
Stone Age Distributed Computing
(Extended Abstract)

Yuval Emek
Distributed Computing Group

ETH Zurich, Switzerland
yemek@ethz.ch

Roger Wattenhofer
∗

Distributed Computing Group
ETH Zurich, Switzerland
wattenhofer@ethz.ch

ABSTRACT

A new model that depicts a network of randomized finite
state machines operating in an asynchronous environment is
introduced. This model, that can be viewed as a hybrid of
the message passing model and cellular automata is suitable
for applying the distributed computing lens to the study of
networks of sub-microprocessor devices, e.g., biological cel-
lular networks and man-made nano-networks. Although the
computation and communication capabilities of each indi-
vidual device in the new model are, by design, much weaker
than those of an abstract computer, we show that some of
the most important and extensively studied distributed com-
puting problems can still be solved efficiently.

Categories and Subject Descriptors

F.1.1 [Computation by Abstract Devices]: Models of
computation

General Terms

Theory

Keywords

Cellular automata, efficient algorithms, finite state machines,
message passing

1. INTRODUCTION
Due to the major role that the Internet plays today, mod-

els targeted at understanding the fundamental properties
of networks focus mainly on “Internet-capable” devices. In-
deed, the standard network model in distributed comput-
ing is the so called message passing model, where nodes
may exchange large messages with their neighbors, and per-
form arbitrary local computations. Recently, there is a trend

∗Part of this work was done while the author was in Mi-
crosoft Research, Redmond, WA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

to study distributed computing aspects in networks of sub-
microprocessor devices, e.g., networks of biological cells [3,
16] or nano-scale mechanical devices [4]. However, the suit-
ability of the message passing model to these types of net-
works is far from being certain: Do tiny bio/nano nodes
“compute” and/or “communicate” essentially the same as a
computer? Since such nodes will be fundamentally more
limited than silicon-based devices, we believe that there is a
need for a network model, where nodes are by design below
the computation and communication capabilities of Turing
machines.
Networked finite state machines. In this paper, we in-
troduce a new model, referred to as networked finite state
machines (nFSM), that depicts a network of randomized
finite state machines (a.k.a. automata) progressing in asyn-
chronous steps (refer to Section 2 for a formal description).
Under the nFSM model, nodes communicate by transmit-
ting messages belonging to some finite communication al-
phabet Σ such that a message σ ∈ Σ transmitted by node u
is delivered to its neighbors (the same σ to all neighbors) in
an asynchronous fashion. Each neighbor v of u has a port
corresponding to u in which the last message delivered from
u is stored.

The access of node v to its ports is limited: In each step of
v’s execution, the next state and the message transmitted
by v at this step are determined by v’s current state and
by the current number ♯(σ) of appearances of each letter
σ ∈ Σ in v’s ports. The crux of the model is that ♯(σ) is
calculated according to the one-two-many1 principle: the
node can only count up to some predetermined bounding
parameter b ∈ Z>0 and any value of ♯(σ) larger than b cannot
be distinguished from b.

The nFSM model satisfies the following model require-
ments, that we believe, make it more applicable to the study
of general networks consisting of weaker devices such as
those mentioned above:
(M1) The model is applicable to arbitrary network topolo-
gies.
(M2) All nodes run the same protocol executed by a (ran-
domized) FSM.
(M3) The network operates in a fully asynchronous environ-
ment with adversarial node activation and message delivery
delays.

1The one-two-many theory states that some small isolated
cultures (e.g., the Piraha tribe of the Amazon [26]) did not
develop a counting system that goes beyond 2. This is re-
flected in their languages that include words for “1”, “2”, and
“many” that stands for any number larger than 2.

(M4) All features of the FSM (specifically, the state set
Q, message alphabet Σ, and bounding parameter b) are of
constant size independent of any parameter of the network
(including the degree of the node executing the FSM).
The last requirement is perhaps the most interesting one
as it implies that a node cannot perform any calculation
that involves variables beyond some predetermined constant.
This comes in contrast to many distributed algorithms op-
erating under the message passing model that strongly rely
on the ability of a node to perform such calculations (e.g.,
count up to some parameter of the network or a function
thereof).
Results. Our investigation of the new nFSM model begins
by observing that the computational power of a network op-
erating under this model is not stronger than (and in some
sense equivalent to) that of a randomized Turing machine
with linear space bound (due to space limitations, this part
is deferred to the full version). Since the computational
power of a network operating under the message passing
model is trivially equivalent to that of a (general) Turing
machine, there exist distributed problems that can be solved
by a message passing algorithm in constant time but cannot
be solved by an nFSM algorithm at all. Nevertheless, as
the main technical contribution of this paper, we show that
some of the most important problems in distributed comput-
ing admit efficient (namely, with polylogarithmic run-time)
nFSM algorithms. Specifically, problems such as maximal
independent set, node coloring, and maximal matching that
have been extensively studied since the early 1980s, always
assuming a network of some sort of abstract computers, can
in fact be solved, and fast, when each device is nothing but
a FSM.
Applicability to biological cellular networks. Regard-
less of the theoretical interest in implementing efficient algo-
rithms using weaker assumptions, we believe that our new
model and results should be appealing to anyone interested
in understanding the computational aspects of biological cel-
lular networks. A basic dogma in biology (see, e.g., [41])
states that all cells communicate and that they do so by
emitting special kinds of ligand molecules (e.g. the DSL
family of proteins) that bind in a reversible, non-covalent,
fashion to designated receptors (e.g. the NOTCH family of
transmembrane receptors) in neighboring cells. These, in
turn, release some intracellular signaling proteins that pen-
etrate the nucleus to modify gene expression (determining
the cell’s actions).
Translated to the language of the nFSM model, the dif-

ferent types of ligand molecules correspond to the different
letters in the communication alphabet, where an emission
of a ligand corresponds to transmitting a letter. The effect
that the ligands-receptors binding has on the concentration
level of the signaling proteins in the nucleus corresponds to
the manner in which a node in our model interprets the con-
tent of its ports. (The one-two-many counting is the discrete
analogue of the ability to distinguish between different con-
centration levels, considering the fact that once the concen-
tration exceeds some threshold, a further increase cannot be
detected.) Using an FSM as the underlying computational
model of the individual node seems to be the right choice
especially in the biological setting as demonstrated by Be-
nenson et al. [17] who showed that essentially all FSMs can
be implemented by enzymes found in cells’ nuclei. One may
wonder if the specific problems studied in the current paper

have any relevance to biology. Indeed, Afek et al. [3] discov-
ered that a biological process that occurs during the develop-
ment of the nervous system of the Drosophila melanogaster
is in fact equivalent to solving the MIS problem.
Related work and comparison to other models. As
mentioned above, the message passing model is the gold
standard when it comes to understanding distributed net-
work algorithms [32, 40]. Several variants exist for this
model, differing mainly in the bounds imposed on the mes-
sage size (e.g., the congest and local models [44]) and the
level of synchronization. Indeed, most theoretical litera-
ture dealing with distributed network algorithms relies on
one of these variants. Our nFSM model adopts the concept
of an asynchronous message-based communication scheme
from the message passing literature.

As the traditional message passing model allows for send-
ing different messages to different neighbors in each round
of the execution, it was too powerful for many settings. In
particular, with the proliferation of wireless networks, more
restrictive message passing models appeared such as the ra-
dio network model [20]. Over the years, several variants of
the radio network model were introduced, the most extreme
one in terms of its weak communication capabilities is the
beeping model [24, 22], where in each round a node can ei-
ther beep or stay silent, and can only distinguish between the
case in which no node in its neighborhood beeps and the case
in which at least one node beeps. Efficient algorithms and
lower bounds for the MIS problem under the beeping model
were developed by Afek et al. [3, 2]. Note that the beep-
ing model resembles our nFSM model in the sense that the
“beeping rule” can be viewed as counting under the one-two-
many principle with bounding parameter b = 1. However, it
is much stronger in other perspectives: (i) the beeping model
assumes synchronous communication and does not seem to
have a natural asynchronous variant; and (ii) the local com-
putation is performed by a Turing machine whose memory
is allowed to grow with time and with the network size (this
is crucial for the algorithms of Afek et al. [3, 2]). In that
regard, the beeping model is still too strong to capture the
behavior of biological cellular networks.

Our nFSM model is also closely related to (and inspired
by) the extensively studied cellular automaton model [47,
25, 48] that captures a network of FSMs, arranged in a
grid topology (some other highly regular topologies were also
considered), where the transition of each node depends on
its current state and the states of its neighbors. Still, the
nFSM model differs from the cellular automaton model in
many aspects. In particular, the latter model is not applica-
ble to non-regular network topologies and although a small
fraction of the cellular automata literature is dedicated to
cellular automata with asynchronous node activation [38,
39] (see also [1]), these do not support asynchronous mes-
sage delivery. As such, cellular automata do not seem to
provide a good abstraction for the sub-microprocessor net-
works we would like to focus on. Moreover, the main goal of
our work is to study to what extent can such networks com-
pute solutions quickly, a goal that lies outside the typical
interest of the cellular automata community.

Another model that resembles the nFSM model is that
of communicating automata [18]. This model also assumes
that each node in the network operates an FSM in an asyn-
chronous manner, however the steps of the FSMs are mes-
sage driven: for each state q of node v and for each message

m that node v may receive from an adjacent node u while
residing in state q, the transition function of v should have
an entry characterized by the 3-tuple (q, u,m) that deter-
mines its next move. Consequently, different nodes would
typically operate different FSMs and the size of the FSM
operated by node v inherently depends on the degree of v
and thus, the communicating automata model is still too
strong to faithfully represent biological cellular networks.
The population protocols model, introduced by Angluin

et al. [6] (see also [8, 37]), depicts a network of finite state
machines communicating through pairwise rendezvous con-
trolled by a fair adversarial scheduler. While in the full
version we reveal some interesting connections between the
nFSM model and population protocols, there are two con-
ceptual differences between these models: First, population
protocols are only required to eventually converge to a cor-
rect output and are allowed to return arbitrary (wrong) out-
puts beforehand. This provides population protocols with
the power to solve, e.g., the consensus problem in arbitrary
networks, in contrast to nFSM protocols that should irrevo-
cably return a correct output (see Section 2) and therefore,
cannot solve this problem (cf. [23]). Second, while the focus
of the current paper is mainly on run-time complexity, there
is an inherent problem with establishing run-time bounds
for population protocols due to the nature of the adver-
sarial scheduler that can delay the execution for arbitrar-
ily long periods. Indeed, the population protocols literature
is typically concerned with what can be computed, rather
than how fast. An exception is the probabilistic variant of
the model [7, 19], where interactions are selected randomly,
rather than adversarially, but this variant is no longer fully
asynchronous (in the adversarial sense). On top of that,
the rendezvous based communication does not seem to fit
the communication mechanisms in most biological cellular
networks.

2. MODEL
Throughout, we assume a network represented by a finite

undirected graph G = (V,E). Under the networked finite
state machines (nFSM) model, each node v ∈ V runs a
protocol depicted by the 8-tuple

Π = 〈Q,QI , QO,Σ, σ0, b, λ, δ〉 , (1)

where

• Q is a finite set of states;
• QI ⊆ Q is the subset of input states;
• QO ⊆ Q is the subset of output states;
• Σ is a finite communication alphabet ;
• σ0 ∈ Σ is the initial letter ;
• b ∈ Z>0 is a bounding parameter ; let B = {0, 1, . . . , b−

1,≥b} be a set of b+ 1 distinguishable symbols;
• λ : Q → Σ assigns a query letter σ ∈ Σ to every state
q ∈ Q; and

• δ : Q×B → 2Q×(Σ∪{ε}) is the transition function.

It is important to point out that protocol Π is oblivious to
the graph G. In fact, the number of states in Q, the size
of the alphabet Σ, and the bounding parameter b are all
assumed to be universal constants, independent of any pa-
rameter of the graph G. In particular, the protocol executed
by node v ∈ V does not depend on the degree of v in G. We
now turn to describe the semantics of the nFSM model.

Communication. Node v communicates with its adjacent
nodes in G by transmitting messages. A transmitted mes-
sage consists of a single letter σ ∈ Σ and it is assumed that
this letter is delivered to all neighbors u of v. Each neighbor
u has a port ψu(v) (a different port for every adjacent node
v) in which the last message σ received from v is stored.
At the beginning of the execution, all ports store the ini-
tial letter σ0. It will be convenient to consider the case in
which v does not transmit any message (and hence does not
affect the corresponding ports at the adjacent nodes) as a
transmission of the special empty symbol ε.
Execution. The execution of node v progresses in discrete
steps indexed by the positive integers. In each step t ∈ Z>0,
node v resides in some state q ∈ Q. Let λ(q) = σ ∈ Σ be
the query letter that λ assigns to state q and let ♯(σ) be the
number of appearances of σ in v’s ports in step t. Then,
the pair (q′, σ′) of state q′ ∈ Q in which v resides in step
t + 1 and message σ′ ∈ Σ ∪ {ε} transmitted by v in step
t (recall that ε indicates that no message is transmitted)
is chosen uniformly at random2 (and independently of all
other random choices) among the pairs in

δ (q, βb (♯(σ))) ⊆ Q× (Σ ∪ {ε}) ,

where βb : Z≥0 → B is defined as

βb(x) =

{
x if 0 ≤ x ≤ b− 1 ;
≥b otherwise .

Informally, this can be thought of as if v queries its ports
for appearances of σ and “observes” the exact value of ♯(σ)
as long as it is smaller than the bounding parameter b; oth-
erwise, v merely “observes” that ♯(σ) ≥ b which is indicated
by the symbol ≥b.
Input and output. Initially (in step 1), each node resides
in one of the input states of QI . The choice of the initial
state of node v ∈ V reflects the input passed to v at the be-
ginning of the execution. This allows our model to cope with
distributed problems in which different nodes get different
input symbols. When dealing with problems in which the
nodes do not get any initial input (such as the graph theo-
retic problems addressed in this paper), we shall assume that
QI contains a single state referred to as the initial state.

The output states QO are mapped to the possible output
values of the problem. For each possible output value o, it is
required that the subset Po ⊆ QO of output states mapped
to o form a sink with respect to the transition function δ
in the sense that a node v that moves to a Po-state will
remain in Po indefinitely, in which case the output of v is
determined (irrevocably) to be o. We say that the (global)
execution of the protocol is in an output configuration if all
nodes reside in output states of QO.
Asynchrony. The nodes are assumed to operate in an
asynchronous environment. This asynchrony has two facets:
First, for the sake of convenience, we assume that the actual
application of the transition function in each step t ∈ Z>0 of
node v ∈ V is instantaneous (namely, lasts zero time) and
occurs at the end of the step;3 the length of step t of node v,
denoted Lv,t, is defined as the time difference between the
application of the transition function in step t− 1 and that

2The protocol is deterministic if the images under δ are al-
ways singleton subsets of Q× (Σ ∪ {ε}).
3This assumption can be lifted at the cost of a more com-
plicated definition of the adversarial policy described soon.

of step t. It is assumed that Lv,t is finite, but apart from
that, we do not make any other assumptions on this length,
that is, the step length Lv,t is determined by the adversary
independently of all other step lengths Lv′,t′ . In particular,
we do not assume any synchronization between the steps of
different nodes whatsoever.
The second facet of the asynchronous environment is that

a message transmitted by node v in step t (if such a message
is transmitted) is assumed to reach the port ψu(v) of an
adjacent node u after a finite time delay, denoted Dv,t,u.
We assume that if v transmits message σ1 ∈ Σ in step t1
and message σ2 ∈ Σ in step t2 > t1, then σ1 reaches u
before σ2 does. Apart from this “FIFO” assumption, we do
not make any other assumptions on the delays Dv,t,u. In
particular, this means that under certain circumstances, the
adversary may overwrite message σ1 with message σ2 in port
ψu(v) of u so that u will never “know” that message σ1 was
transmitted.4

Consequently, a policy of the adversary is captured by:
(1) the length Lv,t of step t of node v for every v ∈ V and
t ∈ Z>0; and (2) the delay Dv,t,u of the delivery of the
transmission of node v in step t to an adjacent node u for
every v ∈ V , t ∈ Z>0, and u ∈ N (v).5 Assuming that the
adversary is oblivious to the random coin tosses of the nodes,
an adversarial policy is depicted by infinite sequences of Lv,t

and Dv,t,u parameters.
For further information on asynchronous environments,

we refer the reader to one of the standard textbooks [34,
40].
Correctness and run-time measures. A protocol Π for
problem P is said to be correct under the nFSM model if
for every instance of P and for every adversarial policy, Π
reaches an output configuration w.p. 1, and for every out-
put configuration reached by Π w.p. > 0, the output of the
nodes is a valid solution to P .6 Given a correct protocol Π,
the complexity measure that interests us in the current pa-
per is the run-time of Π defined as the (possibly fractional)
number of time units that pass from the beginning of the
execution until an output configuration is reached, where
a time unit is defined7 to be the maximum among all step
length parameters Lv,t and delivery delay parameters Dv,t,u

in the adversarial policy (cf. [9, 40]). Following the standard
procedure in this regard, we say that the run-time of a cor-
rect protocol Π for problem P is f(n) if for every n-node
instance of P and for every adversarial policy, the run-time
of Π is at most f(n) in expectation and w.h.p. The protocol
is said to be efficient if its run-time is polylogarithmic in the
size of the network (cf. [32]).

2.1 Multi-letter queries

4Often, much stronger assumptions are made in the litera-
ture. For example, a common assumption for asynchronous
environments is that the port of node u corresponding to the
adjacent node v is implemented by a buffer so that messages
cannot be “lost”. We do not make any such assumption for
our nFSM model.
5We use the standard notation N (v) for the neighborhood of
node v in G, namely, the subset of nodes adjacent to v.
6Throughout, w.p. and w.h.p. abbreviate “with probability”
and “with high probability”, respectively.
7Note that time units are defined solely for the purpose
of the analysis. Under an asynchronous environment, the
nodes have no notion of time and in particular, they cannot
measure a single time unit.

According to the model as presented thus far, each state
q ∈ Q is associated with a single query letter σ = λ(q)
and the application of the transition function when node v
resides in state q is determined by βb(♯(σ)), namely the num-
ber of appearances of the letter σ in the ports of v counted
up to the bounding parameter b. However, in many appli-
cations, the transition of node v residing in state q depends
on multiple-letters. This motivates the introduction of the
multi-letter query feature that replaces an nFSM protocol
as described in (1) by the 7-tuple

Π = 〈Q,QI , QO,Σ, σ0, b, δ〉 ,
where Q, QI , QO, Σ, σ0, and b are defined (and play the
same role) as in (1), and the domain of the transition func-
tion δ is extended so that

δ : Q×BΣ → 2Q×(Σ∪{ε}) .

The semantics of the nFSM model when augmented with
the multi-letter query feature is as follows. Suppose that in
step t ∈ Z>0, node v resides in state q ∈ Q and the number
of appearances of σ in v’s ports in step t is ♯(σ) for every
letter σ ∈ Σ. Then, the pair (q′, σ′) of state q′ ∈ Q in which
v resides in step t+1 and message σ′ ∈ Σ∪{ε} transmitted
by v in step t is chosen uniformly at random among the pairs
in

δ
(
q, 〈βb(♯(σ))〉σ∈Σ

)
⊆ Q× (Σ ∪ {ε}) ,

where 〈βb(♯(σ))〉σ∈Σ denotes the vector mapping βb(♯(σ)) to
each σ ∈ Σ. One may wonder if the nFSM model augmented
with the multi-letter query feature is strictly stronger than
the nFSM model without that feature; in Section 3, we show
that this is not the case.

3. CONVENIENT TRANSFORMATIONS
In this section, we show that the nFSM protocol designer

may, in fact, assume a slightly more “user-friendly” environ-
ment than the one described in Section 2. This is based on
the design of black-box compilers transforming a protocol
that makes strong assumptions on the environment into one
that does not make any such assumptions.

As described in Section 2, the nFSM model assumes an
asynchronous environment. Nevertheless, it will be conve-
nient to extend the nFSM model to synchronous environ-
ments. One natural such extension augments the model de-
scribed in Section 2 with the following two synchronization
properties that should hold for every two adjacent nodes
u, v ∈ V and for every t ∈ Z>0:
(S1) when node u is in step t, node v is in step t− 1, t, or
t+ 1; and
(S2) at the end of step t + 1 of u, port ψu(v) stores the
message transmitted by v in step t of v’s execution (or the
last message transmitted by v prior to step t if v does not
transmit any message in step t).
An environment in which properties (S1) and (S2) are guar-
anteed to hold is called a locally synchronous environment.
Local-only communication can never achieve global syn-
chrony, however, research in the message passing model has
shown that local synchrony is often sufficient to provide ef-
ficient algorithms [9, 11, 10]. To distinguish a protocol as-
sumed to operate in a locally synchronous environment from
those making no such assumptions, we shall often refer to
the execution steps of the former as rounds (cf. fully syn-
chronized protocols).

Theorem 1. Every nFSM protocol Π =
〈Q,QI , QO,Σ, σ0, b, λ, δ〉 designed to operate in a lo-
cally synchronous environment can be simulated in an

asynchronous environment by a protocol Π̂ with the same
bounding parameter b at the cost of a constant multiplicative
run-time overhead.

The procedure in charge of the simulation promised in
Theorem 1 (whose proof is deferred to the full version) is
referred to as a synchronizer [9].
Now that we may assume a synchronous environment, it

is easy to show that by augmenting the nFSM model with
the multi-letter query feature introduced in Section 2.1, one
does not (asymptotically) enhance the power of the model.
Indeed, at the cost of increasing the number of states and the
run-time by constant factors, we can subdivide each round
into |Σ| subrounds, dedicating each subround to a different
letter in Σ, so that at the end of the round, the state of v
reflects βb(♯(σ)) for every σ ∈ Σ.

Theorem 2. Every nFSM protocol with the multi-letter
query feature can be simulated by an nFSM protocol without
this feature and the same bounding parameter b at the cost
of a constant multiplicative run-time overhead.

4. EFFICIENT ALGORITHMS
As stated earlier, the main technical contribution of this

paper is cast in the development of efficient nFSM algo-
rithms for some of the most important and extensively stud-
ied problems in distributed computing. These problems in-
clude maximal independent set, maximal 2-hop independent
set, node coloring of bounded degree graphs with ∆ + 1
colors, node 2-hop coloring of bounded degree graphs with
∆2+1 colors, node coloring of (undirected) trees with 3 col-
ors, and maximal matching (where we use a small unavoid-
able modification of the model). The maximal independent
set problem is treated in Section 4.1; due to space limita-
tion, the treatment of all other problems is deferred to the
full version.

4.1 Maximal independent set
Given a graph G = (V,E), the maximal independent set

(MIS) problem asks for a node subset U ⊆ V which is in-
dependent in the sense that (U × U) ∩ E = ∅, and maxi-
mal in the sense that U ′ ⊆ V is not independent for every
U ′ ⊃ U . The challenge of designing a fast distributed MIS
algorithm was first posed by Valiant in the early 1980s [46].
Distributed MIS algorithms with logarithmic run-time oper-
ating in the message passing model were subsequently pre-
sented by Luby [33] and independently, by Alon et al. [5].8

Luby’s algorithm has since become a specimen of distributed
algorithms; in the last 25 years, researchers have tried to im-
prove it, if only e.g., with an improved bit complexity [36],
on special graph classes [42, 31, 14], or in a weaker com-
munication model [2]. An Ω(

√
log n) lower bound on the

run-time of any distributed MIS algorithm operating in the
message passing model was established by Kuhn et al. [30].
Our goal in this section is to establish the following theorem.

8The focus of [33] and [5] was actually on the PRAM model,
but their algorithms can be adapted to the message passing
model.

Theorem 3. There exists an nFSM protocol with bound-
ing parameter b = 1 that computes an MIS for any n-node
graph in time O(log2 n).

Outline of the key technical ideas. The protocol
promised by Theorem 3 is inspired by the existing message
passing MIS algorithms. Common to all these algorithms
is that they are based on the concept of grouping consecu-
tive rounds into phases, where in each phase, nodes compete
against their neighbors over the right to join the MIS. Ex-
isting implementations of such competitions require at least
one of the following three capabilities: (1) performing cal-
culations that involve super-constant variables; (2) commu-
nicating with each neighbor independently; or (3) sending
messages of a logarithmic size. The first two capabilities
are clearly out of the question for an nFSM protocol. The
third one is also not supported by the nFSM model, but per-
haps one can divide a message with a logarithmic number
of bits over logarithmically many rounds, sending O(1) bits
per round (cf. Algorithm B in [36])?

This naive attempt results in super-constant long phases,
while no FSM can count the rounds in such phases — a
task essential for deciding if the current phase is over and
the next one should begin. Furthermore, to guarantee fair
competition, the phases must be aligned across the network,
thus ruling out the possibility to start node v’s phase i before
phase i−1 of some node u 6= v is finished. In fact, an efficient
algorithm that requires ω(1) long aligned phases cannot be
implemented under the nFSM model. So, how can we decide
if node v joins the MIS using constant size messages without
the ability to maintain long aligned phases?

This issue is resolved by relaxing the requirements that the
phases are aligned and of a predetermined length, introduc-
ing a feature referred to as a tournament. Our tournaments
are only “softly” aligned and their lengths are determined
probabilistically, in a manner that can be maintained under
the nFSM model. Nevertheless, they enable a fair competi-
tion between neighboring nodes, as desired.
The protocol. Employing Theorems 1 and 2, we as-
sume a locally synchronous environment and use multiple-
letter queries. The state set of the protocol is Q =
{WIN, LOSE, DOWN1, DOWN2, UP0, UP1, UP2}, with QI = {DOWN1}
(the initial state of all nodes) and QO = {WIN, LOSE}, where
WIN (respectively, LOSE) indicates membership (resp., non-
membership) in the MIS output by the protocol. The states
in QA = Q−QO are called the active states and a node in
an active state is referred to as an active node. We take the
communication alphabet Σ to be identical to the state set
Q, where the letter transmissions are designed so that node
v transmits letter q whenever it moves to state q from some
state q′ 6= q; no letter is transmitted in a round at which v
remains in the same state. Letter DOWN1 is the initial letter
stored in all ports at the beginning of the execution. The
bounding parameter is set to b = 1.

A schematic description of the transition function is pro-
vided in Figure 1; its logic is as follows. Each state q ∈ QA

has a subset D(q) ⊆ QA − {q} of delaying states: node v
remains in the current state q if and only if (at least) one of
its neighbors is in some state in D(q). This is implemented
by querying on the letters (corresponding to the states) in
D(q), staying in state q as long as at least one of these letters
is found in the ports. Specifically, state DOWN1 is delayed by
state DOWN2, which is delayed by all three UP states. State
UPj , j = 0, 1, 2, is delayed by state UPj−1 mod 3, where state

D1 U0

U1

U2

D2 LW

u0 + u1 = 0

u0 + u1 ≥ 1

u1
+
u2

=
0 u1 +

u2 ≥ 1

u0 +
u2 =

0 u0
+ u2

≥ 1

w = 0

w ≥ 1

Figure 1: The transition function of the MIS protocol with state names abbreviated by their first (capital)
letter. The node stays in state q (a.k.a. delayed) as long as letter q′ appears (at least once) in its ports for
any state q′ such that a q′ → q transition is defined (for clarity, this is omitted from the figure). Assuming
that the node is not delayed, each transition specified in the figure is associated with a condition on the
number of appearances of the query letters in the ports (depicted by the corresponding lower-case letter) so
that the transition is followed only if the condition is satisfied (an empty condition is satisfied by all port
configurations); if some port configuration satisfies several transition conditions, then one of them is chosen
uniformly at random.

UP0 is also delayed by state DOWN1.
States WIN and LOSE are sinks. Assuming that an active

node v does not find any delaying letter in its ports, the
logic of the UP and DOWN states is as follows. From state
DOWN1, v moves to state UP0. From state DOWN2, v moves to
state DOWN1 if ♯(WIN) = 0, that is, if it does not find any WIN

letter in its ports; otherwise, it moves to state LOSE. When
in state UPj , v tosses a fair coin and proceeds as follows: if
the coin turns head, then v moves to state UPj+1 mod 3; if
the coin turns tail, then v moves to state WIN if ♯(UPj) =
♯(UPj+1 mod 3) = 0 (note that ♯(UPj−1 mod 3) must be 0 as
UPj−1 mod 3 ∈ D(UPj)); and to state DOWN2 otherwise. This
completes the description of our nFSM protocol for the MIS
problem.
Turns and tournaments. Our protocol is designed so
that an active node v traverses the DOWN and UP states in
a (double-)circular fashion: an inner loop of the UP states
(moving from state UPj to state UPj+1 mod 3) nested within an
outer loop consisting of the DOWN states and the inner loop.
Of course, v may spend more than one round at each state
q ∈ QA (delayed by adjacent nodes in states D(q)); we refer
to a maximal contiguous sequence of rounds that v spends in
the same state q ∈ QA as a q-turn, or simply as a turn if the
actual state q is irrelevant. A maximal contiguous sequence
of turns that starts at a DOWN1-turn and does not include any
other DOWN1-turn (i.e., a single iteration of the outer loop)
is referred to as a tournament. We index the tournaments
and the turns within a tournament by the positive integers.
Note that by definition, every tournament i of v starts with
a DOWN1-turn, followed by a non-empty sequence of UP-turns;
tournament i can end with an UP-turn from which v moves

to state WIN, with a DOWN2-turn from which v moves to state
LOSE, or with a DOWN2-turn from which v moves to state
DOWN1 starting tournament i+ 1. The following observation
is established by induction on the rounds.

Observation 1. Consider some active node v ∈ V in
turn j ∈ Z>0 of tournament i ∈ Z>0 and some active node
u ∈ N (v).

• If this is a DOWN1-turn of v (j = 1), then u is in either
(a) the last (DOWN2-)turn of tournament i− 1; (b) turn
1 of tournament i; or (c) turn 2 of tournament i.

• If this is an UP-turn of v (j ≥ 2), then u is in either (a)
turn j−1 of tournament i; (b) turn j of tournament i;
(c) turn j + 1 of tournament i; or (d) the last (DOWN2-
)turn j′ ≤ j + 1 of tournament i.

• If this is a DOWN2-turn of v (the last turn of this tourna-
ment), then u is in either (a) an UP-turn j′ ≥ j − 1 of
tournament i; (b) the last (DOWN2-)turn of tournament
i; or (c) turn 1 of tournament i+ 1.

Given some U ⊆ V and i, j ∈ Z>0, let T
U (i, j) denote the

first time at which every node v ∈ U satisfies either
(1) v is inactive;
(2) v is in tournament i′ > i;
(3) v is in the last (DOWN2-)turn of tournament i; or
(4) v is in turn j′ ≥ j of tournament i.
Note that TU (i, j) is well defined even if some node v ∈ U
does not reach turn j of tournament i. Employing Observa-
tion 1, the delaying states feature guarantees that

T {v}(i, j + 1) ≤ TN (v)∪{v}(i, j) + 1 (2)

for every v ∈ V and i, j ∈ Z>0. Since TU (i, j) ≤ TV (i, j)
for every U ⊆ V , we can apply inequality (2) to each node
v ∈ V , concluding that

TV (i, j + 1) ≤ TV (i, j) + 1 ,

which immediately implies that

TV (i, k + 1) ≤ TV (i, 1) + k . (3)

Moreover, if no node in V goes beyond turn j of tournament
i, then

TV (i+ 1, 1) = TV (i, j + 1) ≤ TV (i, j) + 1 . (4)

The virtual graph Gi. Let Vi be the set of nodes for which
tournament i exists and let Gi = (Vi, Ei) be the subgraph
induced on G by Vi, where Ei = E ∩ (Vi × Vi). Given some
node v ∈ Vi, let Ni(v) = {u ∈ Vi | (u, v) ∈ Ei} be the
neighborhood of node v in Gi and let di(v) = |Ni(v)| be
its degree. Note that the graph Gi is virtual in the sense
that it is defined solely for the sake of the analysis: we do
not assume that there exists some time at which the graph
induced by any meaningful subset of the nodes (say, the
nodes in tournament i) agrees with Gi.
Given some node v ∈ Vi, let Xv(i) denote the number

of UP-turns in tournament i of v and recall that the total
number of turns in this tournament is at most Xv(i) + 2,
accounting for the DOWN1 turn in the beginning of the tour-
nament and the DOWN2-turn in its end. The logic of the UP

states implies that Xv(i) is a Geom(1/2)-random variable,
namely, it obeys the geometric distribution with parameter
1/2. The key observation now is that conditioned on Gi, the
random variables Xv(i), v ∈ Vi, are independent. Moreover,
the graph Gi+1 is fully determined by the random variables
Xv(i), v ∈ Vi. Since the maximum of (at most) n inde-
pendent Geom(1/2)-random variables is O(log n) w.h.p., in-
equalities (3) and (4) yield the following observation.

Observation 2. For every i ∈ Z>0, T
V (i, 1) is finite

w.p. 1 and

TV (i+ 1, 1) ≤ TV (i, 1) +O(log n)

w.h.p.

Our protocol is designed so that node v moves to an
output state (WIN or LOSE) in the end of each tournament
w.p. > 0. Moreover, the logic of state DOWN2 guarantees that
if node v moves to state WIN in the end of tournament i,
then all its active neighbors move to state LOSE in the end of
their respective tournaments i. The correctness of our pro-
tocol now follows from Observation 2: the protocol reaches
an output configuration w.p. 1 and every output configura-
tion reflects an MIS. It remains to bound the run-time of
our protocol; the following lemma plays a major role in this
task.

Lemma 1. There exist two constants 0 < p, c < 1 such
that |Ei+1| ≤ c|Ei| w.p. ≥ p.

We will soon prove Lemma 1, but first, let us explain why
it suffices for the completion of our analysis. Define the
random variable Y = min{i ∈ Z>0 : |Ei| = 0}. Lemma 1
implies that Y is stochastically dominated by a random vari-
able that obeys distribution O(log n) +NB(O(log n), 1− p),
namely, a fixed term of O(log n) plus the negative bino-
mial distribution with parameters O(log n) and 1− p, hence

Y = O(log n) in expectation and w.h.p. Since the nodes
in V − Vi are all in an output state (and will remain in
that state), and since the logic of the UP states implies that
a degree-0 node in Gi will move to state WIN in the end of
tournament i (w.p. 1) and thus, will not be included in Vi+1,
we can employ Observation 2 to conclude that the run-time
of our protocol is indeed O(log2 n).

The remainder of this section is dedicated to establishing
Lemma 1. The proof technique we use for that purpose
resembles (a hybrid of) the techniques used in [5] and [36]
for the analysis of their MIS algorithms. We say that node
v ∈ Vi is good in Gi if

|{u ∈ Ni(v) | di(u) ≤ di(v)}| ≥ di(v)/3 ,

i.e., if at least third of v’s neighbors in Gi have degrees
smaller or equal to that of v. The following lemma is estab-
lished in [5].

Lemma 2 ([5]). More than half of the edges in Ei are
incident on good nodes in Gi.

Disjoint winning events. Consider some good node v

in Gi with d = di(v) > 0 and let N̂i(v) = {u ∈ Ni(v) |
di(u) ≤ d}. Recall that the definition of a good node implies

that |N̂i(v)| ≥ d/3. We say that node u ∈ N̂i(v) wins v in
tournament i if

Xu(i) > max
{
Xw(i) | w ∈ Ni(u) ∪ N̂i(v)− {u}

}

and denote this event by Ai(u, v). The main observation
now is that if u wins v in tournament i, then in the end
of their respective tournaments i, u moves to state WIN and
v moves to state LOSE. Moreover, the events Ai(u, v) and

Ai(w, v) are disjoint for every u,w ∈ N̂i(v), u 6= w.

Fix some node u ∈ N̂i(v). Let u1, . . . , uk be the nodes in

Ni(u)∪ N̂i(v), where 0 < k ≤ 2 d by the definition of a good
node. Let Bi(u, v) denote the event that the maximum of
{Xuℓ(i) | 1 ≤ ℓ ≤ k} is attained at a single 1 ≤ ℓ ≤ k. Since
Xu1(i), . . . , Xuk (i) are independent random variables that
obey distribution Geom(1/2), it follows that P(Bi(u, v)) ≥
2/3 and therefore,

P (Ai(u, v)) = P (Ai(u, v) | Bi(u, v)) · P (Bi(u, v)) ≥ 1

k
· 2
3
.

Given that v is good in Gi and recalling the disjointness of
the Ai(u, v) events, the last inequality implies that

P (v /∈ Vi+1) ≥ P




∨

u∈N̂i(v)

Ai(u, v)





=
∑

u∈N̂i(v)

P (Ai(u, v)) ≥ d

3
· 1

2 d
· 2
3
=

1

9
.

Combined with Lemma 2, we conclude that E[|Ei+1|] <
17
18

|Ei|. Lemma 1 now follows by Markov’s inequality, thus
establishing Theorem 3.

4.2 Node coloring
Given a graph G = (V,E), the coloring problem asks for

an assignment of colors to the nodes such that no two neigh-
boring nodes have the same color. A coloring using at most
k colors is called a k-coloring. The smallest number of col-
ors needed to color graph G is referred to as the chromatic

number of G, denoted by χ(G). In general, χ(G) is difficult
to compute even in a centralized model [15]. As such, the
distributed computing community is generally satisfied al-
ready with a (∆+ 1)-, O(∆)- or even ∆O(1)-coloring, where
∆ = ∆(G) is the largest degree in the graph G, with pos-
sibly ∆(G) ≫ χ(G) [21, 32, 45, 12, 29, 35, 13, 43]. As the
output of each node under the nFSM model is taken from
a predetermined constant size set, we cannot hope to solve
these problems for general graphs. Instead, we observe that
the following simple nFSM protocol colors any bounded de-
gree graph in logarithmic time: As long as node v is still
uncolored, it picks an available color c uniformly at random,
where initially, the set of available colors is {1, . . . , d + 1}
for some constant d ≥ ∆. Then, v proposes color c to its
neighbors and colors itself (irrevocably) with c if none of its
neighbors proposed c in the previous round.

Theorem 4. Given some constant d, there exists an
nFSM protocol with bounding parameter b = 1 that (d+ 1)-
colors any n-node graph satisfying ∆ ≤ d in time O(log n).

As ∆ may grow quickly with n even for relatively sim-
ple graph classes, we turn our attention to a natural graph
class that features a small chromatic number regardless of
∆: trees. Any tree T has a chromatic number χ(T) = 2.
Unfortunately, it is easy to show that in general, the task
of 2-coloring trees requires run-time proportional to the di-
ameter of the tree even under the message passing model,
and hence cannot be achieved by an efficient distributed al-
gorithm. The situation improves dramatically once 3 colors
are allowed; indeed, Cole and Vishkin [21] presented a dis-
tributed algorithm that 3-colors directed paths, and in fact,
any directed tree (directed in the sense that each node knows
the port leading to its unique parent), in time O(log∗ n).
Linial [32] showed that this is asymptotically optimal.
Since it is not clear how to represent directed trees in

the nFSM model, we focus on undirected trees. A lower
bound result of Kothapalli et al. [28] shows that under the
anonymous (namely, the nodes are not assumed to have
unique identifiers) message passing model, 3-coloring undi-
rected trees requires Ω(log n) time as long as the size of each
message is O(1). We show that this lower bound is tight un-
der the nFSM model (proof deferred to the full version).

Theorem 5. There exists an nFSM protocol with bound-
ing parameter b = 3 that 3-colors any n-node (undirected)
tree in time O(log n).

4.3 The square graph
Consider some graph G = (V,E), node v ∈ V , and posi-

tive integer k. We define the k-hop neighborhood of v in G,
denoted by N k(v), as the set of all nodes u ∈ V , u 6= v, at
distance at most k from v. The kth power of G, denoted by
Gk, is the graph obtained from G by extending its edge set
so that v is adjacent to all nodes in N k(v) for every v ∈ V .
The second power G2 of G is called the square of G. The
proof of Lemma 3 is deferred to the full version.

Lemma 3. For every nFSM protocol Π with bounding pa-
rameter b = 1, there exists an nFSM protocol Π2 with bound-
ing parameter b = 2 such that for every graph G, the execu-
tion of Π2 on G simulates the execution of Π on G2 with a
constant multiplicative run-time overhead.

A node subset U ⊆ V is a k-hop independent set of the
graph G = (V,E) if v ∈ U implies that u /∈ U for ev-
ery u ∈ N k(v) − {v}; the maximal k-hop independent set
(MkIS) problem asks for a k-hop independent set U ⊆ V
which is maximal in the sense that U ′ ⊆ V is not a k-hop
independent set for any U ′ ⊃ U . Likewise, the k-hop color-
ing problem asks for an assignment of colors to the nodes
such that the color of v differs from the color of u for every
u ∈ N k(v) − {v}. Cast in this terminology, the MIS and
coloring problems are special cases of the MkIS set and k-
hop coloring problems, respectively, for k = 1. It is shown
in [23] that the MkIS and k-hop coloring problems cannot
be solved for k ≥ 3 by a distributed algorithm even under
the much stronger anonymous message passing model. In
contrast, the k = 2 case is resolved positively by plugging
Theorems 3 and 4 into Lemma 3.

Corollary 1. Given some constant d, there exists an
nFSM protocol with bounding parameter b = 2 that computes
a 2-hop coloring with (d2 + 1) colors for any n-node graph
satisfying ∆ ≤ d in time O(log n).

Corollary 2. There exists an nFSM protocol with
bounding parameter b = 2 that computes an M2IS for any
n-node graph in time O(log2 n).

Corollary 1 essentially provides us with the power to
implement independent communication along each edge in
bounded degree graphs: Given a 2-hop coloring c, we can
append the pair (c(u), c(v)) to a message originated at node
u whose destination is node v ∈ N (u). This way, node v can
detect that the message was sent by u, whereas any node
w ∈ N (u)− {v} can ignore it.
Simulating population protocols. Corollary 2 also has
an interesting implication that takes us back to the compar-
ison between the nFSM model and the population protocols
model (see Section 1) as it allows us to simulate the ren-
dezvous based communication of any population protocol (in
arbitrary interaction graphs). To explain how this is done,
we need to introduce the notion of an oriented matching con-
sisting of a set M = {(x1, y1), . . . , (xk, yk)} of ordered node
pairs satisfying (1) (xi, yi) ∈ E for every 1 ≤ i ≤ k; and (2)
(xi, yj) /∈ E for every 1 ≤ i, j ≤ k, i 6= j. We refer to the
nodes x1, . . . , xk as leaders and to the nodes y1, . . . , yk as
subordinates.

Based on the M2IS protocol promised in Corollary 2, we
present in the full version an nFSM protocol that computes
an oriented matching M ; specifically, upon termination of
this protocol, each node knows if it is a leader, a subordi-
nate, or neither. Moreover, for every edge e ∈ E in each one
of its two possible orientations, it holds thatM is a singleton
M = {e} w.p. > 0. By the definition of an oriented match-
ing, each leader xi (respectively, subordinate yi) can now
safely communicate with its subordinate yi (resp., leader xi)
without risking interference from other leaders (resp., subor-
dinates). Therefore, we can apply the rule of the simulated
population protocol to each (xi, yi) pair and update xi and
yi’s states under this simulated protocol accordingly. With
an appropriate node delaying mechanism (see, e.g., Section
4.1), this process can be repeated indefinitely, thus yielding
a schedule that must be fair (cf. [8]) due to the probabilistic
guarantees of M .

Lemma 4. The model obtained from nFSM by relaxing
the correctness requirement to an eventually converging cor-
rectness is at least as strong, in terms of its computational
power, as the population protocols model (with the same in-
teraction graph).

4.4 Maximal matching
Given a graph G = (V,E), an edge subset M ⊆ E is

called a matching if every node v ∈ V is incident on at most
one edge in M . The maximal matching (MM) problem asks
for a matching which is maximal in the sense that M ′ ⊆ E
is not a matching for every M ′ ⊃ M . A message passing
MM algorithm with logarithmic run-time was developed by
Israeli and Itai [27], whereas the Ω(

√
log n) lower bound of

[30] applies to the MM problem as well.
We would like to design an nFSM protocol for the MM

problem. However, the nFSM model as defined in Section 2
is not expressive enough for this problem: in a complete
bipartite graph with n nodes in each side for example, the
number of maximal matchings is n!, while an nFSM proto-
col with c output states can only specify c2n ≪ n! different
(global) outputs. In other words, the nFSM model is geared
towards problems whose output is specified by labeling the
graph’s nodes, whereas the output in the MM problem re-
quires assigning (binary) labels to the graph’s edges.
This obstacle is tackled by slightly extending the nFSM

model in a manner that enhances it with the power to cope
with edge labeling problems such as MM without violating
model requirements (M1)–(M4) (see Section 1). To that
end, we augment the 8-tuple Π = 〈Q,QI , QO,Σ, σ0, b, λ, δ〉
introduced in Section 2 with a finite internal alphabet Γ and
with a port transition function

η : Q× Γ× Σ → 2Γ .

We also change the function λ : Q → Σ to λ : Q → Γ and
the initial letter σ0 ∈ Σ to γ0 ∈ Γ.
The new semantics is as follows. While the communica-

tion alphabet Σ is still used for message transmission, each
port now contains some letter of the internal alphabet Γ,
hence the function λ now maps Q to a query letter in Γ.
Given some node v ∈ V and port ψv(u) corresponding to
neighbor u of v, the port transition function η takes the cur-
rent state q ∈ Q of v, the letter γ ∈ Γ currently stored in
ψv(u), and the new letter σ ∈ Σ delivered to v from u, and
returns some letter γ′ ∈ Γ chosen uniformly at random from
η(q, γ, σ) ⊆ Γ; the letter γ′ is then stored in ψv(u) (replacing
γ). This can be viewed as a FSM that controls the letters
stored in each one of v’s ports (the same FSM for all ports).
Using this extended nFSM model, we can now specify

edge labels through the ports of the nodes residing in output
states. In particular, an MM protocol can specify its output
matching M as follows. The protocol designer designates
some letter γout ∈ Γ for the purpose of outputting M . Node
v ∈ V residing in an output state may have at most one
port Ψv(u) storing the letter γout in which case it is guar-
anteed that port Ψu(v) also stores γout, thus marking that
(u, v) ∈ M . Note that this cannot be achieved under the
(non extended) nFSM model, where, by definition, if ψv(u)
stores the letter σ ∈ Σ at the end of the execution, then
ψw(u) also stores σ for every w ∈ N (u). The proof of the
following theorem is deferred to the full version.

Theorem 6. There exists an extended nFSM protocol
with bounding parameter b = 2 that computes an MM for
any n-node graph in time O(log2 n).

5. CONCLUSIONS
Motivated by networks of sub-microprocessor devices, we

introduce the new nFSM model that depicts a network of
randomized finite state machines whose communication re-
lies on aggregating the messages from all neighbors accord-
ing to the one-two-many scheme. Although each individual
node in this model is, by design, much weaker than the the
nodes under the standard message passing model, we show
that the collaborative power of the network’s nodes is still
sufficiently strong to allow efficient algorithms for some of
the most important distributed computing problems.

Given the dynamic nature of many biological cellular net-
works, it would be very interesting to extend the nFSM
model to networks that may undergo failures and/or dy-
namic insertions. Among the open questions that fascinate
us in that regard are: What problems can be solved effi-
ciently in such dynamic scenarios? Is is still possible to
locally synchronize the nFSM model in the face of dynamic
changes?

6. ACKNOWLEDGMENTS
We would like to thank Jasmin Smula for her help with

various parts of this paper.

7. REFERENCES

[1] H. Abelson, D. Allen, D. Coore, C. Hanson,
G. Homsy, T. F. Knight, Jr., R. Nagpal, E. Rauch,
G. J. Sussman, and R. Weiss. Amorphous computing.
Commun. ACM, 43(5):74–82, May 2000.

[2] Y. Afek, N. Alon, Z. Bar-Joseph, A. Cornejo,
B. Haeupler, and F. Kuhn. Beeping a maximal
independent set. In DISC, pages 32–50, 2011.

[3] Y. Afek, N. Alon, O. Barad, E. Hornstein, N. Barkai,
and Z. Bar-Joseph. A Biological Solution to a
Fundamental Distributed Computing Problem.
Science, 331(6014):183–185, Jan. 2011.

[4] I. F. Akyildiz, J. M. Jornet, and M. Pierobon.
Nanonetworks: a new frontier in communications.
Commun. ACM, 54(11):84–89, Nov. 2011.

[5] N. Alon, L. Babai, and A. Itai. A fast and simple
randomized parallel algorithm for the maximal
independent set problem. J. Algorithms, 7:567–583,
December 1986.

[6] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and
R. Peralta. Computation in networks of passively
mobile finite-state sensors. Distributed Computing,
pages 235–253, mar 2006.

[7] D. Angluin, J. Aspnes, and D. Eisenstat. Fast
computation by population protocols with a leader.
Distributed Computing, 21(3):183–199, sep 2008.

[8] J. Aspnes and E. Ruppert. An introduction to
population protocols. In B. Garbinato, H. Miranda,
and L. Rodrigues, editors, Middleware for Network
Eccentric and Mobile Applications, pages 97–120.
Springer-Verlag, 2009.

[9] B. Awerbuch. Complexity of network synchronization.
J. ACM, 32(4):804–823, 1985.

[10] B. Awerbuch, B. Patt-Shamir, D. Peleg, and M. E.
Saks. Adapting to asynchronous dynamic networks
(extended abstract). In STOC, pages 557–570, 1992.

[11] B. Awerbuch and D. Peleg. Network synchronization
with polylogarithmic overhead. In FOCS, pages
514–522, 1990.

[12] L. Barenboim and M. Elkin. Distributed
(delta+1)-coloring in linear (in delta) time. In STOC,
pages 111–120, 2009.

[13] L. Barenboim and M. Elkin. Deterministic distributed
vertex coloring in polylogarithmic time. J. ACM,
58(5):23, 2011.

[14] L. Barenboim, M. Elkin, S. Pettie, and J. Schneider.
The locality of distributed symmetry breaking. CoRR,
abs/1202.1983, 2012.

[15] M. Bellare, O. Goldreich, and M. Sudan. Free bits,
pcps, and nonapproximability-towards tight results.
SIAM J. Comput., 27(3):804–915, 1998.

[16] Y. Benenson. Biomolecular computing systems:
principles, progress and potential. Nat Rev Genet,
13(7):455–468, July 2012.

[17] Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan,
Z. Livneh, and E. Shapiro. Programmable and
autonomous computing machine made of
biomolecules. Nature, 414(6862):430–434, Nov. 2001.

[18] D. Brand and P. Zafiropulo. On communicating
finite-state machines. J. ACM, 30:323–342, April 1983.

[19] I. Chatzigiannakis and P. G. Spirakis. The dynamics
of probabilistic population protocols. In DISC, DISC
’08, pages 498–499, Berlin, Heidelberg, 2008.
Springer-Verlag.

[20] I. Chlamtac and S. Kutten. On Broadcasting in Radio
Networks–Problem Analysis and Protocol Design.
Communications, IEEE Transactions on [legacy, pre -
1988], 33(12):1240–1246, 1985.

[21] R. Cole and U. Vishkin. Deterministic coin tossing
with applications to optimal parallel list ranking. Inf.
Control, 70(1):32–53, July 1986.

[22] A. Cornejo and F. Kuhn. Deploying wireless networks
with beeps. In DISC, pages 148–162, 2010.

[23] Y. Emek, J. Seidel, and R. Wattenhofer. Distributed
computability: Anonymity, revocability, and
randomization. A manuscript.

[24] R. Flury and R. Wattenhofer. Slotted Programming
for Sensor Networks. In IPSN, April 2010.

[25] M. Gardner. The fantastic combinations of John
Conway’s new solitaire game ‘life’. Scientific
American, 223(4):120–123, 1970.

[26] P. Gordon. Numerical Cognition Without Words:
Evidence from Amazonia. Science, 306(5695):496–499,
Oct. 2004.

[27] A. Israeli and A. Itai. A fast and simple randomized
parallel algorithm for maximal matching. Inf. Process.
Lett., 22(2):77–80, 1986.

[28] K. Kothapalli, C. Scheideler, M. Onus, and

C. Schindelhauer. Distributed Coloring in Õ(
√
log n)

Bit Rounds. In IPDPS, 2006.

[29] F. Kuhn. Weak graph colorings: distributed
algorithms and applications. In SPAA, pages 138–144,
New York, NY, USA, 2009. ACM.

[30] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What
cannot be computed locally! In PODC, pages
300–309, 2004.

[31] C. Lenzen and R. Wattenhofer. MIS on trees. In
PODC, pages 41–48, New York, NY, USA, 2011.

[32] N. Linial. Locality in distributed graph algorithms.
SIAM J. Comput., 21:193–201, Feb. 1992.

[33] M. Luby. A simple parallel algorithm for the maximal
independent set problem. SIAM J. Comput.,
15:1036–1055, November 1986.

[34] N. A. Lynch. Distributed Algorithms. Morgan
Kaufmann, 1st edition, 1996.

[35] Y. Métivier, J. M. Robson, N. Saheb-Djahromi, and
A. Zemmari. About randomised distributed graph
colouring and graph partition algorithms. Inf.
Comput., 208(11):1296–1304, Nov. 2010.

[36] Y. Métivier, J. M. Robson, N. Saheb-Djahromi, and
A. Zemmari. An optimal bit complexity randomised
distributed MIS algorithm. Distributed Computing,
23(5-6):331–340, Jan. 2011.

[37] O. Michail, I. Chatzigiannakis, and P. G. Spirakis.
New Models for Population Protocols. Synthesis
Lectures on Distributed Computing Theory. Morgan
& Claypool Publishers, 2011.

[38] K. Nakamura. Asynchronous cellular automata and
their computational ability. Syst Comput Controls,
5(5):58–66, 1974.

[39] C. L. Nehaniv. Asynchronous automata networks can
emulate any synchronous automata network. Journal
of Algebra, pages 1–21, Dec. 2003.

[40] D. Peleg. Distributed computing: a locality-sensitive
approach. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2000.

[41] D. Sadava. Life: The Science of Biology. Sinauer
Associates, 2011.

[42] J. Schneider and R. Wattenhofer. An optimal maximal
independent set algorithm for bounded-independence
graphs. Distributed Computing, 22(5-6):349–361, 2010.

[43] J. Schneider and R. Wattenhofer. Distributed Coloring
Depending on the Chromatic Number or the
Neighborhood Growth. In SIROCCO, June 2011.

[44] J. Suomela. Survey of local algorithms. To appear in
ACM Computing Surveys, 2012.
http://www.cs.helsinki.fi/u/josuomel/doc/local-
survey.pdf.

[45] M. Szegedy and S. Vishwanathan. Locality based
graph coloring. In STOC, pages 201–207, 1993.

[46] L. G. Valiant. Parallel computation. In 7th IBM Symp.
on Math. Foundations of Computer Science, 1982.

[47] J. von Neumann. Theory of Self-Reproducing
Automata. University of Illinois Press, Champaign, IL,
USA, 1966.

[48] S. Wolfram. A new kind of science. Wolfram Media,
Champaign, Illinois, 2002.

