
Published as a conference paper at ICLR 2024

EFFICIENT AND SCALABLE GRAPH GENERATION
THROUGH ITERATIVE LOCAL EXPANSION

Andreas Bergmeister∗
ETH Zürich

Karolis Martinkus†
Prescient Design

Nathanaël Perraudin†

SDSC, ETH Zürich
Roger Wattenhofer
DISCO, ETH Zürich

ABSTRACT

In the realm of generative models for graphs, extensive research has been con-
ducted. However, most existing methods struggle with large graphs due to the
complexity of representing the entire joint distribution across all node pairs and
capturing both global and local graph structures simultaneously. To overcome
these issues, we introduce a method that generates a graph by progressively ex-
panding a single node to a target graph. In each step, nodes and edges are added
in a localized manner through denoising diffusion, building first the global struc-
ture, and then refining the local details. The local generation avoids modeling
the entire joint distribution over all node pairs, achieving substantial computa-
tional savings with subquadratic runtime relative to node count while maintain-
ing high expressivity through multiscale generation. Our experiments show that
our model achieves state-of-the-art performance on well-established benchmark
datasets while successfully scaling to graphs with at least 5000 nodes. Our method
is also the first to successfully extrapolate to graphs outside of the training distri-
bution, showcasing a much better generalization capability over existing methods.

1 INTRODUCTION

Graphs are mathematical structures representing relational data. They comprise a set of nodes and a
set of edges, denoting pairwise relations between them. This abstraction is ubiquitous in modeling
discrete data across domains like social networking (Fan et al., 2019), program synthesis (Nguyen
et al., 2012; Bieber et al., 2020), or even origami design (Geiger et al., 2023). A crucial task is the
generation of new graphs that possess characteristics similar to those observed. For example, in drug
discovery, this involves creating graphs that encode the structure of a desired type of protein (Ingra-
ham et al., 2022; Martinkus et al., 2023) or molecule (Jin et al., 2018; Vignac et al., 2023b).

Traditional graph generation methods (Albert & Barabási, 2002) estimate parameters of known mod-
els like Stochastic Block Model (SBM) (Holland et al., 1983) or Erdos-Renyi Erdos et al. (1960), but
often fail to capture the complexity of real-world data. Deep learning offers a promising alternative,
with approaches falling into two categories depending on the factorization of the data-generating
distribution. Autoregressive techniques build graphs incrementally, predicting edges for each new
node (You et al., 2018; Liao et al., 2020; Dai et al., 2020). One-shot methods generate the entire
graph at once using techniques such as variational autoencoders (Simonovsky & Komodakis, 2018),
generative adversarial networks (Cao & Kipf, 2022; Martinkus et al., 2022), normalizing flows (Liu
et al., 2019), score-based and denoising diffusion models (Niu et al., 2020; Haefeli et al., 2023).

Despite the success of these methods in generating graphs comprising several hundred nodes, scaling
beyond this range poses challenges. The computational cost of predicting edges between all node
pairs scales at least quadratically with the number of nodes, which is inefficient for sparse graphs
typical of real-world data. Sample fidelity is also an issue, as autoregressive methods struggle with
node-permutation-invariant training due to the factorial increase in node orderings, and one-shot
methods often fail to capture both global and local graph structure simultaneously. Also, in contrast
to algorithmic approaches (Babiac et al., 2023), neither have been shown to generalize to larger
unseen graph sizes. Finally, the neural architectures employed either exhibit limited expressiveness,

∗Correspondence to: andreas.bergmeister@inf.ethz.ch
†Equal contribution.

1

Published as a conference paper at ICLR 2024

Coarsening

Expansion & Refinement

Figure 1: Example of a 4-level coarsening sequence. Colors indicate the node contraction sets
V(p). Our generation process aims at reversing with expansions and refinements the T steps of this
sequence from GT to G0. The details of a single step are provided in Figure 2.

although with linear complexity in the number of edges for message passing neural networks (Xu
et al., 2019), or are computationally expensive with quadratic or even higher scaling factors for more
expressive architectures (Dwivedi & Bresson, 2021; Maron et al., 2020).

We present a novel approach to graph generation through iterative local expansion. In each step,
we expand some nodes into small subgraphs and use a diffusion model to recover the appropriate
local structure. The model is trained to reverse a graph coarsening process, as depicted in Figure 1,
applied to the dataset graphs (Loukas, 2018; Loukas & Vandergheynst, 2018; Hermsdorff & Gun-
derson, 2019; Jin et al., 2020b; Kumar et al., 2022; 2023). We argue that this is inherently suitable
for generating graphs, as it allows for the generation of an approximate global structure initially,
followed by the addition of local details. This generative process effectively represents a particular
kind of network growth, which we find to be much more robust to changes in generated graph sizes
than existing approaches. Moreover, our method enables modeling the distribution of edges with-
out the need to represent the entire joint distribution over all node pairs, enhancing scalability for
larger graphs. Our theoretical analysis shows that, under mild conditions, our method exhibits sub-
quadratic sampling complexity relative to the number of nodes for sparse graphs. We also introduce
a more efficient local version of the Provably Powerful Graph Network (PPGN) (Maron et al., 2020),
termed Local PPGN. This variant is especially well suited for our iterative local expansion approach,
maintaining the high expressive power in the local subgraphs that we process while providing better
computational efficiency. To demonstrate the effectiveness of our approach, we conducted experi-
ments with widely used benchmark datasets. First, in the standard graph distribution modeling task
from Martinkus et al. (2022); Vignac et al. (2023a), our model achieves state-of-the-art performance
with the highest Validity-Uniqueness-Novelty score on the planar and tree datasets. Additionally,
it generated graphs most closely matching the test set’s structural statistics for protein and point
cloud datasets. Second, we evaluate our method’s ability to generalize beyond the training distribu-
tion, by generating graphs with an unseen number of nodes and verifying if they retain the defining
characteristics of the training data. In this setting, our method is the only one capable of preserv-
ing these characteristics across the considered datasets. Third, we show that for sparse graphs our
model exhibits subquadratic sampling complexity relative to the number of nodes, and validate this
empirically by generating planar graphs of increasing size. Our implementation is available1.

2 RELATED WORK

The seminal work by You et al. (2018) pioneered graph generation using recurrent neural networks,
creating the adjacency matrix sequentially. Liao et al. (2020) improved this approach by simultane-
ously sampling edges for newly added nodes from a mixture of independent Bernoulli distributions
with parameters obtained from a message passing graph neural network. Kong et al. (2023) concep-
tualized this method as the inverse of an absorbing state diffusion process (Austin et al., 2021) and
proposed reinforcement learning to optimize node addition sequences.

Lately, diffusion models have come to dominate alternative approaches in terms of sample quality
and diversity. Although initially only effective for graphs with tens of nodes (Niu et al., 2020), sub-
sequent improvements using discrete diffusion (Vignac et al., 2023a;b; Haefeli et al., 2023), refining
the diffusion process with a destination-predicting diffusion mixture (Jo et al., 2023), or dropping

1https://github.com/AndreasBergmeister/graph-generation

2

https://github.com/AndreasBergmeister/graph-generation

Published as a conference paper at ICLR 2024

2 2 1

1

1

Coarsening

Expansion and Refinement

Figure 2: Single step schematic representation of the proposed methodology. The upper row delin-
eates two sequential coarsening steps, using color differentiation to denote the contraction sets V(p).
Commencing from the right in the lower row, the expansion of Gl+1 into G̃l = G̃(Gl+1,vl+1) is
shown, assuming a known cluster size vector vl+1. Colors distinguish membership within expan-
sion sets while dashed lines indicate edges to be removed as per the edge selection vector el. The
resultant refined graph Gl = G(G̃l, el) is shown in the central box, where node features correspond
to the cluster size vector vl, used in expanding Gl into G̃l−1 (illustrated in the leftmost box).

permutation equivariance (Yan et al., 2023) allowed for successful generation of graphs with a few
hundred nodes. Nevertheless, scalability and computational complexity remain challenges for these
models. As a countermeasure, Diamant et al. (2023) suggest limiting the maximal bandwidth of
generated graphs. They leverage the observation that real-world graph nodes can often be ordered to
confine non-zero adjacency matrix entries within a narrow diagonal band (Cuthill & McKee, 1969).
Within this band, generation can be achieved using models such as GraphRNN (You et al., 2018),
variational autoencoders (Grover et al., 2019), or score-based generative models (Niu et al., 2020).
Alternatively, Chen et al. (2023b) introduce degree-guided diffusion, which begins with an RNN-
generated degree sequence to condition the graph diffusion model. During each step, the model
only considers edge connections between nodes predicted to require degree increases. This non-
local process requires a simple, non-expressive, message passing graph neural network for efficient
execution. However, it does offer an increase in empirical computational efficiency. Goyal et al.
(2020) propose a different approach by generating a canonical string representation of the graph
using a long short-term memory network. Although the length of the string is linear in the number
of graph edges, generating the strings for model training has worst-case factorial complexity, which
limits the practicality of this approach for general large-scale graph generation tasks.

An orthogonal line of research leverages hierarchical constructions for more efficient graph gener-
ation. Dai et al. (2020) improve the original RNN-based adjacency generation by You et al. (2018)
using binary tree-structured conditioning on rows and columns of the matrix, cutting the complexity
from O(n2) to O((n + m) log n), with n representing nodes and m edges. Shirzad et al. (2022)
suggest a two-stage process starting with tree-based cluster representation, followed by incremental
subgraph construction. Another two-level approach to generation is proposed by Davies et al. (2023)
using DiGress (Vignac et al., 2023a) to create cluster graphs, followed by independent generation
of cluster subgraphs and intra-cluster edges. In a related vein, Karami (2023) present a methodol-
ogy that extends to multiple levels of hierarchy, with autoregressive generation of cluster subgraphs.
Limnios et al. (2023) propose another method to enhance DiGress’s scalability, which involves a
divide-and-conquer strategy for sampling subgraph coverings. Although the independence assump-
tions of these hierarchical methods improve scalability, they may compromise sample accuracy,
contrasting with our approach that avoids such assumptions. Both Davies et al. (2023) and Karami
(2023) utilize the Louvain algorithm (Blondel et al., 2008) for pre-generating clusterings for train-
ing, unlike our method, which employs random sampling of coarsening sequences during training.
Additionally, Guo et al. (2023) introduce a graph expansion layer for inclusion in the generator of a
generative adversarial network or the decoder of a variational autoencoder, with parameter training
carried out through reinforcement learning. Hierarchical approaches have also been developed for
molecular generation (Jin et al., 2018; 2020a; Kuznetsov & Polykovskiy, 2021), with the aim of
improving efficiency and performance by integrating domain knowledge. However, these methods
are not optimized for general graph generation tasks.

3

Published as a conference paper at ICLR 2024

3 METHOD

This section presents our proposed method for graph generation through iterative local graph expan-
sion. A graph is a tuple G = (V, E), where V is a set of n = |V| vertices and E a set of m = |E|
undirected edges. Assuming an arbitrary indexing of the nodes from 1 to n, we use v(i) to denote the
i-th node in V and e{i,j} = {v(i), v(j)} ∈ E to denote the undirected edge connecting the nodes v(i)

and v(j). Although the generated graphs are unattributed, the proposed method internally generates
node and edge features denoted by v and e respectively. Their i-th component, denoted by v[i] and
e[i], corresponds to the feature of the i-th node or edge in the graph. W ∈ Rn×n is a symmetric
adjacency matrix with non-zero entries W [i, j] = W [j, i] assigning positive (unary for the dataset
graphs) weight to edges e{i,j} ∈ E . Consequently, the combinatorial Laplacian matrix is defined as
L = D −W , where D is the diagonal degree matrix with D[i, i] =

∑n
j=1 W [i, j]. All graphs are

assumed to be connected.

3.1 GRAPH EXPANSION

Starting from a singleton graph GL = ({v}, ∅), we construct a sequence of graphs with increasing
size in an auto-regressive fashion as

Gl
expand−−−→ G̃l−1

refine−−−→ Gl−1,

with G0 being the graph to be generated. In every step, we expand each node in Gl into a cluster
of nodes, connecting nodes within the same cluster and between neighboring clusters, resulting in
a graph G̃l−1 with nl−1 nodes. Subsequently, we refine G̃l−1 into Gl−1 by selectively eliminating
certain edges present in G̃l−1. Figure 2 illustrates this process. Let us now formalize the definitions
of the expansion and refinement steps.

Definition 1 (Graph Expansion) Given a graph G = (V, E) with |V| = n nodes and a cluster size
vector v ∈ Nn denoting the expansion size of each node, let G̃(G,v) = (Ṽ, Ẽ) denote the expansion
of G. It contains v[p] nodes, v(p1), . . . , v(pv[p]), for each node v(p) ∈ V in the initial graph. As such,
the expanded node set is given by Ṽ = V(1)∪· · ·∪V(n), where V(p) = {v(pi) | 1 ≤ i ≤ v[p]} for 1 ≤
p ≤ n. The edge set Ẽ includes all intracluster edges, {e{pi,pj} | 1 ≤ p ≤ n, 1 ≤ i < j ≤ v[p]}, as
well as the cluster interconnecting edges, {e{pi,qj} | e{p,q} ∈ E , v(pi) ∈ V(p), v(qj) ∈ V(q)}.

Definition 2 (Graph Refinement) Given a graph G̃ = (Ṽ, Ẽ) with m̃ =
∣∣∣Ẽ∣∣∣ edges and an edge

selection vector e ∈ {0, 1}m̃, let G(G̃, e) = (V, E) denote the refinement of G̃, with V = Ṽ and
E ⊆ Ẽ such that the i-th edge e(i) ∈ E if and only if e[i] = 1.

Probabilistic Model Starting from a given dataset {G(1), . . . , G(N)} of i.i.d. graph samples, we
aim to fit a distribution p(G) that matches the unknown true generative process as closely as possible.
We model the marginal likelihood of a graph G as the sum of likelihoods over expansion sequences

p(G) =
∑

ϖ∈Π(G)

p(ϖ).

Here, Π(G) denotes the set of all possible expansion sequences (GL = ({v}, ∅), GL−1, . . . , G0 =
G) of a single node into the target graph G, with each Gl−1 being a refined expansion of its prede-
cessor, that is, G̃l−1 = G̃(Gl,vl) is the expansion of Gl according to Definition 1 with the cluster
size vector vl, and Gl−1 = G(G̃l−1, el−1) is the refinement of G̃l−1 according to Definition 2 and
the edge selection vector el−1.

Factorization We factorize the likelihood of a fixed expansion sequence ϖ = (GL, . . . , G0) into
a product of conditional likelihoods of single expansion and refinement steps, assuming a Markovian
structure, as

p(ϖ) = p(GL)︸ ︷︷ ︸
1

·
1∏

l=L

p(Gl−1 | Gl) =

1∏
l=L

p(el−1 | G̃l−1)p(vl | Gl).

4

Published as a conference paper at ICLR 2024

To avoid modeling two separate distributions p(el | G̃l) and p(vl | Gl), we rearrange terms as

p(ϖ) = p(vL | GL)︸ ︷︷ ︸
p(vL)

·

[
1∏

l=L−1

p(vl | Gl)p(el | G̃l)

]
· p(e0 | G̃0), (1)

and model vl to be conditionally independent of G̃l given Gl, i.e. p(vl | Gl, G̃l) = p(vl | Gl),
allowing us to write

p(vl | Gl)p(el | G̃l) = p(vl, el | G̃l).

We represent the expansion and refinement vectors as node and edge features of the expanded graph,
respectively. This enables us to model a single joint distribution over these features for each refine-
ment and consecutive expansion step.

3.2 LEARNING TO INVERT GRAPH COARSENING

We now describe how we construct expansion sequences ϖ ∈ Π(G) for a given graph G and use
them to train a model for conditional distributions p(vl, el | G̃l). For this, we introduce the notion
of graph coarsening as the inverse operation of graph expansion. Intuitively, we obtain a coarsening
of a graph by partitioning its nodes into nonoverlapping, connected sets and contracting the induced
subgraph of each set into a single node.

Definition 3 (Graph Coarsening) Let G = (V, E) be an arbitrary graph and P =
{V(1), . . . ,V(n̄)} be a partitioning of the node set V , such that each partition V(p) ∈ P induces
a connected subgraph in G. We construct a coarsening Ḡ(G,P) = (V̄, Ē) of G by representing
each partition V(p) ∈ P as a single node v(p) ∈ V̄ . We add an edge e{p,q} ∈ Ē , between distinct
nodes v(p) ̸= v(q) ∈ V̄ in the coarsened graph if and only if there exists an edge e{i,j} ∈ E between
the corresponding disjoint clusters in the original graph, i.e. v(i) ∈ V(p) and v(j) ∈ V(q).

An important property of this coarsening operation is that it can be inverted through an appro-
priate expansion and subsequent refinement step, as elaborated in Appendix A. Based on this
premise, it can be deduced through an inductive argument that for any given coarsening sequence
(G = G0, G1, . . . , GL = ({v}, ∅)) that transforms a graph G into a single node, there exists
a corresponding expansion sequence ϖ ∈ Π(G) with the same elements in reverse order, i.e.
ϖ = (GL, . . . , G0). Note that successive coarsening steps always result in a single-node graph,
as long as the original graph is connected, and every coarsening step contains at least one non-trivial
contraction set, i.e. a set of nodes with more than one node.

We define the distribution p(π) over coarsening sequences symmetrically to p(ϖ) in Equation 1 and
use Π(G) to denote the set of all possible coarsening sequences of a graph G. With this, it holds that

p(G) =
∑

ϖ∈Π(G)

p(ϖ) ≥
∑

π∈Π(G)

p(π). (2)

Note that this inequality is strict, as there exist expansion sequences that are not the reverse of any
coarsening sequence2. As we can easily generate samples from Π(G), this is a suitable lower bound
on the marginal likelihood of G that we can aim to maximize during training.

Contraction Families Without further restrictions on the allowed partitioning of the node set in
Definition 3, for an arbitrary graph G there can potentially be exponentially many coarsenings of it,
rendering the computation of the sum

∑
π∈Π(G) p(π) intractable. Therefore, we further restrict the

possible contraction sets in graph coarsening to belong to a given contraction family F(G). We use
ΠF (G) to denote the set of all possible coarsening sequences of G that only use contraction sets
from F(G) in each step. ΠF (G) is a subset of Π(G), and hence Equation 2 with Π(G) replaced by
ΠF (G) still holds. Following Loukas (2018), we experiment with edge contraction F(G) = E and
neighborhood contraction F(G) = {{v(j) | e{i,j} ∈ E} | v(i) ∈ V}.

2For example, the refinement step might split the graph into two connected components, which cannot, from
Definition 3, be coarsened back into a single connected graph.

5

Published as a conference paper at ICLR 2024

Variational Interpretation Given a distribution q(π | G) over coarsening sequences ΠF (G) for
a graph G, it holds that

p(G) ≥
∑

π∈ΠF (G)

p(π) ≥ E
π∼q(π|G)

[
p(π)

q(π | G)

]
,

and one can derive the evidence lower bound on the log-likelihood under the given model as

log p(G) ≥ E
π∼q(π|G)

[
log p(vL | GL) +

1∑
l=L−1

log p(vl, el | G̃l) + log p(e0 | G̃0)

]
+H(q(π | G)),

(3)

leading to a variational interpretation of the model.

Spectral Guided Generation The above formulation is agnostic to the distribution q(π | G) over
coarsening sequences ΠF (G), giving us the flexibility to choose a distribution that facilitates the
learning process and improves the generative performance of the model. While the uniform distri-
bution over all possible coarsening sequences ΠF (G) gives the tightest bound in Equation 3 as the
entropy term vanishes, arbitrary coarsening sequences could destroy important structural properties
of the original graph G, making it difficult for the model to learn to invert them. Therefore, we
propose a distribution q that prioritizes coarsening sequences preserving the spectrum of the graph
Laplacian, which is known to capture important structural properties of a graph. Note that the dis-
tribution q does not need to be explicitly defined. Instead, for training the model, we only need
a sampling procedure from this distribution. In Appendix D, we propose a sampling procedure for
coarsening sequences which is parametric in a cost function. It iteratively evaluates the cost function
across all contraction sets and subsequently selects a cost-minimizing partition of the contraction sets
in a greedy and stochastic fashion. When instantiating the cost function with the Local Variation
Cost 7 proposed by Loukas (2018), we obtain a Laplacian spectrum-preserving distribution over
coarsening sequences. In Appendix C, we summarize the work of Loukas (2018) and show how our
generic sampling procedure can be instantiated with the Local Variation Cost. In Section D.1, we
empirically validate the effectiveness of this approach by comparing the generative performance of
the model with and without spectrum-preserving sampling. While numerous graph coarsening tech-
niques exist (Loukas, 2018; Hermsdorff & Gunderson, 2019; Jin et al., 2020b; Kumar et al., 2022;
2023), our chosen method stands out for two key reasons. It adheres to our coarsening definition
with an efficient local cost function guiding contraction set selection. Additionally, it’s a multilevel
scheme that maintains the original graph’s Laplacian spectrum at each level, essential for our goals.

3.3 MODELING AND TRAINING

We now turn to the modeling of conditional distributions p(vl, el|G̃l) within our marginal likelihood
factorization for p(G). Let pθ(vl, el|G̃l) denote the parameterized distribution, with θ as the param-
eters. We use the same model for all 1 ≤ l < L conditional distributions pθ(vl, el | G̃l) as well
as pθ(e0 | G̃0) and pθ(vL | GL) = pθ(vL), with the parameters θ being shared between all distri-
butions. For the latter two distributions, we disregard the edge and node features, respectively, but
maintain the same modeling approach as for the other distributions. In the following, we describe
the modeling of pθ(vl, el | G̃l) for arbitrary but fixed level 1 ≤ l < L.

Modeling with Denoising Diffusion Models An effective method should be capable of represent-
ing complex distributions and provide a stable, node permutation-invariant training loss. Denoising
diffusion models meet these criteria. This method entails training a denoising model to restore the
original samples—in our setting, node and edge features vl and el—from their corrupted counter-
parts. Inference proceeds iteratively, refining predictions from an initial noise state. Although this
requires multiple model queries per graph expansion, it does not affect the algorithm’s asymptotic
complexity nor impose restrictive assumptions on the distribution, unlike simpler models such as
mixtures of independent categorical distributions. We adopt the formulation proposed by Song et al.
(2021), enhanced by contributions from Karras et al. (2022). This method represents the forefront in
image synthesis, and preliminary experiments indicate its superior performance for our application.
For a comprehensive description of the framework and its adaptation to our context, see Appendix E.

6

Published as a conference paper at ICLR 2024

3.4 LOCAL PPGN

A key component of our proposed methodology is the specialized architecture designed to parame-
terize the conditional distributions pθ(vl, el | G̃l), or equivalently, the denoising model. Our design
incorporates a novel edge-wise message passing layer, termed Local PPGN. When designing this
layer, we drew inspiration from the PPGN model (Maron et al., 2020), which is provably more ex-
pressive than graph message passing networks at the expense of increased computational complexity
(cubic in the number of nodes). Recognizing that our suggested methodology only locally alternates
graphs at every expansion step and that these graphs possess a locally dense structure, as a result
of the expansion process (Definition 1), we designed a layer that is locally expressive, resembles
the PPGN layer on a dense (sub)graph, but retains efficiency on sparse graphs, with linear runtime
relative to the number of edges. An elaborate explanation of this layer and its placement within
existing graph neural network models can be found in Appendix F. In-depth architectural details of
the overall model are presented in Appendix F.2.

3.5 SPECTRAL CONDITIONING

Martinkus et al. (2022) found that using the principal Laplacian eigenvalues and eigenvectors of a
target graph as conditional information improves graph generative models. A salient aspect of our
generative methodology is that it generates a graph Gl from its coarser version, Gl+1. Given the
preservation of the spectrum during coarsening, the Laplacian spectrum of Gl is approximated by
that of Gl+1. The availability of Gl+1 during the generation of Gl allows computing its principal
Laplacian spectrum and subsequently conditioning the generation of Gl on it. Specifically, we ac-
complish this by computing the smallest k non-zero eigenvalues and their respective eigenvectors
of the Laplacian matrix Ll+1 of Gl+1. We then employ SignNet (Lim et al., 2022) to obtain node
embeddings for nodes in Gl+1, which are then replicated across nodes in the same expansion set to
initialize Gl’s embeddings. This shared embedding feature also aids the model in cluster identifica-
tion. Our Local PPGN model, while inherently capturing global graph structures, can benefit from
explicit conditioning on spectral information. We adjust the number of eigenvalues k as a tunable
hyperparameter; when k = 0, node embeddings are drawn from an isotropic normal distribution.

3.6 PERTURBED EXPANSION

As noted, the given Definitions 1 and 2 are sufficient to reverse a contraction step with an appro-
priate expansion and subsequent refinement step. However, we have observed that introducing an
additional source of randomness in the expansion is beneficial for the generative performance of the
model, particularly in the context of datasets with limited samples where overfitting is a concern.
Therefore, we introduce the concept of perturbed expansion, where in addition to the edges in Ẽ , we
add edges between nodes whose distance in G is bounded by an augmented radius independently
with a given probability. A formal definition and an illustrative explanation of this concept can be
found in Appendix B.

3.7 DETERMINISTIC EXPANSION SIZE

Our graph expansion method iteratively samples a cluster size vector v to incrementally enlarge the
graph. The process halts when v is entirely composed of ones, indicating no further node expansion
is necessary. However, this stochastic approach may not reliably produce graphs of a predetermined
size. To remedy this, we propose a deterministic expansion strategy, primarily applicable in cases of
edge contraction where the maximum expansion size is two. In this strategy, v is treated as binary.
We set the target size for the expanded graph at each expansion step and, instead of sampling v,
we select the required number of nodes with the highest probabilities for expansion to reach the
predefined size. Additionally, we introduce the reduction fraction, calculated as one minus the ratio
of node counts between the original and expanded graphs, as an additional input to the model during
training and inference. More details are discussed in Appendix G.

7

Published as a conference paper at ICLR 2024

Planar Graphs (nmax = 64, navg = 64)

Model Deg. ↓ Clus. ↓ Orbit ↓ Spec. ↓ Wavelet ↓ Ratio ↓ Valid ↑ Unique ↑ Novel ↑ V.U.N. ↑
Training set 0.0002 0.0310 0.0005 0.0038 0.0012 1.0 100 100 — —

GraphRNN (You et al., 2018) 0.0049 0.2779 1.2543 0.0459 0.1034 490.2 0.0 100 100 0.0
GRAN (Liao et al., 2020) 0.0007 0.0426 0.0009 0.0075 0.0019 2.0 97.5 85.0 2.5 0.0
SPECTRE (Martinkus et al., 2022) 0.0005 0.0785 0.0012 0.0112 0.0059 3.0 25.0 100 100 25.0
DiGress (Vignac et al., 2023a) 0.0007 0.0780 0.0079 0.0098 0.0031 5.1 77.5 100 100 77.5
EDGE (Chen et al., 2023b) 0.0761 0.3229 0.7737 0.0957 0.3627 431.4 0.0 100 100 0.0
BwR (EDP-GNN) (Diamant et al., 2023) 0.0231 0.2596 0.5473 0.0444 0.1314 251.9 0.0 100 100 0.0
BiGG (Dai et al., 2020) 0.0007 0.0570 0.0367 0.0105 0.0052 16.0 62.5 85.0 42.5 5.0
GraphGen (Goyal et al., 2020) 0.0328 0.2106 0.4236 0.0430 0.0989 210.3 7.5 100 100 100

Ours (one-shot) 0.0003 0.0245 0.0006 0.0104 0.0030 1.7 67.5 100 100 67.5
Ours 0.0005 0.0626 0.0017 0.0075 0.0013 2.1 95.0 100 100 95.0

Stochastic Block Model (nmax = 187, navg = 104)

Model Deg. ↓ Clus. ↓ Orbit ↓ Spec. ↓ Wavelet ↓ Ratio ↓ Valid ↑ Unique ↑ Novel ↑ V.U.N. ↑
Training set 0.0008 0.0332 0.0255 0.0027 0.0007 1.0 100 100 — —

GraphRNN (You et al., 2018) 0.0055 0.0584 0.0785 0.0065 0.0431 14.7 5.0 100 100 5.0
GRAN (Liao et al., 2020) 0.0113 0.0553 0.0540 0.0054 0.0212 9.7 25.0 100 100 25.0
SPECTRE (Martinkus et al., 2022) 0.0015 0.0521 0.0412 0.0056 0.0028 2.2 52.5 100 100 52.5
DiGress (Vignac et al., 2023a) 0.0018 0.0485 0.0415 0.0045 0.0014 1.7 60.0 100 100 60.0
EDGE (Chen et al., 2023b) 0.0279 0.1113 0.0854 0.0251 0.1500 51.4 0.0 100 100 0.0
BwR (EDP-GNN) (Diamant et al., 2023) 0.0478 0.0638 0.1139 0.0169 0.0894 38.6 7.5 100 100 7.5
BiGG (Dai et al., 2020) 0.0012 0.0604 0.0667 0.0059 0.0370 11.9 10.0 100 100 10.0
GraphGen (Goyal et al., 2020) 0.0550 0.0623 0.1189 0.0182 0.1193 48.8 5.0 100 100 5.0

Ours (one-shot) 0.0141 0.0528 0.0809 0.0071 0.0205 10.5 75.0 100 100 75.0
Ours 0.0119 0.0517 0.0669 0.0067 0.0219 10.2 45.0 100 100 45.0

Tree Graphs (nmax = 64, navg = 64)

Model Deg. ↓ Clus. ↓ Orbit ↓ Spec. ↓ Wavelet ↓ Ratio ↓ Valid ↑ Unique ↑ Novel ↑ V.U.N. ↑
Training set 0.0001 0.0000 0.0000 0.0075 0.0030 1.0 100 100 — —

GRAN (Liao et al., 2020) 0.1884 0.0080 0.0199 0.2751 0.3274 607.0 0.0 100 100 0.0
DiGress (Vignac et al., 2023a) 0.0002 0.0000 0.0000 0.0113 0.0043 1.6 90.0 100 100 90.0
EDGE (Chen et al., 2023b) 0.2678 0.0000 0.7357 0.2247 0.4230 850.7 0.0 7.5 100 0.0
BwR (EDP-GNN) (Diamant et al., 2023) 0.0016 0.1239 0.0003 0.0480 0.0388 11.4 0.0 100 100 0.0
BiGG (Dai et al., 2020) 0.0014 0.0000 0.0000 0.0119 0.0058 5.2 100 87.5 50.0 75.0
GraphGen (Goyal et al., 2020) 0.0105 0.0000 0.0000 0.0153 0.0122 33.2 95.0 100 100 95.0

Ours (one-shot) 0.0004 0.0000 0.0000 0.0080 0.0055 2.1 82.5 100 100 82.5
Ours 0.0001 0.0000 0.0000 0.0117 0.0047 4.0 100 100 100 100

Table 1: Sample quality on synthetic graphs.

Proteins (nmax = 500, navg = 258) Point Clouds (nmax = 5037, navg = 1332)

Model Deg. ↓ Clus. ↓ Orbit ↓ Spec. ↓ Wavelet ↓ Ratio ↓ Deg. ↓ Clus. ↓ Orbit ↓ Spec. ↓ Wavelet ↓ Ratio ↓
Training set 0.0003 0.0068 0.0032 0.0005 0.0003 1.0 0.0000 0.1768 0.0049 0.0043 0.0024 1.0

GraphRNN (You et al., 2018) 0.004 0.1475 0.5851 0.0152 0.0530 91.3 OOM OOM OOM OOM OOM OOM
GRAN (Liao et al., 2020) 0.0479 0.1234 0.3458 0.0125 0.0341 87.5 0.0201 0.4330 0.2625 0.0051 0.0436 18.8
SPECTRE (Martinkus et al., 2022) 0.0056 0.0843 0.0267 0.0052 0.0118 19.0 OOM OOM OOM OOM OOM OOM
DiGress (Vignac et al., 2023a) 0.0041 0.0489 0.1286 0.0018 0.0065 18.0 OOM OOM OOM OOM OOM OOM
EDGE (Chen et al., 2023b) 0.1863 0.3406 0.6786 0.1075 0.2371 399.1 0.4441 0.3298 1.0730 0.4006 0.6310 143.4
BwR (EDP-GNN) (Diamant et al., 2023) 0.1262 0.4202 0.4939 0.0702 0.1199 245.4 0.4927 0.4690 1.0730 0.2912 0.5916 133.2
BiGG (Dai et al., 2020) 0.0070 0.1150 0.4696 0.0067 0.0222 57.5 0.0994 0.6035 0.3633 0.1589 0.0994 38.8
GraphGen (Goyal et al., 2020) 0.0159 0.1677 0.3789 0.0181 0.0477 83.5 OOT OOT OOT OOT OOT OOT

Ours (one-shot) 0.0015 0.0711 0.0396 0.0026 0.0086 13.3 OOM OOM OOM OOM OOM OOM
Ours 0.0030 0.0309 0.0047 0.0013 0.0030 5.9 0.0139 0.5775 0.0780 0.0055 0.0186 7.0

Table 2: Sample quality on real-world graphs. All models achieve perfect uniqueness and novelty.
Several models fail on the point cloud dataset due to memory limitations (OOM), and GraphGen is
unable to generate the canonical string representations within a reasonable timeframe (OOT).

4 EXPERIMENTS

Our experiments evaluate three main aspects of our model: (1) its ability to generate graphs with
structural properties similar to the training data on common synthetic graph generation datasets (pla-
nar, SBM, tree); (2) its ability to scale to much larger real-world graphs (proteins and point clouds);
(3) extrapolation to out-of-distribution graph sizes. We rely on the standard metrics, datasets and
evaluation procedures introduced by Martinkus et al. (2022). Details on this and the hyperparameters
we used are covered in Appendix I.

Simple Graph Generation. In Table 1 the most critical metric is the percentage of valid, unique,
and novel graphs (V.U.N) in the generated set. Validity for synthetic graphs indicates the adherence
to the defined properties, e.g. planarity or acyclicity. Uniqueness and novelty metrics report the
diversity of the output, serving as an indicator for non-overfitting. Our method demonstrates strong
performance, surpassing our baseline, which operates without iterative expansion, but directly gen-
erates the full graph using the diffusion model (Ours (one-shot)). The exception is the SBM dataset,
where the inherent randomness of the graphs and the absence structure aside from large clusters,
likely affects the results. Nevertheless, our model still attains a satisfactory V.U.N. score. The first

8

Published as a conference paper at ICLR 2024

32 48 64 80 96 112 128 144
Graph Size

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

Va
lid

 &
 U

ni
qu

e

Planar Extrapolation

32 48 64 80 96 112 128 144
Graph Size

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

Va
lid

 &
 U

ni
qu

e

Tree Extrapolation

32 48 64 80 96 112 128 144
Graph Size

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

Va
lid

 &
 U

ni
qu

e

Planar Interpolation

32 48 64 80 96 112 128 144
Graph Size

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

Va
lid

 &
 U

ni
qu

e

Tree Interpolation

GRAN DiGress BiGG Ours (one-shot) Ours

Figure 3: Extrapolation and interpolation to out-of-distribution graph sizes. The shaded area repre-
sents the training size range.

five columns of the table show the maximum mean discrepancy (MMD) between the generated and
test graphs for the degree distribution, clustering coefficient, orbit counts, spectrum, and wavelet
coefficients. We summarize these metrics by the average ratio between the generated and training
MMDs. Although DiGress is the overall best performer with respect to this metric, our method
achieves competitive results and is the best for planar graphs.

The benefits of our approach become clearer with larger, complex real-world graphs. In Table 2 we
show model performance on protein graphs with up to 500 nodes and point cloud graphs with up to
5037 nodes (see Table 6). In both cases, our method outperforms competitors by a large margin in
structural similarity to the test set. Note that several methods are unable to scale to 5037 nodes.

Appendix H offers a runtime comparison, affirming our method’s subquadratic scaling when gener-
ating sparse graphs of increasing size. This section also includes a theoretical analysis of the model’s
complexity. Sample graphs generated by our model can be found in Appendix J.

Extrapolation and Interpolation. We assess our model’s capability to generate graphs with node
counts beyond the training distribution through extrapolation (creating larger graphs) and interpo-
lation (varying sizes within observed ranges). We use a planar and a tree dataset, each compris-
ing 128 training graphs with sizes uniformly sampled from [32, 64] for extrapolation and from
[32, 64] ∪ [128, 160] for interpolation. Our evaluation involves generating graphs with 48 to 144
nodes, producing 32 graphs per size for validation and 40 for testing. We report the validity and
uniqueness rates of generated graphs.

Figure 3 demonstrates that our method is uniquely capable of reliably extrapolating and interpolating
to out-of-distribution graph sizes across both datasets. We note that GRAN, DiGress and Ours (one
shot) fail, in general, to generate larger graphs in contrast to their performance on smaller versions of
the datasets (see Table 1). Therefore, our experiment does not fully determine whether these methods
fail because they cannot interpolate/extrapolate or because they are unable to generate larger graphs.

5 CONCLUSION

In this work, we present the first graph generative method based on iterative local expansion, where
generation is performed by a single model that iteratively expands a single node into the full graph.
We made our method efficient (with sub-quadratic complexity) by introducing the Local PPGN
layer that retains high expressiveness while performing only local computation. We performed tests
on traditional graph generation benchmarks, where our method achieved state-of-the-art results.
Furthermore, to the best of our knowledge, our method is the only one able to generate graphs
outside of the training distribution (with different numbers of nodes) while retaining the main graph
characteristics across different datasets.

9

Published as a conference paper at ICLR 2024

REFERENCES

Andrea Agostinelli, Timo I Denk, Zalán Borsos, Jesse Engel, Mauro Verzetti, Antoine Caillon,
Qingqing Huang, Aren Jansen, Adam Roberts, Marco Tagliasacchi, et al. Musiclm: Generating
music from text. arXiv preprint arXiv:2301.11325, 2023.

Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Rev. Mod.
Phys., 74:47–97, 01 2002.

Brian D.O. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982. ISSN 0304-4149.

Maximilian Augustin, Valentyn Boreiko, Francesco Croce, and Matthias Hein. Diffusion visual
counterfactual explanations. Advances in Neural Information Processing Systems, 35:364–377,
2022.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces. CoRR, 2107.03006, 2021.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

Mihai Babiac, Karolis Martinkus, and Roger Wattenhofer. Discovering graph generation algorithms.
arXiv preprint arXiv:2304.12895, 2023.

David Bieber, Charles Sutton, H. Larochelle, and Daniel Tarlow. Learning to execute programs with
instruction pointer attention graph neural networks. ArXiv, 2010.12621, 2020.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment,
2008(10):P10008, oct 2008.

Zalán Borsos, Raphaël Marinier, Damien Vincent, Eugene Kharitonov, Olivier Pietquin, Matt Shar-
ifi, Dominik Roblek, Olivier Teboul, David Grangier, Marco Tagliasacchi, et al. Audiolm: a
language modeling approach to audio generation. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 2023.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs,
2022.

Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog bits: Generating discrete data using
diffusion models with self-conditioning, 2023a.

Xiaohui Chen, Jiaxing He, Xuhong Han, and Liping Liu. Efficient and degree-guided graph gener-
ation via discrete diffusion modeling. ArXiv, 2305.04111, 2023b.

E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In Proceedings
of the 1969 24th National Conference, ACM ’69, pp. 157–172, New York, NY, USA, 1969.
Association for Computing Machinery. ISBN 9781450374934.

Hanjun Dai, Azade Nazi, Yujia Li, Bo Dai, and Dale Schuurmans. Scalable deep generative mod-
eling for sparse graphs. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th In-
ternational Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pp. 2302–2312. PMLR, 13–18 Jul 2020.

Alex O. Davies, Nirav S. Ajmeri, and Telmo M. Silva Filho. Size matters: Large graph generation
with higgs, 2023.

Nathaniel Diamant, Alex M. Tseng, Kangway V. Chuang, Tommaso Biancalani, and Gabriele Scalia.
Improving graph generation by restricting graph bandwidth, 2023.

Paul Dobson and Andrew Doig. Distinguishing enzyme structures from non-enzymes without align-
ments. Journal of molecular biology, 330:771–83, 08 2003.

10

Published as a conference paper at ICLR 2024

Chenpeng Du, Yiwei Guo, Feiyu Shen, Zhijun Liu, Zheng Liang, Xie Chen, Shuai Wang, Hui
Zhang, and Kai Yu. Unicats: A unified context-aware text-to-speech framework with contextual
vq-diffusion and vocoding. arXiv preprint arXiv:2306.07547, 2023.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs,
2021.

Paul Erdos, Alfréd Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad.
Sci, 5(1):17–60, 1960.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Yihong Eric Zhao, Jiliang Tang, and Dawei Yin. Graph
neural networks for social recommendation. The World Wide Web Conference, 2019.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric,
2019.

Jeremia Geiger, Karolis Martinkus, Oliver Richter, and Roger Wattenhofer. Automating rigid
origami design. In Proceedings of the Thirty-Second International Joint Conference on Artifi-
cial Intelligence, IJCAI-23, pp. 5815–5823, 8 2023. AI and Arts.

Nikhil Goyal, Harsh Vardhan Jain, and Sayan Ranu. Graphgen: A scalable approach to domain-
agnostic labeled graph generation. In Proceedings of The Web Conference 2020. ACM, 2020.

Aditya Grover, Aaron Zweig, and Stefano Ermon. Graphite: Iterative generative modeling of graphs,
2019.

Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10696–10706, 2022.

Yinglong Guo, Dongmian Zou, and Gilad Lerman. An unpooling layer for graph generation, 2023.

Kilian Konstantin Haefeli, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Diffu-
sion models for graphs benefit from discrete state spaces, 2023.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics,
and function using networkx. In Gaël Varoquaux, Travis Vaught, and Jarrod Millman (eds.),
Proceedings of the 7th Python in Science Conference, pp. 11 – 15, Pasadena, CA USA, 2008.

Gecia Bravo Hermsdorff and Lee M. Gunderson. A unifying framework for spectrum-preserving
graph sparsification and coarsening. ArXiv, 1902.09702, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020.

Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First
steps. Social Networks, 5(2):109–137, 1983. ISSN 0378-8733.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. Advances in Neural Information
Processing Systems, 34:12454–12465, 2021.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks, 2020.

John Ingraham, Max Baranov, Zak Costello, Vincent Frappier, Ahmed Ismail, Shan Tie, Wujie
Wang, Vincent Xue, Fritz Obermeyer, Andrew Beam, and Gevorg Grigoryan. Illuminating protein
space with a programmable generative model. bioRxiv, 2022.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 2323–2332. PMLR, 10–15 Jul 2018.

Wengong Jin, Regina Barzilay, and T. Jaakkola. Hierarchical generation of molecular graphs using
structural motifs. In International Conference on Machine Learning, 2020a.

11

Published as a conference paper at ICLR 2024

Yu Jin, Andreas Loukas, and Joseph JaJa. Graph coarsening with preserved spectral properties. In
Silvia Chiappa and Roberto Calandra (eds.), Proceedings of the Twenty Third International Con-
ference on Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine Learning
Research, pp. 4452–4462. PMLR, 26–28 Aug 2020b.

Jaehyeong Jo, Dongki Kim, and Sung Ju Hwang. Graph generation with destination-predicting
diffusion mixture. 2023.

Mahdi Karami. Higen: Hierarchical graph generative networks, 2023.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models, 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Lingkai Kong, Jiaming Cui, Haotian Sun, Yuchen Zhuang, B. Aditya Prakash, and Chao Zhang.
Autoregressive diffusion model for graph generation, 2023.

Manoj Kumar, Anurag Sharma, and Surinder Kumar. A unified framework for optimization-based
graph coarsening. J. Mach. Learn. Res., 24:118:1–118:50, 2022.

Manoj Kumar, Anurag Sharma, Shashwat Saxena, and Surinder Kumar. Featured graph coarsening
with similarity guarantees. In International Conference on Machine Learning, 2023.

Maksim Kuznetsov and Daniil Polykovskiy. Molgrow: A graph normalizing flow for hierarchical
molecular generation, 2021.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Charlie Nash, William L. Hamilton, David
Duvenaud, Raquel Urtasun, and Richard S. Zemel. Efficient graph generation with graph recurrent
attention networks, 2020.

Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and Stefanie
Jegelka. Sign and basis invariant networks for spectral graph representation learning, 2022.

Stratis Limnios, Praveen Selvaraj, Mihai Cucuringu, Carsten Maple, Gesine Reinert, and Andrew
Elliott. Sagess: Sampling graph denoising diffusion model for scalable graph generation, 2023.

Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing flows,
2019.

Andreas Loukas. Graph reduction with spectral and cut guarantees. J. Mach. Learn. Res., 20:
116:1–116:42, 2018.

Andreas Loukas and Pierre Vandergheynst. Spectrally approximating large graphs with smaller
graphs. ArXiv, 1802.07510, 2018.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks, 2020.

Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. Spectre: Spectral
conditioning helps to overcome the expressivity limits of one-shot graph generators, 2022.

Karolis Martinkus, Jan Ludwiczak, Kyunghyun Cho, Weishao Lian, Julien Lafrance-Vanasse, Isidro
Hotzel, Arvind Rajpal, Y. Wu, Richard Bonneau, Vladimir Gligorijević, and Andreas Loukas.
Abdiffuser: Full-atom generation of in-vitro functioning antibodies. ArXiv, 2308.05027, 2023.

Marion Neumann, Plinio Moreno, Laura Antanas, R. Garnett, and Kristian Kersting. Graph kernels
for object category prediction in task-dependent robot grasping. In Mining and Learning with
Graphs, 2013.

Anh Tuan Nguyen, Tung Thanh Nguyen, Hoan Anh Nguyen, Ahmed Tamrawi, Hung Viet Nguyen,
Jafar M. Al-Kofahi, and Tien Nhut Nguyen. Graph-based pattern-oriented, context-sensitive
source code completion. 2012 34th International Conference on Software Engineering (ICSE),
pp. 69–79, 2012.

12

Published as a conference paper at ICLR 2024

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Per-
mutation invariant graph generation via score-based generative modeling, 2020.

Hamed Shirzad, Hossein Hajimirsadeghi, Amir H. Abdi, and Greg Mori. Td-gen: Graph generation
with tree decomposition, 2022.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders, 2018.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations, 2021.

Zhicong Tang, Shuyang Gu, Jianmin Bao, Dong Chen, and Fang Wen. Improved vector quantized
diffusion models. arXiv preprint arXiv:2205.16007, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
Frossard. Digress: Discrete denoising diffusion for graph generation, 2023a.

Clément Vignac, Nagham Osman, Laura Toni, and Pascal Frossard. Midi: Mixed graph and 3d
denoising diffusion for molecule generation. In ECML/PKDD, 2023b.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural Compu-
tation, 23(7):1661–1674, 2011.

Nisheeth K. Vishnoi. Lx = b. Foundations and Trends® in Theoretical Computer Science, 8(1–2):
1–141, 2013. ISSN 1551-305X.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks?, 2019.

Qi Yan, Zhengyang Liang, Yang Song, Renjie Liao, and Lele Wang. Swingnn: Rethinking permu-
tation invariance in diffusion models for graph generation, 2023.

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. Graphrnn: Generating
realistic graphs with deep auto-regressive models, 2018.

13

Published as a conference paper at ICLR 2024

A INVERT COARSENING BY EXPANSION AND REFINEMENT

In this Appendix, we show that each coarsen graph (according to Definition 3) can be inverted with
a specific expansion and refinement step.

Let G = (V, E) be an arbitrary graph and P a connected subgraph that induces partitioning of its
node set. Furthermore, let Gc = (Vc, Ec) = Ḡ(G,P) denote the coarsened graph according to
Definition 3. In the following, we construct an expansion and refinement vector that recovers the
original graph G from its coarsening Gc.

We start with the expansion by setting the vector v ∈ N|P| to

v[p] =
∣∣∣V(p)

∣∣∣ for all V(p) ∈ P. (4)

Let Ge = (Ve, Ee) = G̃(Gc,v) denote the expanded graph as per Definition 1 (or Definition 4). It is
important to note that the node sets of G and Ge possess the same cardinality. Thus, we can establish
a bijection φ : V → Ve between them, where the i-th node in the p-th partition of P is mapped to
the corresponding node v(pi) ∈ Ve within the expanded graph. This construction leads to the edge
set of Ge being a superset of the one of the original graph G. To see why, consider an arbitrary edge
e{i,j} ∈ E . If both v(i) and v(j) belong to the same partition V(p) ∈ P , they are contracted to a
common node v(p) in Gc. When expanding v(p) to a set of

∣∣V(p)
∣∣ nodes in Ge, by construction of

the intercluster edge set in Definition 1 (resp. Definition 4), all
∣∣V(p)

∣∣ nodes are connected in Ge.
On the other hand, if v(i) and v(j) lie in different partitions V(p) and V(q), respectively, an edge in
the original graph implies that the partitions representing the nodes v(p) ∈ Vc and v(q) ∈ Vc are
connected in Gc. Consequently, when expanding v(p) and v(q), all

∣∣V(p)
∣∣ nodes associated with v(p)

are connected to all
∣∣V(q)

∣∣ nodes associated with v(q) in Ge. Specifically, v(φ(i)) and v(φ(j)) are
connected in Ge.

Therefore, for the refinement step, we define the vector e ∈ N|Ee| as follows: given an arbitrary
ordering of the edges in Ee, let e{i,j} ∈ Ee denote the i-th edge in this ordering, we set

e[i] =

{
1 if e{φ

−1(i),φ−1(j)} ∈ E
0 otherwise.

(5)

As per Definition 2, the refined graph is then given by Gr = Ḡ(Ge, e) = Ḡ(G̃(Gc,v), e), which is
isomorphic to the original graph G.

14

Published as a conference paper at ICLR 2024

B PERTURBED GRAPH EXPANSION

The following definition formalizes the concept of a randomized graph expansion, which is a gen-
eralization of the deterministic expansion introduced in Definition 1. A visual representation of this
concept is provided in Figure 4.

Definition 4 (Perturbed Graph Expansion) Given a graph G = (V, E), a cluster size vector v ∈
Nn, a radius r ∈ N, and a probability 0 ≤ p ≤ 1, the perturbed expansion G̃ is constructed as in
Definition 1, and additionally for all distinct nodes v(p), v(q) ∈ Ṽ whose distance in G is at most r,
we add each edge e{pi,qj} independently to Ẽ with probability p.

2 2 1

1

1

Perturbed Expansion

Figure 4: Depiction of a perturbed expansion. The graph Gl is expanded into G̃l−1 utilizing the
cluster size vector aligned to the node features. Deterministic expansion components are represented
by linear black edges, whereas curved red edges showcase supplemental edges implemented for a
radius of r = 2 and a probability of p = 1. With p < 1, a subset of these edges would be randomly
excluded.

15

Published as a conference paper at ICLR 2024

C SPECTRUM-PRESERVING COARSENING

The work of Loukas (2018) presents a multi-level graph coarsening algorithm designed to reduce the
size of a graph while ensuring that the Laplacian spectrum of the coarsened graph closely approxi-
mates the spectrum of the original graph. Since the Laplacian spectrum captures crucial structural
properties of a graph, this implies that fundamental structural properties of the original graph, such
as (normalized) cuts, are preserved by the coarsening. The proposed reduction scheme aligns well
with our framework, as it defines graph coarsening in a similar manner to Definition 3, and the
selection of subgraphs for contraction involves computing a cost for each contraction set.

Let us now summarize the key aspects of the proposed framework and illustrate how we adapt
it to our setting. We consider a graph G = (V, E) with n nodes and a Laplacian L. Let P =
{V(1), . . . ,V(n)} be a partition of the node set V into non-overlapping, connected sets, and Gc =
(Vc, Ec) = Ḡ(G,P) the coarsened graph according to Definition 3 with nc nodes.

Comparing the Laplacian matrices of G and Gc requires us to relate signals x ∈ Rn on G to signals
xc ∈ Rnc on Gc. For this we associate a projection matrix P ∈ Rnc×n and it’s corresponding
Moore-Penrose pseudoinverse P+ ∈ Rn×nc with P , defined as

P [p, i] =

{
1

|V(p)| if v(i) ∈ V(p)

0 otherwise
, P+[i, p] =

{
1 if v(i) ∈ V(p)

0 otherwise
.

For a graph Laplacian L and this choice of P , Loukas (2018) shows that Lc = P∓LP+ 3 is the
Laplacian of the coarsened graph Gc with weight matrix

Wc[p, q] =
∑

v(i)∈V(p),v(j)∈V(q)

W [i, j]. (6)

To measure the similarity between the Laplacians L and Lc, Loukas (2018) introduces the following
fairly general notion of a restricted spectral approximation.

Definition 5 (Restricted Spectral Approximation) Two matrices L ∈ Rn×n and Lc =
P∓LP+ ∈ Rnc×nc are (V, ϵ)-similar, with V being a k ≤ nc ≤ n-dimensional subspace of
Rn, if there exists an ϵ ≥ 0 such that∥∥x− P+Px

∥∥
L
≤ ϵ ∥x∥L ∀x ∈ V,

where ∥x∥L =
√
xTLx denotes a L-induced semi-norm.

When V is chosen as the span of the k eigenvectors associated with the k smallest non-zero eigen-
values of L, Uk = span(u1, . . . ,uk) = span(Uk), then if L and Lc are (Uk, ϵ)-similar, Loukas
(2018) shows that the k smallest non-zero eigenvalues of Lc are close to the ones of L, and the lifted
eigenvectors P⊤ui are aligned with the original eigenvectors ui.

C.1 LOCAL VARIATION COARSENING

Loukas (2018) further proposes a multi-level graph coarsening algorithm to construct a coarsening
sequence G = G0, G1, . . . , with each coarse graph Gl possessing a Laplacian Ll with high spectral
similarity to the original Laplacian L associated with G, according to Definition 5. While the
procedure in the original work is quite general and allows for any choice of V, let us commence
by considering the case where V is chosen as the span of the k eigenvectors associated with the
k smallest non-zero eigenvalues of L. In this case, for each coarsening step, the algorithm first
computes a local variation cost for each contraction set and then contracts disjoint sets with small
cost. The local variation cost of a contraction set C ⊆ V is defined as

clv(G, C) =

∥∥Π⊥
C Al−1

∥∥2
LC

|C| − 1
. (7)

3P∓ denotes the transpose of the Moore-Penrose pseudoinverse of P .

16

Published as a conference paper at ICLR 2024

Here, Π⊥
C = I − P+

C PC is the complementary projection matrix when contracting solely the nodes
in C. LC is the Laplacian of Gl−1 with modified weights WC , given by

WC [i, j] =


W [i, j] if v(i), v(j) ∈ C
2 ·W [i, j] if v(i) ∈ C, v(j) /∈ C
0 otherwise.

Al−1 is a matrix allowing us to evaluate the cost only on the selected Laplacian subspace Uk. It is
defined recursively as

A0 = UkΛ
+1/2
k , Al = Bl(B

⊤
l LlBl)

+1/2,

with Bl = PlPl−1 . . .P1A0 being the first-level matrix A0 left-multiplied by the projection matri-
ces Pi of all coarsening steps up to level l.

With this construction, it holds that the Laplacian of the resulting coarsened graph Gl is (Uk, ϵ)-
similar to the Laplacian of G with ϵ ≤

∏l
i=1(1 + σi)− 1, where σi bounds the error introduced by

the i-th coarsening step as

σ2
i ≤

∑
C∈Pi

∥∥Π⊥
C Al−1

∥∥2
LC

,

with Pi being the node partitioning used in the i-th coarsening step.

C.2 ADAPTING LOCAL VARIATION COARSENING TO OUR SETTING

A noteworthy distinction between our setting and the one investigated by Loukas (2018) lies in the
usage of unweighted graphs. Therefore, we assign a weight of 1 to each edge in the original graph
G. For a coarsening sequence G = G0, G1, . . . , we then maintain a sequence of weight matrices
according to Equation 6. With this, all the quantities required to calculate the local variation cost are
readily available and it can be employed to instantiate the cost function c in Algorithm 1.

An important point to mention is that while the method proposed by Loukas (2018) operates deter-
ministically, our approach introduces an element of randomness.

17

Published as a conference paper at ICLR 2024

D COARSENING SEQUENCE SAMPLING

This section describes the methodology used to sample a coarsening sequence π ∈ ΠF (G) for
a given graph G. Importantly, this implicitly defines the coarsening sequence probability density
function q(π | G).

Our approach for sampling a coarsening sequence π ∈ ΠF (G) from q(π | G) is presented in Algo-
rithm 1. At each coarsening step l, we assess the cost of all contraction sets F(Gl), where a lower
cost indicates a preference for contraction. This cost computation is based on the current graph
Gl and may incorporate information from previous coarsening steps. While there are no inherent
restrictions on the cost function, it should be efficiently computable for practical purposes. Sub-
sequently, we randomly sample a reduction fraction. Then, employing a greedy and randomized
strategy, we select a cost-minimizing partition of F(Gl) that achieves the desired reduction fraction
upon contracting the graph as per Definition 3. This partitioning procedure is detailed in Algo-
rithm 2. The resulting contraction sets are used to construct the coarsened graph Gl−1 in accordance
with Definition 3.

Note that our procedures are designed with a heuristic approach that allows alternative choices.
Various components of the procedure remain parametric, such as the contraction family F , the cost
function c, the range of reduction fractions [ρmin, ρmax], and the randomization parameter λ.

Practical Considerations Depending on the structure of the graph, it may not always be feasible
to achieve a non-overlapping partitioning of the node set that satisfies the desired reduction fraction.
Our empirical investigations indicate that such circumstances rarely arise in the examined datasets,
provided that ρmax is not unreasonably large. In the event that such a situation does occur, we
choose to proceed with the partitioning achieved thus far. Furthermore, to mitigate an imbalance of
numerous small graphs in the coarsening sequence, we deterministically set the reduction fraction
ρ to ρmax when the current graph contains fewer than 16 nodes. It should be noted that during
the training phase, we sample a coarsening sequence from the dataset graph but only consider the
graph at a random level within the sequence. Consequently, in terms of practical implementation,
Algorithm 1 does not return the coarsening sequence π, but instead provides a coarsened graph along
with the node and edge features necessary for model training. To optimize computational efficiency,
upon computation of the coarsening sequence, we cache its elements, select a level at random, and
return the corresponding graph and features, subsequently removing this element from the cache.
Recomputation of the coarsening sequence for a specific graph is necessitated only when the cache
is exhausted.

Hyperparameters In all the experiments conducted described in Section 4, we use the Local
Variation Cost 7 (presented in Appendix C) with a preserving eigenspace size of k = 8 as the cost
function c. The range of reduction fractions is set as [ρmin, ρmax] = [0.1, 0.3]. The randomization
parameter λ is assigned a value of 0.3. Moreover, edge contractions are used for all graphs, i.e.,
F(G) = E , for a graph G = (V, E).

D.1 COST FUNCTION ABLATION STUDY

We assess the influence of the cost function c on the generative performance of our model. In this
regard, we compare the Local Variation Cost 7 with its specified parameters against a random cost
function, where each contraction set is assigned a uniformly sampled random cost from the range
[0, 1]. The randomization parameter λ is set to 0 for the random cost function. Otherwise, the
prescribed parameters are used for both cost functions. Following this comparison, we train our
model on the planar, tree, and protein datasets described in Section 4. We report the average ratio
between the generated and training set MMD values. For the synthetic datasets, we additionally
report the fraction of valid, unique, and novel graphs among the generated graphs. The results
of the experiments are shown in Table 3. A key observation from the results is that the Local
Variation Cost demonstrates a slightly superior performance over the random cost function across all
evaluated datasets. This suggests that while spectrum-preserving coarsening contributes positively
to the model’s performance, it is not an indispensable factor and alternative cost functions could
potentially be suitable.

18

Published as a conference paper at ICLR 2024

Algorithm 1 Random Coarsening Sequence Sampling: This algorithm demonstrates the pro-
cess of Random Coarsening Sequence Sampling, detailing how a coarsening sequence is sampled
for a given graph. Starting with the initial graph, it iteratively computes the costs of all possible
contraction sets, samples a reduction fraction, and uses a greedy randomized strategy to find a cost-
minimizing partition of the contraction sets. Then a coarsening of the preceding graph is added to
the coarsening sequence, according to Definition 3, and the process repeats until the graph is reduced
to a single node.

Parameters: contraction family F , cost function c, reduction fraction range [ρmin, ρmax]
Input: graph G
Output: coarsening sequence π = (G0, . . . , GL) ∈ ΠF (G)

1: function RNDREDSEQ(G)
2: G0 = (V0, E0)← G
3: π ← (G0)
4: l← 0
5: while |Vl−1| > 1 do
6: l← l + 1
7: ρ ∼ Uniform([ρmin, ρmax]) ▷ random reduction fraction
8: f ← c(·, G0, (P1, . . . ,Pl−1)) ▷ cost function depending on previous contractions
9: m← ⌈ρ · |Vl−1|⌉ ▷ reduction amount

10: Pl ← RNDGREEDYMINCOSTPART(F(Gl−1), f,m)

11: Vl ← {v(p)l | V(p)
l−1 ∈ Pl} ▷ new node set

12: El ← {e{p,q}l | e{i,j}l−1 ∈ El−1, v
(i)
l−1 ∈ V

(p)
l , v

(j)
l−1 ∈ V

(q)
l } ▷ new edge set

13: Gl ← (Vl, El)
14: end while
15: return (G0, . . . , Gl) ▷ Return coarsening sequence
16: end function

Algorithm 2 Randomized Greedy Min-Cost Partitioning: This algorithm represents a Random-
ized Greedy Min-Cost Partitioning, where the cheapest contraction set is selected iteratively from
the candidate sets. The selected set, with probability 1 − λ, is discarded and the process contin-
ues with the next cheapest set. Conversely, with probability λ, the set is added to the partitioning
and all intersecting sets are removed from the remaining candidates. Termination occurs when the
partitioning contains at least m sets or there are no remaining candidates.

Parameters: randomization parameter λ ∈ [0, 1]
Input: candidate contraction sets C = {V(1), . . . ,V(n)}, reduction amount m
Output: partitioning P = {V(1), . . . ,V(m)} ⊆ C, with V(i) ∩ V(j) = ∅ for i ̸= j and

∑
V∈P |V| −

|P| ≥ m
1: function RNDGREEDYMINCOSTPART(C, f,m)
2: P ← ∅
3: while

∑
V∈P |V| − |P| < m and C ̸= ∅ do

4: repeat
5: V∗ ← argminV∈C f(V)
6: C ← C \ {V∗}
7: b ∼ Bernoulli(λ)
8: until b = 0 or C = ∅
9: P ← P ∪ {V∗}

10: C ← {V ∈ C | V ∩ V∗ = ∅}
11: end while
12: return P
13: end function

19

Published as a conference paper at ICLR 2024

Planar graphs Tree graphs Proteins

Cost Ratio ↓ V.U.N. ↑ Ratio ↓ V.U.N. ↑ Ratio ↓
Local Variation 2.1 95.0 4.0 100 5.9
Random 3.9 85.0 6.2 100 8.2

Table 3: Ablation study of the cost function c.

20

Published as a conference paper at ICLR 2024

E DENOISING DIFFUSION

Denoising diffusion models represent a class of generative models initially proposed for image gen-
eration (Sohl-Dickstein et al., 2015; Ho et al., 2020) and subsequently adapted for various data
modalities, such as audio (Du et al., 2023; Borsos et al., 2023; Agostinelli et al., 2023), text (Austin
et al., 2021; Hoogeboom et al., 2021), discretized images (Gu et al., 2022; Tang et al., 2022; Au-
gustin et al., 2022; Hoogeboom et al., 2021), and graphs (Vignac et al., 2023a; Haefeli et al., 2023),
exhibiting exceptional performance across domains. These models are founded on the fundamental
concept of learning to invert an iterative stochastic data degradation process. Consequently, denois-
ing diffusion models comprise two main components: (1) a predefined fixed forward process, also
known as the noising process {xt}Tt=0, which progressively transforms samples drawn from the data
generating distribution x0 = x ∼ p(x) into noisy samples xt ∼ p(xt), with the level of degradation
noise increasing as t progresses; and (2) a trainable backward process, referred to as the denoising
process, which aims to reverse the effects of the noising process. The construction of the forward
process ensures that the limit distribution p(xT) is both known and simple, for example, a Gaus-
sian, thereby allowing for easy sampling. During inference, pure noise samples are drawn from this
distribution and subsequently transformed by the denoising process to obtain samples following the
data-generating distribution p(x).

E.1 GENERATIVE MODELING WITH STOCHASTIC DIFFERENTIAL EQUATIONS

Song et al. (2021) introduce a continuous-time formulation of the diffusion model, in which forward
and backward processes are described by stochastic differential equations. In this summary, we
outline the general framework along with specific instantiations of its components and improvements
proposed by Karras et al. (2022). The same framework setup is adopted in the work of Yan et al.
(2023).

The fundamental concept involves modeling a continuous-time indexed diffusion process {xt}Tt=0
as the solution to an Itô stochastic differential equation of the form

dxt = f(xt, t)dt+ g(t)dw, (8)

where f , and g are the drift and diffusion coefficients, respectively, and w is a standard Wiener
process. Different choices of f and g lead to distinct diffusion processes with varying dynamics. We
adopt the variance exploding setting, where f(xt, t) = 0 and g(t) = dσ2(t)

dt , for a time-dependent
noise scale σ(t). Consistent with Karras et al. (2022), we select σ(t) to be linear in t. This leads to
the following forward process:

dxt =
√
2tdw. (9)

When integrating from time 0 to t, the corresponding transition distribution is given by:

p(xt | x0) = N(xt;x0, t
2I). (10)

The stochastic trajectory of a sample behaving according to 8, but with reversed time direction, can
be described by a stochastic differential equation too (Anderson, 1982):

dxt = [f(xt, t)− g(t)2∇xt
log p(xt)]dt+ g(t)dw̄, (11)

With the prescribed instantiations of f and g, the backward process becomes

dxt = −2t∇xt
log p(xt)dt+

√
2tdw̄. (12)

Here, w̄ denotes a Wiener process with reversed time direction, i.e., from T to 0. We get a generative
model, by simulating this process from time T to 0, to transform a sample from the prior distribution
p(xT) into one that follows the data distribution p(x0).

Denoising Score Matching Simulating the backward process necessitates evaluating the gradient
of the log-density ∇xt log p(xt). As this gradient is generally intractable, we train a model to
approximate it using denoising score matching. This training principle is based on the insight that
conditioned on x0, the gradient of log p(xt | x0) with respect to xt can be expressed as:

∇xt
log p(xt | x0) =

xt − x0

t2
. (13)

21

Published as a conference paper at ICLR 2024

Vincent (2011) proof that for fixed t the minimizer Sθ⋆(x) of

E
p(x0)

E
p(xt|x0)

[∥∥∥∥Sθ(xt)−
xt − x0

t2

∥∥∥∥2
F

]
(14)

satisfies Sθ⋆(x) = ∇xt
log p(xt) almost surely.

Instead of approximating the gradient directly, Karras et al. (2022) train a denoising model Dθ(xt, t)
to reconstruct x0 from xt. The joint training objective for all t is given by:

E
t

[
λ(t) E

p(x0)
E

p(xt|x0)

[
∥Dθ(xt, t)− x0∥2F

]]
. (15)

Here, λ : [0, T] → R+ is a time-dependent weighting function, and t is sampled such that ln(t) ∼
N(Pmean, Pstd) (details in Table 4). The gradient can then be recovered from the optimal denoising
model D∗

θ as∇xt log p(xt) = D∗
θ(xt, t)

Preconditioning Instead of representing Dθ directly as a neural network, Karras et al. (2022) pro-
pose preconditioning a network Fθ with a time-dependent skip connection to improve the training
dynamics. Furthermore, they aim to achieve uniformity in the variance of the input and output of
the network by employing appropriate scaling:

Dθ(xt, t) = cskip(t)xt + cout(t)Fθ(cin(t)xt, t).

Weighting functions are summarized in Table 4.

Self-conditioning Sampling from the diffusion model is an iterative procedure, in which the de-
noising model is iteratively queried to construct samples xt′ from xt, for t′ < t. Chen et al. (2023a)
propose to additionally condition Dθ on previous estimates x̂t′ for improved sample quality. We
observed that this improves the generative performance of the model and thus adopt this technique
in our work. Consequently, we augment the denoising model with an additional input as

Dθ(xt, x̂, t) = cskip(t)xt + cout(t)Fθ(cin(t)xt, cself(t)x̂, t).

During training, given a noisy sample xt, we then set x̂ = 0 with 50% probability, and x̂ =
Dθ(xt,0, t) otherwise. Note that in the latter case, gradients are not propagated through x̂. During
sampling, we set x̂ to a previous estimate.

Sampling Once the denoising model is trained, we can compute the gradient of the log-density and
simulate the backward process, starting from a sample from the prior distribution p(xT). Stochastic
sampling based on Heun’s 2nd order method was proposed by Karras et al. (2022). The procedure,
combined with self-conditioning, is summarized in Algorithm 3. Notably, this algorithm is identical
to the one presented in Yan et al. (2023).

Parametrizing Graph Expansion We use this framework to model the conditional distribution
pθ(xl | xl−1) over the node and edge features required to refine and subsequently expand the
graph G̃l. For this, continuous representations of the node and edge features are required. For our
experiments, where both node and edge features are binary, we represent 0 values as−1 and 1 values
as 1. Let (vl)0 and (el)0 denote the corresponding continuous representations of the node and edge
features. We instantiate the diffusion framework jointly over these features. It should be noted that
as the diffusion process adds noise independently to each dimension, this is equivalent to organizing
the node and edge features in a single vector x = [v, e] ∈ [−1, 1]ñl+m̃l that is then used in the
diffusion framework.

We further instantiate the denoising model Dθ, specifically its preconditioned version, with a graph
neural network GNNθ (such as our proposed Local PPGN model) that operates on the graph G̃l.
This can be expressed as:

Fθ(xt, x̂, t) = GNNθ([(vl)t, (el)t], [v̂l, êl], t, G̃l).

Here, (vl)t and (el)t denote noisy samples of the node and edge features, respectively, and x̂ =
[v̂l, êl] represents a previous estimate of the node and edge features that is concatenated to the input
of the GNN.

22

Published as a conference paper at ICLR 2024

Algorithm 3 SDE Sampling: This describes the sampling procedure by simulating the backward
process using a given denoising model.

Parameters: number of steps N , time schedule {ti}Ni=0, noise addition schedule {γi}N−1
i=1

Input: denoising model Dθ

Output: sample x = [vl, el]
1: function SDESAMPLE(Dθ)
2: x ∼ N(0, σ2

maxI) ▷ Sample from prior
3: x̂← 0
4: for i = 1, . . . , N do
5: ϵ ∼ N(0, S2

noiseI)
6: t̃← ti + γiti

7: x̃← x+

√
t̃i
2 − t2i ϵ ▷ Add noise

8: x̂← Dθ(x̃, x̂, t̃) ▷ Denoise
9: d← (x̃− x̂)/t̃ ▷ Compute gradient

10: x← x̃+ (ti+1 − t̃)d ▷ Euler step from t̃ to ti+1

11: if ti+1 > 0 then
12: x̂← Dθ(x, x̂, ti+1) ▷ Denoise
13: d′ ← (x− x̂)/ti+1 ▷ Compute gradient
14: x← x̃+ (ti+1 − t̃) · 12 (d+ d′) ▷ Second order correction
15: end if
16: end for
17: return x
18: end function

For a given expansion G̃l of a reduced graph with target node and edge encodings vl and el, during
training, we sample a time-step t, construct a noisy sample xt = x0 + t · ϵ, with ϵ ∼ N(0, I),
and optimize the model parameters by minimizing the l2 loss between the prediction and the target
x0 = [vl, el]. Overall, training involves sampling a coarsening sequence out of which a random
level l is selected. Subsequently, a noisy sample is constructed and the model is trained to denoise
it. The objective in 15 is referred to as denoising score matching. It is known to be equivalent to a
reweighed variational bound (Ho et al., 2020). As such, our training procedure can be interpreted
as maximizing a weighted lower bound of random terms in Equation 3. Algorithm 4 summarizes
the loss computation for given node and edge features vl and el and denoising model Dθ that is
assumed to be instantiated with a graph neural network GNNθ operating on underlying graph G̃l.

Constants

σdata = 0.5 ρ = 7
σmin = 0.002 σmax = 80
Pmean = −1.2 Pstd = 1.2
Stmin = 0.05 Stmax50
Snoise = 1.003 Schurn = 40

Weightings cin(t) =
1

σ2
data+t2

cout(t) =
t·σdata√
σ2

data+t2

cskip(t) =
σ2

data
σ2

data+t2
cself(t) = σdata

Schedules ti = (σmax
1
ρ + i

N−1 (σmin
1
ρ − σmax

1
ρ))ρ γi = 1Stmin≤ti≤Stmax ·min(Schurn

N ,
√
2− 1)

Table 4: Summary of hyperparameters for the diffusion process.

23

Published as a conference paper at ICLR 2024

Algorithm 4 Diffusion loss: This describes the loss computation for given node and edge features
vl and el.
Input: node and edge features vl and el, denoising model Dθ

Output: trained model parameters θ
1: function DIFFUSIONLOSS(vl, el, Dθ)
2: (vl)0 ← ENCODE(vl) ▷ Encode node features
3: (el)0 ← ENCODE(el) ▷ Encode edge features
4: ln(t) ∼ N(Pmean, Pstd) ▷ Sample noise level
5: if b = 1, where b ∼ Bernoulli(0.5) then
6: (el)t ← (el)0 + t · ϵ, with ϵ ∼ N(0, I)
7: (vl)t ← (vl)0 + t · ϵ, with ϵ ∼ N(0, I)
8: v̂, ê← Dθ([(vl)t, (el)t], [0,0], t) ▷ Get self-conditioning estimates
9: clip gradients of v̂ and ê

10: else
11: v̂, ê← 0,0
12: end if
13: (el)t ← (el)0 + t · ϵ, with ϵ ∼ N(0, I)
14: (vl)t ← (vl)0 + t · ϵ, with ϵ ∼ N(0, I)
15: v̂, ê← Dθ([(vl)t, (el)t], [v̂, ê], t) ▷ Denoise
16: return ∥v̂ − (vl)0∥2F + ∥ê− (el)0∥2F
17: end function

24

Published as a conference paper at ICLR 2024

F GRAPH NEURAL NETWORKS

A key element of our generative methodology is the neural architecture, employed to parameterize
the denoising model. This architecture necessitates numerous desirable characteristics: it should be
expressive enough to adequately model the complex joint distribution of node and edge features,
maintain invariance to the permutation of nodes, and sustain a low computational expense. The
importance of this final attribute is underscored by our iterative expansion strategy, which frees us
from the need to model a distribution over all conceivable O(n2) node pairings. As a result, our
objective is to identify a model that scales at a rate less than quadratic with respect to the total
number of nodes.

Despite the rich literature on graph neural networks, addressing all these requirements simultane-
ously presents a considerable challenge. Message passing GNNs, although linear in complexity with
respect to the number of edges, are shown to be no more expressive than the 1-Weisfeiler-Lehman
test (Xu et al., 2019). Additionally, handling fully connected graphs effectively is a hurdle for them
that might impede the processing of locally dense expanded graphs (Definition 1). In contrast,
higher-order GNNs, while being more expressive, come with elevated computational costs. Our
investigation featured various architectures, including message passing GNNs, a transformer-based
model advocated by Vignac et al. (2023a), and PPGN (Maron et al., 2020). Our experimentation
revealed that PPGN performed exceptionally well, although being computationally expensive.

F.1 PROVABLY POWERFUL GRAPH NETWORKS

Maron et al. (2020) introduce PPGN, a permutation-equivariante graph neural network architecture.
The PPGN possesses provable 3-WL expressivity, which is categorically stronger than message
passing models and operates on dense graph representations.

Given a graph embedding H ∈ Rn×n×h, with H[i, j] ∈ Rh being the h-dimensional embedding
of the ordered edge (i, j), a PPGN layer updates the graph embedding as follows: Two separate
multilayer perceptrons, termed MLP1 and MLP2 are applied along the third axis of H to compute
two third-order tensors M1,M2 ∈ Rn×n×h, i.e., for i, j ∈ [n]:

M1[i, j] = MLP1(H[i, j]) (16)
M2[i, j] = MLP2(H[i, j]). (17)

Subsequently, an element-wise matrix multiplication yields M ∈ Rn×n×h. This is computed with
M[:, :, d] = M1[:, :, d] ·M2[:, :, d] for each d ∈ [h]. Equivalently, this operation can be expressed as:

M[i, j] =
∑
k∈[n]

M1[i, k]⊙M2[k, j], (18)

where i, j ∈ [n] and ⊙ denotes the element-wise multiplication. Lastly, the updated graph embed-
ding, represented as H′ is obtained using a third multilayer perceptron, MLP3, by setting for each
i, j ∈ [n]:

H′[i, j] = MLP3(H[i, j] ∥M[i, j]), (19)

where ∥ signifies the concatenation operation.

F.2 LOCAL PPGN

In devising our model, we recognized that the graphs of our interest are sparse, a common quality
among many real-world graphs. Additionally, our expanded graphs (Definition 1) are locally dense
with fully interconnected clusters but globally sparse. Hence, our objective is to construct a model
that is expressively local but globally sparse. Our proposed Local PPGN which is comparable to the
PPGN architecture for a fully connected graph and a message passing GNN for a graph devoid of
triangles, appears to strike a favorable balance between expressivity and complexity.

The fundamental operation of our Local PPGN layer is an edge-wise message passing mechanism.
It assumes an underlying directed graph

−→
G = (V,

−→
E), where V is the set of nodes and

−→
E is the set

25

Published as a conference paper at ICLR 2024

LocalPPGN Messages

2

1 3 4

Figure 5: Illustration of a directed graph with self-loops. In the following, we list the update formula
for three representative edge embeddings:
(h′)(1,1) = γ

(
h(1,1), ϕ

(
h(1,1),h(1,1)

)
⊕

(
h(1,2),h(2,1)

)
⊕
(
h(1,3),h(3,1)

))
(h′)(1,3) = γ

(
h(1,3), ϕ

(
h(1,1),h(1,3)

)
⊕

(
h(1,2),h(2,3)

)
⊕
(
h(1,3),h(3,1)

))
(h′)(3,4) = γ

(
h(3,4), ϕ

(
h(3,4),h(4,4)

))

of directed edges. The emebeddings h(i,j) ∈ Rh associated with the edges (i, j) ∈
−→
E are updated

as follows:

(h′)(i,j) = γ

h(i,j),
⊕

v(k)∈N−(v(i))∩N+(v(j))

ϕ
(
h(i,k),h(k,j)

) . (20)

Here, the operator
⊕

represents a permutation-invariant and differentiable aggregation operation.
The functions ϕ and γ are arbitrary differentiable functions that can be instantiated, for instance,
as multi-layer perceptrons. N+(v(i)) denotes the set of nodes with outgoing edges to v(i), and
N−(v(i)) denotes the set of nodes with incoming edges from v(i).

Aggregation Sets We begin our analysis of this layer by exploring the sets of messages subject
to aggregation. For any given node v(i) ∈ V and its associated embedding h(i,i), the aggregation
set includes the message ϕ(h(i,i),h(i,i)). For each neighboring node v(j), the set also contains the
message ϕ(h(i,j),h(j,i)). For a directed edge e(i,j) ∈

−→
E , the aggregation set comprises of the mes-

sage ϕ(h(i,i),h(i,j)). Additionally, each triangle (v(i), v(k), v(j)) present in the graph contributes
the message ϕ(h(i,k),h(k,j)) to the aggregation set. Figure 5 provides an illustration of the message
sets that undergo aggregation for a representative graph.

Complexity The complexity of this layer, from the above analysis, scales linearly with the number
of edges and triangles in the graph. For a graph lacking triangles, the complexity therefore scales
linearly with the number of edges. Conversely, for a fully connected graph, it scales cubically with
the number of nodes.

Relation to PPGN With
⊕

instantiated as a sum, ϕ and γ with multi-layer perceptrons as
ϕ(x,y) = MLP1(x) ⊙ MLP2(y) and γ(x,y) = MLP3 (x ∥ y), we recover the PPGN layer
as delineated in Section F.1 for a fully connected graph. To discern this, one may compare the
scheme 20 with our message passing-like formulation of the PPGN layer in Equation 18.

When applied to a general graph, one interpretation of our layer’s effects is the application of the
PPGN layer on each fully connected subgraph within the main graph. This was the initial impetus
behind our design choice; we aimed to fuse the expressivity of PPGN with the efficiency of message
passing GNNs. Given that our graph generation method only introduces local modifications in each
step, we theorize that this level of local expressivity is sufficient.

26

Published as a conference paper at ICLR 2024

F.3 ARCHITECTURAL DETAILS

We instantiate our Local PPGN model with a succession of the prescribed layers, each responsible
for transforming a dhidden-dimensional embedding into another of matching dimensions. For every
layer, we set

⊕
as a sum and normalize by division through the square root of the total message

count. We set ϕ(x,y) = MLP1(x) ⊙ MLP2(y), where both MLP1 and MLP2 are multi-layer
perceptrons, accepting inputs of dimension dhidden and producing outputs of dimension dPPGN. We
define γ(x,y) = MLP3 (x ∥ y), where MLP3 is a multi-layer perceptron with an input dimension
of dhidden + dPPGN and an output dimension of dhidden.

MLP Architecture Within our model, all multi-layer perceptrons consist of two hidden layers.
The first has dhidden neurons, while the second matches the output dimension. Following each
hidden layer, a layer normalization (Ba et al., 2016) and a ReLU activation function are applied.

Input Embeddings We unify the node, edge and global features (diffusion time step, reduction
fraction, target graph size) into a common demb-dimensional space. Sinusoidal Positional Encod-
ings (Vaswani et al., 2023) are utilized for discrete target graph size embedding, whereas linear pro-
jections are used for the remaining features. Global features are replicated for each node and edge in
the same graph and are appended to the respective node or edge features. The initial given node em-
beddings, as outlined in Section 3.5, are also concatenated to the node embeddings. Similarly, given
node embeddings corresponding to the edge’s endpoints are joined with the edge embedding. Each
embedding feature is subject to independent dropout with 0.1 probability before being projected to
dhidden dimensions via a linear layer.

Output Final output features for each node or edge are obtained by concatenating the initial em-
bedding and all intermediate embeddings (i.e., outputs of every layer), applying a dropout with 0.1
probability and projecting these features to the desired output dimension using a linear layer.

SignNet Our methodology incorporates the SignNet model (Lim et al., 2022) for procuring node
embeddings from a given graph using the principal spectrum of its Laplacian. Specifically, the k
smallest non-zero eigenvalues and the associated eigenvectors of the graph’s Laplacian are utilized
as input. Each eigenvector concatenated with its corresponding eigenvalue (where eigenvalues are
duplicated along the node dimension) is projected into dSignNet dimensions and subsequently fed
into a Graph Isomorphism Network (GIN) (Xu et al., 2019) to generate an embedding. This opera-
tion is performed twice for each eigenvector—once for the original eigenvector and once with each
dimension negated. The yielded embeddings are then averaged to obtain a sign-invariant embedding.
This procedure is repeated for every individual eigenvector, after which all embeddings for each
node are concatenated. This concatenated output is subsequently mapped to a demb-dimensional
output using a multi-layer perceptron.

The aforementioned GIN comprises a sequence of message passing layers, where each layer applies
a multi-layer perceptron to the summed node embeddings of all adjacent nodes. Analogously to the
Local PPGN, all intermediate embeddings from these layers are concatenated, subjected to a dropout
operation with a probability of 0.1, and projected to dSignNet dimensions using a linear layer.

It should be noted that all MLPs within SignNet have a hidden dimension of dSignNet, which can
diverge from dhidden. Apart from this, all other architectural details remain identical.

PPGN We have also designed a version of the PPGN model for our baseline one-shot model.
Notably, only edge features need to be generated here, which eliminates the need for input node
features. Additionally, there are no initial node embeddings, and reduction fraction or target graph
size global features. However, outside of these differences, we maintain a consistent architecture
with our Local PPGN model.

Implementation Details We implement the Local PPGN and SignNet models using the PyTorch
Geometric framework (Fey & Lenssen, 2019), the use of sparse graph representations that facili-
tate scalability to larger graphs. We utilize the standard batching strategy, which involves merging
several graphs into a unified disconnected graph, with a batch index to identify the original graph

27

Published as a conference paper at ICLR 2024

associated with each node. In contrast, the PPGN model is implemented using dense PyTorch oper-
ations and representations.

F.4 GRAPH NEURAL NETWORK ARCHITECTURE ABLATION STUDY

The objective of this study is to demonstrate the superior performance of our proposed Local PPGN
model, over a conventional node-wise message passing architecture that we refer to as GINE. For
the purpose of defining this model, let’s denote the embedding of node v(i) ∈ V as h(i) ∈ Rh and
the embedding of edge (i, j) ∈ E for a graph G = (V, E) as h(i,j) ∈ Rh. The updates to these
embeddings are performed as follows:

h′(i) = γnode

h(i),
⊕

v(j)∈N (v(i))

ϕ
(
h(i),h(i,j)

) ,

h′(i,j) = γedge

(
h(i,j),h′(i),h′(j)

)
.

In the above equations, N (v(i)) represents the set of nodes adjacent to v(i). We define ϕ(x, e) =
ReLU(x, e) and instantiate

⊕
as a sum, γnode(x,y) = MLPnode(x + y) and γedge(x,y, z) =

MLPedge(x ∥ y ∥ z), where MLPnode and MLPedge are multi-layer perceptrons. The node update
operation is a modified version of the GIN layer (Xu et al., 2019), as proposed by Hu et al. (2020).
All other aspects of this model, including the MLP design, input embeddings, and output, are kept
identical to those in the Local PPGN model. The findings from this ablation study are summarized
in Table 5. We observe that the Local PPGN model consistently outperforms the GINE model
across all datasets under consideration. The performance improvement is particularly pronounced
for planar graphs, underscoring the importance of local expressivity in our model for capturing the
structural properties of such graphs.

Planar graphs Tree graphs Proteins

Model Ratio ↓ V.U.N. ↑ Ratio ↓ V.U.N. ↑ Ratio ↓
Local PPGN 2.1 95.0 4.0 100 5.9
GINE 4.0 57.5 12.2 97.5 7.2

Table 5: Ablation study of the graph neural network architecture.

28

Published as a conference paper at ICLR 2024

G END-TO-END TRAINING AND SAMPLING

We provide algorithmic details for the end-to-end training and sampling procedures in Algorithm 6
and Algorithm 7 respectively. Both algorithms assume the deterministic expansion size setting,
described in Section 3.7. In the scenario without deterministic expansion size, the only deviation
during the training phase is that the model is not conditioned on the reduction fraction. The corre-
sponding sampling procedure in this setting is described in Algorithm 8. All mentioned algorithms
rely on the node embedding computation procedure, described in Algorithm 5.

Algorithm 5 Node embedding computation: This describes the procedure for computing node
embeddings for a given graph. Embeddings are computed for the input graph and then replicated
according to the cluster size vector.

Parameters: number of spectral features k
Input: graph G = (V, E), spectral feature model SignNetθ, cluster size vector v
Output: node embeddings computed for all nodes in V and replicated according to v

1: function EMBEDDINGS(G = (V, E),SignNetθ,v)
2: if k = 0 then
3: H = [h(1), . . . ,h(|V|)]

i.i.d.∼ N(0, I) ▷ Sample random embeddings
4: else
5: if k < |V| then
6: [λ1, . . . , λk], [u1, . . . ,uk]← EIG(G) ▷ Compute k spectral features
7: else
8: [λ1, . . . , λ|V|−1], [u1, . . . ,u|V|−1]← EIG(G) ▷ Compute |V| − 1 spectral features
9: [λ|V|, . . . , λk], [u|V|, . . . ,uk]← [0, . . . , 0], [0, . . . ,0] ▷ Pad with zeros

10: end if
11: H = [h(1), . . . ,h(|V|)]← SignNetθ([λ1, . . . , λk], [u1, . . . ,uk], G)
12: end if
13: G̃ = (V(1) ∪ · · · ∪ V(p), Ẽ)← G̃(G,v) ▷ Expand as per Definition 4
14: set H̃ s.t. for all p ∈ [|V|]: for all v(pi) ∈ V(p), H̃[pi] = H[p] ▷ Replicate embeddings
15: return H̃
16: end function

29

Published as a conference paper at ICLR 2024

Algorithm 6 End-to-end training procedure: This describes the entire training procedure for our
model.
Parameters: number of spectral features k for node embeddings
Input: dataset D = {G(1), . . . , G(N)}, denoising model GNNθ, spectral feature model SignNetθ
Output: trained model parameters θ

1: function TRAIN(D,GNNθ,SignNetθ)
2: while not converged do
3: G ∼ Uniform(D) ▷ Sample graph
4: (G0, . . . , GL)← RNDREDSEQ(G) ▷ Sample coarsening sequence
5: l ∼ Uniform({0, . . . , L}) ▷ Sample level
6: if l = L then
7: Gl+1 ← Gl

8: vl+1 ← 1
9: el ← ∅

10: else
11: set vl+1 as in Eq. 4 and el as in Eq. 5, s.t. G(G̃(Gl+1,vl+1), el) = Gl

12: end if
13: if l = 0 then
14: vl ← 1
15: else
16: set vl as in Eq. 4, s.t. the node set of G̃(Gl,vl) equals that of Gl−1

17: end if
18: Hl ← EMBEDDINGS(Gl+1,SignNetθ,vl+1) ▷ Compute node embeddings
19: ρ̂← 1− (nl/nl−1), with nl and nl−1 being the size of Gl and Gl−1

20: Dθ ← GNNθ(·, ·, G̃l,Hl, n0, ρ), where n0 is the size of G0

21: take gradient descent step on∇θDIFFUSIONLOSS(vl, el, Dθ)
22: end while
23: return θ
24: end function

Algorithm 7 End-to-end sampling procedure with deterministic expansion size: This describes
the sampling procedure with the deterministic expansion size setting, described in Section 3.7. Note
that this assumes that the maximum cluster size is 2, which is the case when using edges as the
contraction set family for model training.

Parameters: reduction fraction range [ρmin, ρmax]
Input: target graph size N , denoising model GNNθ, spectral feature model SignNetθ
Output: sampled graph G = (V, E) with |V| = N

1: function SAMPLE(N,GNNθ,SignNetθ)
2: G = (V, E)← ({v}, ∅) ▷ Start with singleton graph
3: v ← [2] ▷ Initial cluster size vector
4: while |V| < N do
5: H ← EMBEDDINGS(G,SignNetθ,v) ▷ Compute node embeddings
6: n← ∥v∥1
7: ρ ∼ Uniform([ρmin, ρmax]) ▷ random reduction fraction
8: set n+ s.t. n+ = ⌈ρ(n+ n+)⌉ ▷ number of nodes to add
9: n+ ← min(n+, N − n) ▷ ensure not to exceed target size

10: ρ̂← 1− (n/(n+ n+)) ▷ actual reduction fraction
11: Dθ = GNNθ(·, ·, G̃(G,v),H, N, ρ̂)
12: (v)0, (e)0 ← SDESAMPLE(Dθ) ▷ Sample feature embeddings
13: set v s.t. for i ∈ [n]: v[i] = 2 if |{j ∈ [n] | (v)0[j] ≥ (v)0[i]}| ≥ n+ and v[i] = 1

otherwise
14: e← DISCRETIZE((e)0)

15: G = (V, E)← G(G̃, e) ▷ Refine as per Definition 2
16: end while
17: return G
18: end function

30

Published as a conference paper at ICLR 2024

Algorithm 8 End-to-end sampling procedure: This describes the entire sampling procedure with-
out the deterministic expansion size setting.

Input: target graph size N , denoising model GNNθ, spectral feature model SignNetθ
Output: sampled graph G = (V, E)

1: function SAMPLE(N,GNNθ,SignNetθ)
2: G = (V, E)← ({v}, ∅) ▷ Start with singleton graph
3: H ← EMBEDDINGS(G,SignNetθ,1) ▷ Initial node embedding
4: Dθ ← GNNθ(·, ·, G,H, N)
5: (v)0, ← SDESAMPLE(Dθ)
6: v ← DISCRETIZE((v)0) ▷ Initial cluster size vector
7: while |V| < N do
8: H ← EMBEDDINGS(G,SignNetθ,v) ▷ Compute node embeddings
9: Dθ ← GNNθ(·, ·, G̃(G,v),H, N)

10: (v)0, (e)0 ← SDESAMPLE(Dθ) ▷ Sample feature embeddings
11: v ← DISCRETIZE((v)0)
12: e← DISCRETIZE((e)0)

13: G = (V, E) = G(G̃, e) ▷ Refine as per Definition 2
14: end while
15: return G
16: end function

31

Published as a conference paper at ICLR 2024

H COMPLEXITY ANALYSIS

In the following, we analyze the asymptotic complexity of our proposed method for generating a
graph G with n nodes and m edges. The method involves creating an expansion sequence (GL =
({v}, ∅), GL−1, . . . , G0 = G) that progressively expands a single node into the graph G.

Assuming there exists a positive constant ϵ > 0 such that the number of nodes nl of Gl satisfies the
inequality nl ≥ (1+ϵ)nl−1 for all 0 ≤ l < L iterates, we can deduce that the length of the expansion
sequence does not exceed L = ⌈log1+ϵ n⌉ ∈ O(log n). This assumption holds true in the context
of deterministic expansion size setting, as delineated in Algorithm 7. In the case of Algorithm 8,
although not guaranteed, it is likely to hold as the model is trained to invert coarsening sequences
with a minimum reduction fraction of ρmin.

Two observations are made to bound the sizes of the iterates Gl in the sequence. Since expansion
can only increase the number of nodes in the graph, no Gl has more than n nodes. For the number
of edges, a similar statement cannot be made, as a refinement step can remove arbitrarily many
edges. Theoretically, a graph Gl with l > 0 could encompass more than m edges. Nevertheless, this
scenario is improbable for a trained model - provided sufficient training data and model capacity - as
graph coarsening, according to Definition 3, can only decrease the number of edges. Consequently,
the coarse graphs used for model training do not contain more edges than the dataset graphs. For the
purpose of this analysis, we assume that the number of edges in all Gl is asymptotically bounded by
m.

Next, we bound the complexity of generating an iterate Gl in the sequence. For l = L, this in-
volves instantiating a singleton graph and predicting the expansion vector vL, which can be done
in constant time and using constant space. For all other instances where 0 ≤ l < L, given the
graph Gl+1 and the expansion vector vl+1, the graph Gl and expansion vector vl are derived by
constructing the expansion G̃l = G̃(Gl+1,vl+1). This is followed by sampling vl and el and sub-
sequently constructing Gl = G(G̃l, el). Let vmax denote the maximum cluster size, which is 2 for
the edge contraction set family. This allows us to establish an upper bound on the number of edges
in the expansion G̃l. The edge set of G̃l comprises, at most, nl+1

vmax(vmax−1)
2 intracluster edges and

a maximum of ml+1v
2
max cluster interconnecting edges. It is reasonable to assume that vmax is con-

stant, as the distribution of expansion sizes can only encompass a constant number of categories.
Consequently, no expanded graph will asymptotically exceed m edges. Sampling vl and el is done
by querying the denoising model a constant number of times. The complexity for this depends on
the underlying graph neural network architecture. For message passing models, this is linear in the
number of nodes and edges in the graph. Our Local PPGN model also achieves this efficiency if
the graph contains at most O(m) many triangles. Finally, we bound the complexity of obtaining
the node embeddings for Gl. The first step involves calculating the k main eigenvalues and eigen-
vectors of the graph Laplacian of Gl+1. By using the method suggested in Vishnoi (2013), this can
be achieved with a complexity of Õ(kml+1), where Õ hides polylogarithmic factors. Computing
the node embeddings from this using SignNet is done in O(kml+1) time and space. The replication
of the embeddings for the expansion G̃l is linear relative to the number of nodes in G̃l. Given that
we select k as a constant, the aggregate complexity for computing the node embeddings equates to
Õ(n+m).

In conclusion, under the stated assumptions, the complexity to generate a graph G with n nodes and
m edges is Õ(n+m), again hiding polylogarithmic factors.

Figure 6 provides an empirical comparison of our method’s runtime efficiency in generating sparse
planar graphs against other graph generation models. Our approach achieves subquadratic runtime
with respect to the number of nodes, outperforming DiGress (Vignac et al., 2023a) and our baseline
one-shot method. It operates a constant factor slower than BwR (EDP-GNN) (Diamant et al., 2023)
and BiGG (Dai et al., 2020) but exhibits similar asymptotic scaling. This is remarkable given that our
method significantly exceeds these models in terms of sample fidelity, as shown in our experiments.

32

Published as a conference paper at ICLR 2024

0 250 500 750 1000 1250 1500 1750
Graph Size

0

200

400

600

800

1000

1200

1400

Sa
m

pl
in

g
Ti

m
e

(s
)

DiGress BwR (EDP-GNN) BiGG Ours (one-shot) Ours

Figure 6: Sampling Efficiency Comparison: The plot illustrates the time required to generate a single
planar graph as a function of node count. Mean and standard deviation are calculated over 10 runs.
Models with complexity tied to sparsity structure were trained to overfit a single graph, and timing
was recorded for generating that graph. Models failing to replicate the target structure, such as those
producing disconnected graphs, have been excluded for fairness. Experiments were conducted using
a single NVIDIA GeForce RTX A6000 GPU. The reported values encompass all graph sizes that do
not surpass the GPU’s memory capacity of 40GB.

33

Published as a conference paper at ICLR 2024

I EXPERIMENTAL DETAILS

I.1 DATASETS

We utilize the following synthetic and real-world datasets for our experimental evaluation:

• Planar graphs: This dataset from Martinkus et al. (2022) comprises 200 planar graphs
with 64 nodes. These graphs are generated by applying Delaunay triangulation on a set of
points placed uniformly at random in the unit square.

• SBM (Stochastic Block Model) graphs: We obtain this dataset from Martinkus et al.
(2022), consisting of 200 graphs with 2 to 5 communities. Each community contains 20
to 40 nodes, and the probability of an edge between two nodes is 0.3 if they belong to the
same community and 0.05 otherwise.

• Tree graphs: We generate 200 random trees, using NetworkX (Hagberg et al., 2008), each
containing 64 nodes.

• Protein graphs: Dobson & Doig (2003) provide a dataset of protein graph representations.
In this dataset, each node corresponds to an amino acid and an edge exists between two
nodes if the distance between their respective amino acids is less than 6 angstroms.

• Point cloud graphs: We adopt the point cloud dataset used in Liao et al. (2020), which
consists of 41 point clouds representing household objects (Neumann et al., 2013). As a
substantial portion of the graphs are not connected, we only keep the largest connected
component of each graph.

For consistency, we employ the train/test split method proposed by Martinkus et al. (2022). Specifi-
cally, we allocate 20% of the graphs for testing purposes and then partition the remaining data into
80% for training and 20% for validation. When available we use the exact split by Martinkus et al.
(2022). The dataset statistics are presented in Table 6.

Dataset Max. nodes Avg. nodes Max. edges Avg. edges Train Val. Test

Planar 64 64 181 177 128 32 40
SBM 187 104 1129 500 128 32 40
Tree 64 64 63 63 128 32 40
Protein 500 258 1575 646 587 147 184
Point cloud 5037 1332 10886 2971 26 7 8

Table 6: Dataset statistics.

I.2 EVALUATION METRICS

We use the same evaluation metrics as Martinkus et al. (2022) to compare the performance of our
model with other graph generative models. We report the maximum mean discrepancy (MMD)
between the generated and the test graphs for the following graph properties: degree distribution,
clustering coefficient, orbit counts, spectrum, and wavelet coefficients. As a reference, we compute
these metrics for the training set and report the mean ratio across all of these metrics as a com-
prehensive indicator of statistical similarity. It is important to note that for the point cloud dataset,
given its k-nearest neighbor structure, the degree MMD is identically zero; consequently, it is not
incorporated into the mean ratio computation. Analogously, for the tree dataset, both the clustering
coefficient and orbit counts are excluded from the ratio computation for the same reasons.

Another set of important metrics are uniqueness and novelty. These metrics quantify the proportion
of generated graphs that are not isomorphic to each other (uniqueness) or to any of the training
graphs (novelty).

As proposed by Martinkus et al. (2022) for synthetic datasets, we also report the validity score which
verifies whether the generated planar graphs retain their planarity, whether the SBM graphs have a
high likelihood of being generated under the original SBM parameters, and whether the tree graphs
lack cycles.

34

Published as a conference paper at ICLR 2024

I.3 HYPERPARAMETERS AND TRAINING SETUP

We train our model using the Adam optimizer (Kingma & Ba, 2017) and an initial learning rate of
10−4. A comprehensive summary of the additional hyperparameters employed for our model, as
well as the baselines against which we compare, can be found in Table 7. We train all models until
there is no further performance improvement on the validation set, with an upper limit of four days.
For model selection, we choose the epoch exhibiting the best validation metric, which constituted
the fraction of valid, unique, and novel graphs in the case of synthetic datasets, and the mean ratio
for real-world datasets.

Experiment

Model Hyperparameter Planar SBM Tree Protein Point Cloud Extrapolation Interpolation

Ours

Hidden embedding size (dhidden) 256 256 256 256 256 256 256
PPGN embedding size (dPPGN) 128 128 128 128 128 128 128
Input embedding size (demb) 32 32 32 32 32 32 32
Number of layers 10 10 10 10 10 10 10
Number of denoising steps 256 256 256 256 256 256 256
Batch size 32 16 32 16 8 32 32
EMA coefficient 0.99 0.999 0.99 0.9999 0.999 0.99 0.99
Number of spectral features 2 0 2 0 2 2 2
SignNet embedding size (dSignNet) 128 — 128 — 128 128 128
SignNet number of layers 5 — 5 — 5 5 5

Ours (one-shot)

Hidden embedding size 256 256 256 256 — 256 256
PPGN embedding size (dPPGN) 64 64 64 64 — 64 64
Input embedding size (demb) 32 32 32 32 — 32 32
Number of layers 8 8 8 8 — 8 8
Number of denoising steps 256 256 256 256 — 256 256
Batch size 16 8 16 2 — 16 8
EMA coefficient 0.999 0.99 0.999 0.9999 — 0.999 0.999

GRAN (Liao et al., 2020)

Hidden size — — 128 — 256 128 128
Embedding size — — 128 — 256 128 128
Number of layers — — 7 — 7 7 7
Number of mixtures — — 20 — 20 20 20
Batch size — — 20 — 10 20 20

DiGress (Vignac et al., 2023a)
Number of layers 10 8 10 8 — 10 10
Number of diffusion steps 1000 1000 1000 1000 — 1000 1000
Batch size 64 12 64 2 — 64 12

EDGE (Chen et al., 2023b) Number of diffusion steps 128 256 32 256 256 — —
Batch size 16 8 16 8 2 — —

BwR (EDP-GNN) (Diamant et al., 2023)
Hidden size 128 128 128 128 128 — —
Number of diffusion steps 200 200 200 200 200 — —
Batch size 48 48 32 16 2 — —

BiGG (Dai et al., 2020)
Ordering DFS DFS DFS DFS DFS DFS DFS
Accumulated gradients 1 1 1 5 15 1 1
Batch size 32 32 32 48 2 32 32

GraphGen (Goyal et al., 2020) Batch size 32 32 32 32 32 32 32

Table 7: Training hyperparameters for the models used in the experiments. A dash (—) signifies
that we did not perform the experiment for the associated dataset, either due to memory restrictions
or because the results are sourced from Martinkus et al. (2022). All unspecified hyperparameters
default to their standard values. For all additional models, the results are adapted from Martinkus
et al. (2022).

35

Published as a conference paper at ICLR 2024

J SAMPLES

(a) Dataset graphs. (b) Samples generated by our model.

Figure 7: Uncurated set of planar graph samples.

(a) Dataset graphs. (b) Samples generated by our model.

Figure 8: Uncurated set of tree graph samples.

36

Published as a conference paper at ICLR 2024

(a) Dataset graphs. (b) Samples generated by our model.

Figure 9: Uncurated set of SBM graph samples.

(a) Dataset graphs. (b) Samples generated by our model.

Figure 10: Uncurated set of protein graph samples.

37

Published as a conference paper at ICLR 2024

(a) Dataset graphs. (b) Samples generated by our model.

Figure 11: Uncurated set of point cloud graph samples.

(a) Planar graphs generated by our model. (b) Tree graphs generated by our model.

Figure 12: Uncurated set of graph samples with 48 to 144 nodes from the extrapolation experiment,
surpassing the maximum number of 64 nodes seen during training.

38

Published as a conference paper at ICLR 2024

Figure 13: Illustrative example of spectrum preserving coarsening: The first column of each row
presents a graph from our datasets. The subsequent columns depict progressive coarsening steps
applied to these graphs. Each coarsening step is executed with a consistent reduction fraction of 0.3.
The objective of these steps is to maintain spectral characteristics of the original graph throughout
the coarsening process, thereby preserving essential structural information.

39

	Introduction
	Related Work
	Method
	Graph Expansion
	Learning to Invert Graph Coarsening
	Modeling and Training
	Local PPGN
	Spectral Conditioning
	Perturbed Expansion
	Deterministic Expansion Size

	Experiments
	Conclusion
	Invert Coarsening by Expansion and Refinement
	Perturbed Graph Expansion
	Spectrum-Preserving Coarsening
	Local Variation Coarsening
	Adapting Local Variation Coarsening to our Setting

	Coarsening Sequence Sampling
	Cost Function Ablation Study

	Denoising Diffusion
	Generative Modeling with Stochastic Differential Equations

	Graph Neural Networks
	Provably Powerful Graph Networks
	Local PPGN
	Architectural Details
	Graph Neural Network Architecture Ablation Study

	End-to-end training and sampling
	Complexity Analysis
	Experimental Details
	Datasets
	Evaluation Metrics
	Hyperparameters and Training setup

	Samples

