention
management) algorithm, but does not get to know the randomized choices of
the algorithm before they take effect.

Each transaction consists of a sequence of operations. An operation can be
a read or write access of a shared resource R or some arbitrary computation. A
value written by a transaction T takes effect for other transactions only after T'
commits. A transaction either successfully finishes with a commit after executing
all operations and acquiring all modified (written) resources or unsuccessfully
with an abort anytime. A resource can be acquired either once it is used for
the first time or at latest at commit time. A resource can be read in parallel
by arbitrarily many transactions. A read of transaction A of resource R is wis-
ible, if another transaction B accessing R after A is able to detect that A has
already read R. We assume that conflicts that all reads are visible. In fact, we
prove in [15] that systems with invisible readers can be very slow. To perform a
write, a resource must be acquired exclusively. Only one transaction at a time

! Transactions are sometimes called jobs, and machines are sometimes called cores.

2 In case the running time depends on the state/value of the resources and therefore
the duration varied by a factor of ¢, the guarantees for our algorithms (see Section
6) would worsen only by the same factor c.

can hold a resource exclusively. This leads to the following types of conflicts: (i)
Read-Write: A transaction B tries to write to a resource that is read by another
transaction A. (ii) Write-Write: A transaction tries to write to a resource that
is already held exclusively (written) by another transaction, (iii) Write-Read: A
transaction tries to read a resource that is already held exclusively (write) by an-
other transaction. A contention manager comes into play if a conflict occurs and
decides how to resolve the conflict. It can make a transaction wait (arbitrarily
long), or abort, or assist the other transaction. We do not explicitly consider the
third option. Helping requires that a transaction can be parallelized effectively
itself, such that multiple processors can execute the same transaction in parallel
with low coordination costs. In general, it is difficult to split a transaction into
subtasks that can be executed in parallel. Consequently, state of the art sys-
tems do not employ helping. If a transaction gets aborted due to a conflict, it
restores the values of all modified resources, frees its resources and restarts from
scratch with its first operation. A transaction can request different resources in
different executions or change the requested resource while waiting for another
transaction.

We assume that a transaction notices a conflict once it actually occurs and
a contention manager is called right away, i.e. eagerly.® A transaction keeps
a resource locked until commit, i.e. no early release. By introducing additional
writes in our examples, any transaction indeed cannot release its resources before
commit.

A schedule shows for each processor P at any point in time whether it exe-
cutes some transaction T' € St or whether it is idle. The makespan of a schedule
for a set of transactions St is defined as the duration from the start of the sched-
ule until all transactions St have committed. We say a schedule for transactions
St is optimal, if its makespan is minimum possible. We measure the quality of a
contention manager in terms of the makespan. A contention manager is optimal,
if it produces an optimal schedule for every set of transactions St.

4 Lower Bounds

Before elaborating on the problem complexity of contention management, we
introduce some notation related to graph theory and scheduling. We show that
even coarse approximations are NP-hard to compute. In [14] we give a lower
bound of 2(n) for the competitive ratio of algorithms Polka, SizeMatters and
Greedy, which holds even if resource requirements remain the same over time.

4.1 Notation

We use the notion of a conflict graph G = (S, E) for a subset S C St of transac-
tions executing concurrently, and an edge between two conflicting transactions.
The neighbors of transaction T in the conflict graph are denoted by Np and
represent all transactions that have a conflict with transaction T in G. The de-
gree dr of a transaction T in the graph corresponds to the number of neighbors

3 Even for “typical” cases neither eager nor lazy conflict handling consistently outper-
forms the other.

in the graph, i.e., dr = |Np|. We have dr < |S| < min{m,n}, since at most
m transactions can run in parallel, and since there are at most n transactions,
ie., |Sr| = n. The maximum degree A denotes the largest degree of a trans-
action, i.e., A := maxpeg dr. The term ¢y, denotes the total time it takes to
execute all neighboring transactions of transaction T' sequentially without con-
tention, i.e., tny = Y e, tre. The time t‘}\',T includes the execution of T, i.e.,
t}T = tn, +1tr. Note that the graph G is highly dynamic. It changes due to new
or committed transactions or even after an abort of a transaction. Therefore, by
dp we refer to the maximum size of a neighborhood of transaction 7" that might
arise in a conflict graph due to any sequence of aborts and commits. If the num-
ber of processors equals the number of transactions (m = n), all transactions
can start concurrently. If, additionally, the resource requirements of transactions
stay the same, then the maximum degree dr can only decrease due to commits.
However, if the resource demands of transactions are altered by an adversary,
new conflicts might be introduced and dp might increase up to |St|.

4.2 Problem complexity

If an adversary is allowed to change resources after an abort, such that all
restarted transactions require the same resource R, then for all aborted trans-
actions T' we can have dr = min{m,n}. This means that no algorithm can do
better than a sequential execution (see lower bound in [1]).

We show that even if the adversary can only choose the initial conflict graph
and does not influence it afterwards, it is computationally hard to get a rea-
sonable approximation of an optimal schedule. Even, if the whole conflict graph
is known and fixed, the best approximation of the schedule obtainable in poly-
nomial time is exponentially worse than the optimal. The claim follows from a
straight forward reduction to coloring. For the proof we refer to [14].

Theorem 1 If the optimal schedule requires time k, it is NP-hard to compute
a schedule of makespan less than 5 (for sufficiently large constants), even
if the conflict graph is known and transactions do not change their resource
requirements.

4.3 Power of the adversary

We show that if the conflict graph can be modified, the competitive ratio is pro-
portional to the possible change of a transaction’s degree. Initially, a contention
manager is not aware of any conflicts. Thus, it is likely to schedule (many) con-
flicting transactions. All transactions that faced a conflict (and aborted) change
their resources on the next restart and require the same resource. Thus they
must run sequentially. The contention manager might schedule transactions ar-
bitrarily — in particular it might delay any transaction for an arbitrary amount
of time (even before it executed the first time). The adversary has control of the
initial transactions and can state how they are supposed to behave after an abort
(i.e. if they should change their resource requirements). During the execution,
it cannot alter its choices. Furthermore, we limit the power of the adversary as
follows: Once the degree of a transaction T has increased by a factor of k, no

new conflicts will be added for T, i.e. all initial proposals by the adversary for
resource modifications augmenting the degree of T" are ignored from then on.
The proof of the following theorem can be found in[14].

Theorem 2 If the conflict graph can be modified by an oblivious adversary such
that the degree of any transaction is increased by a factor of k, any determin-
istic contention manager has competitive ratio £2(k) and any randomized has

2(mindk, Vim}).

5 Algorithms

Our first algorithm CommitRounds (Section 5.1) gives assertions for the response
time of individual transactions, i.e., how long a transaction needs to commit.
Although we refrain from using global data and we can still give guarantees on
the makespan, the result is not satisfying from a performance point of view, since
the worst-case bound on the makespan is not better than a sequential execution.
Therefore we derive a randomized algorithm RandomizedRounds (Section 5.2)
with better performance.

Algorithm Commit Rounds (CommitRounds)

On conflict of transaction T with transaction T

max ,__ maxr _mazx
cp*® = max{cp, . CP, }
max ,__ _mazx

CPJ = CPi

if cp, <cp; V (cp;, = cp; NP < Pj)
then Abort transaction 777

else Abort transaction T
end if

After commit of transaction 77:
cp® i=cp* 41

cp :=cp®®

5.1 Deterministic algorithm CommitRounds

The idea of the algorithm is to assign priorities to processors, i.e. a transaction
TP running on a processor P inherits P’s priority, which stays the same until the
transaction committed. When T' commits, P’s priority is altered, such that any
transaction K having had a conflict with transaction 7" will have higher priority
than all following transactions running on P. For the first execution of the first
transaction on processor P, the variable cp** and cp, are initialized with 0. We
refer to the pseudocode of algorithm CommitRounds for details and to [14] for

a more detailed textual description.

Algorithm Randomized Rounds (RandomizedRounds)

procedure Abort(transaction T, K)

Abort transaction K

K waits for T to commit or abort before restarting
end procedure

On (re)start of transaction T
zp := random integer in [1,m]

On conflict of transaction 1" with transaction K:
if zr < zx then Abort(T, K)
else Abort(K, T)
end if

5.2 Randomized algorithm RandomizedRounds

For our randomized algorithm RandomizedRounds a transaction chooses a dis-
crete number uniformly at random in the interval [1,m] on start up and after
every abort. In case of a conflict the transaction with the smaller random num-
ber proceeds and the other aborts. The routine Abort(transaction T', K) aborts
transaction K. Moreover, K must hold off on restarting until T' committed or
aborted.

To incorporate priorities set by a user, a transaction simply has to modify
the interval from which its random number is chosen. For example, choosing

m

from [1, 2 |] instead of [1,m] doubles the chance of succeeding in a round.*

6 Analysis

We study two classic efficiency measures of contention management algorithms,
the makespan (the total time to complete a set of transactions) and the response
time of the system (how long it takes for an individual transaction to commit).

6.1 Deterministic Algorithm CommitRounds

Theorem 3 Any transaction will commit after being in the system for a dura-

max

tion of at most 2-m -t

Proof. When transaction 77 runs and faces a conflict with a transaction 7'
having lower priority than 77 i.e., cp;, < cp; or cp, = cp; and also P; < Pj, then
TF will lose against TPi. If not, transaction 7% will have c%‘” > C’I’}L_“ > cp,
after winning the conflict. Thus at latest after time ¢§"* one of the following
two scenarios will have happened: The first is that 7% has committed and all
transactions running on processor P; later on will have cp; > cfgf‘x > c}!ﬁ_a” > cp;.

The second is that T has had a conflict with another transaction 77+ for which
4 Any interval yields the same guarantees on the makespan as long as the number of

distinct possible (random) values is at least m, i.e., the maximal number of parallel
running jobs.

will also hold that cp** > c£** after the conflict. Thus after time tg/'* either a
processor has got to know c£* (or a larger value) or committed knowing c**
(or a larger value). In the worst-case one processor after the other gets to know
cp* within time ¢&", taking time at most m -t and then all transactions
commit one after the other, yielding the bound of 2 - m - £39*.

6.2 Randomized Algorithm RandomizedRounds

To analyze the response time, we use a complexity measure depending on lo-
cal parameters, i.e., the neighborhood in the conflict graph (for definitions see
Section 4.1).

Theorem 4 The time span a transaction T needs from its first start until com-
mit is O(drp - tha" - log n) with probability 1 — %
T

Proof. Consider an arbitrary conflict graph. The chance that for a transaction T’
no transaction K € Np has the same random number given m discrete numbers
are chosen from an interval [1,m] is: p(AK € Nplzx = z7) = (1 — L)t >
(1—-L)m > 1 We have dr < min{m,n} (Section 4.1). The chances that zr is
at least as small as xx of any transaction K € Nrp is ﬁ. Thus the chance

that xp is smallest among all its neighbors is at least 4 If we conduct

T
y=32-e-(dr +1)-logn trials, each having success probability m, then
the probability that the number of successes X is less than 16 - logn becomes
(using a Chernoff bound): p(X < 16 -logn) < e~ ?logn = L

The duration of a trial, i.e., the time until 7' can pick a new random number,
is at most the time until the first conflict occurs, i.e., the duration ¢ plus the
time 7" has to wait after losing a conflict, which is at most ¢ii"*. Thus the

duration of a trial is bounded by 2 - #°7¢*.
T

Theorem 5 If n transactions S = {TT0, ..., TP} run on n processors, then the

makespan of the schedule by algorithm RandomizedRounds is O(maxres, (dr -

t’ﬁ?) logn) + a5t with probability 1 — %L, where t1qs 15 the time, when the latest
T

transaction started to execute.

Proof. Once all transactions are executing, we can use Theorem 4 to show that
p(3K € S finishing after O(maxres dr - ") - logn) < 1 In the proof of The-
T

orem 4, we showed that for any transaction 7' p(T" finishes after O(drp - t74" -
T

logn) < 2. Since O(dy - Wit logn) < O(maxres(dr - 74%) - logn) we have
T T
p(T finishes after O(maxres(dr - t74") -logn) < =5 The chance that no trans-
T

action out of all n transactions exceeds the bound of O(maxres(dr-t$") logn)
T

is(1—&)m>1-1.

The theorem shows that if an adversary can increase the maximum degree
dr by a factor of k the running time also increases by the same factor. The
bound still holds if an adversary can keep the degree constantly at dr despite
committing transactions. In practice, the degree might also be kept at the same

level due to new transactions entering the system. In case, we do not allow any
conflicts to be added to the initial conflict graph, the bound of Theorem 5 (and
also the one of Theorem 4) can be improved to O(maxpes, (max{dr,logn} -
tﬁ;‘?)), with an analogous derivation as in [15]. As explained in [14] the schedule

corresponds then to a coloring using O(max{A,logn}) colors.

Let us consider an example to get a better understanding of the bounds.
Assume we have n transactions starting on m processors having equal length
t. All transactions only need a constant amount of resources exclusively and
each resource is only required by a constant number of transactions, i.e., dr
is a constant for all transactions 1" — as is the case in the dining philosophers
problem mentioned in Section 2. Then the competitive ratio is O(logn), whereas
it is O(n) for the Greedy, Polka and SizeMatters algorithms as shown in [14].

References

1. H. Attiya, L. Epstein, H. Shachnai, and T. Tamir. Transactional contention man-
agement as a non-clairvoyant scheduling problem. In PODC, 2006.

2. P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum.
Hybrid transactional memory. In ASPLOS, 2006.

3. D. Dice and N. Shavit. Understanding Tradeoffs in Software Transactional Mem-
ory. In Symp. on Code Generation and Optimization, 2007.

4. R. Eidenbenz and R. Wattenhofer. Good Programming in Transactional Memory:
Game Theory Meets Multicore Architecture. In ISAAC, 2009.

5. R. Guerraoui, M. Herlihy, and B. Pochon. Toward a theory of transactional con-
tention managers. In PODC, 2005.

6. T. Harris and K. Fraser. Language support for lightweight transactions. In
OOPSLA Conference, 2003.

7. M. Herlihy, V. Luchangco, M. Moir, and W. Scherer. Software transactional
memory for dynamic-sized data structures. In PODC, 2003.

8. M. Herlihy and J. Moss. Transactional Memory: Architectural Support For Lock-
free Data Structures. In Symp. on Computer Architecture, 1993.

9. F. Kuhn. Weak Graph Coloring: Distributed Algorithms and Applications. In
SPAA, 2009.

10. H. Ramadan, C. Rossbach, D. Porter, O. Hofmann, A. Bhandari, and E. Witchel.
MetaTM/TxLinux: transactional memory for an operating system. In Symp. on
Computer Architecture, 2007.

11. T. Riegel, C. Fetzer, and P. Felber. Time-based Transactional Memory with
Scalable Time Bases. In Parallel Algorithms and Architectures, 2007.

12. W. Scherer and M. Scott. Advanced contention management for dynamic software
transactional memory. In PODC, 2005.

13. J. Schneider and R. Wattenhofer. A Log-Star Distributed Maximal Independent
Set Algorithm for Growth-Bounded Graphs. In PODC, 2008.

14. J. Schneider and R. Wattenhofer. Bounds On Contention Management Algorithms.
In TIK Technical Report 811, ftp://ftp.tik.ee.ethz.ch/pub/publications/TIK-
Report-311.pdf, 2009.

15. J. Schneider and R. Wattenhofer. Coloring Unstructured Wireless Multi-Hop Net-
works. In PODC, 2009.

16. N. Shavit and D. Touitou. Software transactional memory. Distributed Computing,
10, 1997.

