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Scaling laws for test-time compute

In collaboration with SID.ai

For pretraining of Large Language Mod-
els (LLMs) the “Kaplan” [3] & “Chinchilla” e oo ndlcates
number of parameters

[2] scaling laws were breakthroughs showing 10 NI
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of an LLM with a simple power law rela- 8
tion after scaling up the number of parame-
ters and dataset size through multiple orders 6 .
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of magnitude, as well as the optimal way training stops far
to scale these values given fixed pretraining 4 short of onvergence

compute (=~ dataset size x model size).

With the post-training breakthroughs
of “reasoning” models such as OpenAl o-
series and DeepSeek-rl [1], a natural ques-
tion emerges: What are the scaling laws for
this post-training regime? So far, work in
this area [4, 6] has focused on the best-of-
N approaches that were the preferred way
to scale inference compute before reasoning
post-training, as well as the initial analyses of performance as related to the test-time compute spend
of a single model (see for example Figure 1 of Muennighoff et al. [5]).

Roughly, the cost of generating a reasoning chain-of-thought will be:
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Figure 2 of Kaplan et al. [3]. y-axis is test loss. Each
line is a separate LLM with similar architecture but
parameter counts stretching across 6 OOMs.

cost ~ model size x chain-of-thought length + « model size x (chain-of-thought length)?,

for some small «, due to the quadratic attention cost. There is some evidence ([7], Figure 12)
that better base models use shorter chains of thought, thus presenting a tradeoff between model size
and chain-of-thought length for a given performance threshold.

In this project, we will try to do a fine-grained analysis of how to trade off the model size &
chain-of-thought length in various reasoning models. Doing so will require innovating to precisely
control the chain-of-thought length and develop a measure of question hardness (if such a measure
exists) that we can use to aggregate results.

Requirements: Strong programming skills & knowledge of RL. Weekly meetings will be scheduled
to address questions, discuss progress, and brainstorm future ideas.

Interested? Contact:
e Sam Dauncey : sdauncey@ethz.ch, ETZ G61.1
e Maximilian-David Rumpf : max@sid.ai

Please attach a CV and transcripts.
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Project scaffold

Here is how we would approach the project. It is certainly not the best way, and if you see a better
way, definitely tell us and change course!

Simple starter: Getting a handle on how performance interacts with model size and

output length

e Take a dataset of problems (eg. MATH).

e Take a series of reasoning models from HuggingFace (eg. rl-distills) and evaluate on them
drawing multiple samples per question (use quantization to squeeze the models onto our GPUs)

e Make a database of (prompt, completion, total context length, first solution position, model,
compute cost)

e (?7) Make an ELO-system to predict if a given model will get a given question correct.
Project: Using more fine-grained control of CoT length to get cleaner scaling laws

e Use RL and LoRA to adapt reasoning model to output in the following format (where the parts
in square brackets [] and end of thought is forced):

[prompt][you have n tokens]( n tokens of CoT )[The solution is: | { answer )

e See how the performance varies across multiple samples as k increases (this should look like the
log-log plot on the ol announcement or in sl [5])

e Make a similar database as before and plot this for multiple model sizes and varying n for fixed
question difficulty

Project Deliverables

We denote the following primary tasks mandatory (on the right side you find a rough estimate for
the time that we allocate to the respective task):

e Literature research (%)
e Write a report. (x%)
e Present your findings. (%)

The Student’s Duties

e One meeting per week with the advisors to discuss current matters.
e Regular check-ins into the provided revision control system.
e A final report in English, presenting work and results.

e A final presentation (15 min) of the work and results obtained in the project.
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